Novel Technique to Interact with Relational Databases by
Using a Graphics Display

YosiHisA UpaGAwa* and SETSUO OHSUGA*

The widespread dissemination of information systems for non-programmers requires a database interface lan-
guage that has high descriptive power and permits users to interact with the systems in other than computer
oriented terms. This paper provides the design and implementation of a non-procedural user interface language
for relational databases which is named GOING. Taking advantage of two-dimensional representation by using
graphic displays, GOING provides a concise, easy-to-understand representation of queries. Queries are expressed
in terms of simple figures, i.e. ellipse for domains, arcs for logical orders of entities and connection of conditions,
as well as expressions composed of comparison predicates and functions. With these techniques we can avoid
difficult natural language processing by the system and spelling mistakes by users while retaining high descrip-
tive power.

In this paper, GOING expressions are compared with two other graphics oriented languages, i.e. CUPID and
Query-by-Example. It is shown that GOING has high descriptive power and is systematic in expressing queries.
GOING also has strong theoretical basis. Any GOING expression has a counterpart in an extended many-sorted
logic and the correspondence between GOING and this logic is discussed. Implementation of a translation al-

gorithm from GOING expression into a formula in this logic is also described.

1. Introduction

In order to use database systems in more widespred
applications, it is essential to develop data languages
that have high descriptive power and permit users to
interact with the systems not in computer oriented terms
[1, 6]. For these requirements, we designed and imple-
mented a non-procedural user interface language for
relational databases which is named GOING (a Graphics
Oriented INteractive data lanGuage).

Two approaches are commonly known to achieve a
user-friendly interface language. One is to describe
requests by means of (restricted) natural language.
However, this approach meets only limited queries
because natural language processing includes difficult
syntactical and semantical analysis [2]. The other is to
express a query by means of a graph. By taking advant-
age of two-dimensional representation by using a
graphics display, queries are expressed within a simple
and easy-to-understand conceptual framework.

GOING belongs to the latter approach. GOING is
designed to enable the user to express queries in terms
of nodes, arcs, comparison predicates and functions.
Other well known languages with a similar basic orienta-
tion include CUPID [4] and Query-by-Example [10].

The main features of GOING are as follows.

(1) GOING provides a concise, easy-to-understand
representation of queries. Queries are expressed in terms
of simple figures (ellipse for domains, arcs for logical

*Institute of Interdiscriplinary Research Faculty of Engineering,
Tokyo University 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan.

Journal of Information Processing, Vol. 5, No. 4, 1982

orders of entities and connection of conditions), and
expressions composed of comparison predicates and
functions.

(2) GOING uses very simple English-like text. Thus,
we can avoid difficult natural language processing by the
system and spelling mistakes by users.

(3) GOING avoids the use of quantifiers and bound
variables in expressing queries, hence does not require
the user to have a high degree of sophistication on the
predicate logic.

(4) The user can control the size and layout of a
graph, thus being able to express a wide variety of
queries on a graphics display.

(5) GOING enables the user to state a query in a
non-procedural way. The meaning of a query depends
only on the properties of the figure expressing it, and
does not depend on the sequence of making it. In this
sense, a GOING query expression is descriptive.

(6) GOING is designed to minimize the number of
concepts that the user subsequently has to learn in order
to use the whole language.

(7) GOING has strong theoretical basis. A query
expression in GOING is translated into an intermediate
language, (the multi-layer logic for relational databases
[5, 7, 8], and then reduced to a sequence of high level
procedural operations of relational algebra.

(8) GOING provides high expressive power. GOING
is able to describe any formula in the multi-layer logic
for relational databases, which is proved to have more
expressive power than conventional query languages
based on the predicate logic and graphics-oriented query
languages [5, 6, 7].

In Section 2, we introduce GOING and compare it with

Novel Technique to Interact with Relational Databases by Using a Graphics Display 257

two other graphics oriented languages, i.e. CUPID and
Query-by-Example. In Section 3, we discuss informally
the multi-layer logic for relational databases and provide
correspondence between GOING expressions and basic
concepts in this logic. Section 4 deals with an algorithm
to translate a GOING expression into a formula in the
multi-layer logic. Section 5 concludes this paper. A
BNF syntax for GOING is given in the Appendix.

2. GOING Expressions for Relational Database Queries

2.1. GOING Expressions for Basic Database Queries

In this section, basic queries of the relational database
are illustrated in the GOING expressions. A domain
or literal expression preceded by ““ A ”” symbol means that
it’s the value will be listed.

(A) To Express Queries Containing Boolean Conditions

One of the most basic and important queries are those
of retrieving values which satisfy given Boolean condi-
tions. In GOING, those queries are expressed in terms
of domain specifications, Boolean expressions and
directed arcs. For example, the GOING expression in
Fig. 1 illustrates how to retrieve the values of ATTR1
in the relation REL from the relation whose associating
values of ATTR2 satisfy the given condition.

(B) To Express Queries Containing Aggregation
Functions

Many practical queries contain aggregation functions.
To express these queries, sets to which aggregation func-
tions are applied have to be specified. Because the
query language GOING deals with a subset of a given
domain explicitly, these queries are formulated in a
simple manner. For example, to get the average value of
the elements that satisfy a given condition is expressed
by the GOING expression in Fig. 2.

REL}{ATTRZ @ <PREDICATE CONSTANT><CONSTANT>

~REL:ATTRL

Fig. 1 GOING expression for queries containing Boolean con-
ditions.

~AUGCED

REL;ATTRZ @ <PREDICATE CONSTANT><{CONSTANT>

~REL :ATTR1

Fig. 2 GOING expression for queries containing aggregation
functions.

(C) To Express Queries Containing “Group by”
Operations

In some cases, queries involve aggregation functions
whose arguments are determined for each element of
some other set (i.e. for all elements of some set, there
exist subsets of a set, which are arguments of a given
aggregation function). These kinds of queries are for-
mulated in a simple manner. For example, the query
getting the unique number of items of REL: ATTR2
that are determined for each element of a set REL:
ATTRI is expressed by the GOING expression in Fig. 3.

2.2. Describing Queries in Terms of GOING Expressions
and Comparing GOING with CUPID and Query-
by-Example

In this section, we illustrate GOING expressions for
rather complex queries and compare them with other
graphics oriented languages, i.e. CUPID and Query-by-

Example. The database consists of the following

relations.

LYP(LAND, YEAR, PRIC);
LU(LAND, USAG);
LDA(LAND, DIST, AREA).

The relation LYP has a row giving the price and year

for each piece of land. The relation LU gives the usage

of each piece of land. The relation LDA gives, for each
land, its area and distance from the center of a city in
which it is located.

A query against more than one relation with Boolean
conditions

Query 1. List the lands and their areas with usage ‘A’,
which are less than 35 kilometer apart from the center of
a city and whose prices are less than 600,000 YEN/m? in
the year 1981.

Figure 4 contains three expressions for query 1, i.e.
expressions in GOING, CUPID and Query-by-Example.
In the GOING expression, an arc which connects the
right ellipse and the first argument of the Boolean pre-
dicate LU: USAG IS ‘A’, indicates that there are some
lands in the column LAND in the relations LU, LYP
and LDA whose usages are ‘A’. The literal expressions
LYP: PRIC IS ~LT #60 and LDA: DIST IS ~LT
#35 denote that the values of the price in the relation

AUCOUNTC %>

~REL:ATTR1 ~REL:ATTR2

Fig. 3 GOING expression for queries containing “group by”
operations.

258

LYPWYEAR IS #1581

Y. Upacawa and S. OHSUGA

LYP,PRIC IS GLT #60

GOING
LUSAGNIS LDgsDIST 1S BLT #35
~LDA: AREA ALULAND
LYP+LAND
LDAsLAND
CUPID
&> €>
N4 Y
LDA[LAND | DIST | AREA | LU | LAND | USAG LYP| LAND | YEAR [PRIC
Query-by-Example
LYP | LAND | YEAR | PRIC LU [LAND | USAG LDA | LAND | DIST [AREA
1 '1981' | <'60° P.1 tal 1 <'35' P.

Fig. 4 Query 1 in GOING, CUPID and Query-by-Example.

LYP and the values of the distance in the relation LDA
are less than 60 and 35.

A query against more than one relation with a universal
quantification

Query 2. List the lands which are inquired in all years,
their usage and distance from the center of a city.

Note that only those domains referred to need be
represented in the GOING expression in Fig. 5. In this
example the column PRIC in the relation LYP and
column AREA in the relation LDA are not used in the
GOING expression.

A query with built-in arithmetic and aggregation functions

Query 3. List, for each land inquired in the year 1981,
of usage ‘A’ its identifier, its price and the difference
between the price with the average price computed on
all lands inquired in the year 1981.

In the GOING expression in Fig. 6, the literal expres-
sion SUB(*, AVG(*)) demonstrates that a built-in func-
tion may be nested to any level so far as the value of
arguments are properly defined. Note that first argument
of SUB(*, AVG(¥*)) is some values of column PRIC in
the relation LYP, while the argument of AVG(*) is some
subsets of column PRIC. This difference is explicitly
expressed in the above GOING expression, while im-
plicitly expressed in CUPID. According to [3, 10], this
query is not expressible in Query-by-Example.

A query with a nested aggregation function and Boolean
conditions

Query 4. What is the average number of lands per
usage, which are inquired in the year 1981 and whose
areas are not less than 100 square meters.

The GOING expression in Fig. 7 contains the nested
aggregation function AVG(UCOUNT(*)). The argu-
ment of this function is a set of subsets of lands inquired
in the year 1981 and corresponding area is greater than
or equal to (not less than) 100 square meters. The sub-
sets of lands are determined for each usage. This fact is
represented by the arc connecting inside of the ellipse
LU: USAG and the innermost ellipse of the right figure.
In CUPID, on the other hand, the concepts of subsets
of a set, etc. are expressed in the same syntax. According
to [3, 10], this query is not expressible in Query-by-
Example.

3. Multi-Layer Logic for Relational Databases and
GOING Expressions

3.1. Multi-Layer Logic as an Extension of the Many-

Sorted Logic

It is recognized that the first order many-sorted logic
is not broad enough in expressing queries for the
relational database [3, 5, 6]. Many of the practical queries
that contain aggregation functions and/or group-by

Novel Technique 1o Interact with Relational Databases by Using a Graphics Display 259

Query 2 fn GOING, CUPID
and Query-by-Example.

Figure 5.

ALUUSAG

GOING.

~LDA'DIST

~LILAND
LYP:LAND
LOA:LAMND

LYP1YEAR
CUPID AN AN
- E E
<Y %

@m @ LAND | YEAR | @Lugﬂ usa;c] [Loa] LANDTDIg)TJ

&

&>
A4
Query-by-Example
LYP LAND YEAR Ly LAND USAG LDA LAND DIST
P. 1 all 1 P. 1 P.

Fig. 5 Query 2 in GOING, CUPID and Query-by-Example.

operations cannot be expressed by formulas in the many-
sorted logic. The approach that we have taken is to
extend the many-sorted logic. In the many-sorted logic,
the type of a variable is restricted to the predefined types,
e.g. integer, real, and so on. In the multi-layer logic
discussed in this paper, “set”, a method of structuring
types is introduced. A power set of an arbitrary set S,
excluding the empty set, is denoted by *S. For example,
let S’ be a finite set of natural numbers, and G(x, y) be
a predicate which is defined as true when x is greater than
y, and as false otherwise. Let SO(X) denote a predicate
containing a one-place set operation. Then the formula
3 X/*S$)V x/X)G(x, 50) & SO(X) denotes a query
demanding to calculate SO(X) to some X which is a
subset of S’ (or element of *S’) and each element of S’
satisfies the predicate G(x, 50). This idea is naturally
extended to power sets, power-power sets and
so on. If x4, X,--, X, (n=0) are variables defined
over S, *S,---, * ---*§, respectively, then (Q,x,/
¥t ¥ Qa1 Xa-1/%a) * <(QoXo/Xy) is a prefix of the
multi-layer logic, where Q,(0<i<n) is either V or 3.
When n=0, a prefix is (QgX,/S), which is the prefix of
the many-sorted logic. The multi-layer logic is a kind of
higher order logic, but only one-place predicates are
allowed to be variables. The relationship between this

logic and the conventional higher order logic can be
best illustrated by Fig. 8. For details, [7, 8] can be
referred.

3.2. Correspondence Between GOING Expression and
Basic Concepts in the Multi-Layer Logic for
Relational Databases

In this section, correspondence between GOING
expression and basic concepts in the multi-layer logic is
discussed. A formula in this logic is constructed in terms
of;
(M-1)
(M-2)
(M-3)
(M-4)
(M-5)

relationships between a variable and its domain,
quantification of variables,

Predicate constants possibly involving functions,
logical order of quantifiers.

logical connection of atomic (literal) formulas,
i.e. in terms of & (AND) and V (OR).

GOING represents these basic concepts in the multi-
layer logic by means of;

(G-1) ellipse with a domain name for a domain of a
variable in a formula,

hatching on an ellipse for a universal quantifica-
tion and non-hatching for an existential
quantification,

Boolean expressions and/or functional expres-

(G-2)

G-3)

260 Y. UpAGAWA and S. OHSUGA
GOING LUJUSAG 1S ‘A’

JAVGCEKRY)D

LYP(EAR ISA#1981 LYP\YEAR IS #1981

~LU:LAND ~LYP:PRIC
LYP:LAND LYP:PRIC

CUPID

N
4

1981
O] o [vers [FRic]

[-1

0

Fig. 6 Query 3 in GOING and CUPID.

<&

GOING LDA}AREA IS GGE #1680
ARUGCUCOUNTCX D)

LYP\YEAR IS #1981

LU:USAG
LU:LAND
LDATLAND
CUPID LYP:LAND

EQ

s &
tu] Lawp | usac | E:EETV LanD [YEAR |

Fig. 7 Query 4 in GOING and CUPID.

Novel Technique to Interact with Relational Databases by Using a Graphics Display 261

3
o n
0 + + +
— + + +
4
5 + + o+
+ + +
5 + + +
92
o + +
1
+ DHE DG D DA S A G
DA % 4 DA <3 % 4 NA DG P
N
0 1 2 m-place predicate

Fig. 8 The relationship between the multi-layer logic and the
conventional logic. +++, \\\, /// indicate the multilayer
logic, 1-st order logic, 2-nd order logic, respectively.

sions,
(G-4) directed arcs,
(G-5) undirected arcs that connect specified directed
arcs, respectively.
Directed arc in (G-4) is used for specifying logical
order of quantifiers, that is, the arc x—+—y denotes that
x determines the corresponding entity y. An undirected

A
arc _~7y indicates that two Boolean conditions A
and B are ORed. If there is no specification, it represents

ANDed. That is, ",

condition A and B are ANDed.

The GOING expressions “REL: ATTR IS ‘C’ ” and
“REL: ATTR IS #N”, where C is an identifier and N
is a number, indicate that values of attribute ATTR in
the relation REL are restricted to the character constant
‘C’ and the number N, respectively. They correspond
to the formula REL(---, ‘C’/ATTR,---) and REL(- -,
#N/ATTR, - -) in the multi-layer logic, respectively.
O denotes some values of the set obtained by
REL :ATTR
projecting the relation REL on the attribute ATTR.
Thus, it is the direct counterpart of (3 x/ATTR)
[REL(- - -, x,- - -)] of the multi-layer logic. On the other
hand, % denotes all the values of the set obtained

REL'ATTR
from the relation REL. Thus, it corresponds to the
formula (V x/ATTR) [REL(:--, x,*--)]. Inner ellipse

indicates that the Boolean

of represents a subset of the set obtained by
REL:ATTR

projecting the relation REL on the attribute ATTR.
In other words, it denotes an example of a subset of the
set obtained by projecting the relation REL on the
attribute ATTR. Thus the outer ellipse indicates the
powerset of the set. Hence, it corresponds to the formula

in the multi-layer loglc (3 x2/*ATTR)(3 x1/x2)
[REL(- - -, x1,--)} in the GOING expression
REL!M'TR

is used for representing all the values of some subsets
of the set obtained by projecting the relation REL on
the attribute ATTR. Thus it corresponds to a formula
(3 x2/*ATTR)(V x1/x2) [REL(---, x1,---)]. In this

manner, @ and @ correspond to (V x2/

REL :ATTR
*ATTR)(3 xl/x2) [REL(---, xl,---)] and (¥x2/
*ATTR)(Y x1/x2) [REL(- - -, x1,- - -)], respectively. These
expressions are naturally extended to those representing

a powerset of the set obtained by projecting the relation

REL on the attribute ATTR. For example,

REL:'ATTR

Table I Correspondence between GOING and multi-layer logic.

GOING Multi-layver 1ogic
REL:ATTR IS 'C’ RELC ..., 'C'/ATTR, ...)
REL:ATTR IS #N RELC.. .. #N/ATTR, ...
O CEX/ATTR) CRELC .. .,%,...)>3
REL :ATTR

CAX/ATTRY CRELC.. ., %, ..)]
REL:ATTR

CEN2/XATTR X EX1/X2)

CRELC...,%X1,...) 1
REL:ATTR
CEX2/3ATTR XX AX1/%2)

CRELC...,X1,...) 3
REL:ATTR

CHX273ATTR X EX1/X2)

L RELC...,X1,...)> 3
REL :ATTR

CAX2/3ATTR X AX1/X2)
C RELC...,X1,...) 1

CEXI/ZFXATTR X EX2/X3 W EX1/X2)
L RELC...,X1,...) 1

(X3/ FXATTR XEX2/X3 X AX1%2)
L RELC...,X1,...)> 1]

(EXI/X3ATTR X AX2/%3 X EXL/%2)
C RELC...,X1,...> 3

CAX3/XXATTR X EXZ/X] XEXLI/X2)
C RELC....X1,...> 3

CEXI/XXATTR X AX2/%3 X AX1/X2)
C RELC...,X1,...> 1

(WMTTRXEXZ/)GXQX!I)Q)
CRELC...,%X1,...0 13

CAXI/EXXATTR X AX2/XI IEXL /X2)
C RELC.. LX1,...)]

CAX3/E3ATTR XX AX2/X3 X AX1/%2)
T RELC...,X1,...) 1

262

corresponds to the formula (3 x3/**ATTR)(A x2/
x3)(V x1/x2) [REL(---, x1,--+)]. Table 1 summarizes
the correspondence between GOING expressions and
formulas in the multi-layer logic for relational databases.

4. Algorithm to Translate a GOING Expression into a
Formula in the Multi-Layer Logic for Relational
Databases

4.1. Overview

Algorithm to translate a GOING expression into a
formula in the multi-layer logic is generally divided into
five parts:

(1) to get variables required from a given GOING
expression,

(2) to generate priority information of variables,

(3) to generate a matrix to determine the logical order
of variables,

(4) to generate a prefix,

(5) to construct a body of a formula.

The first four algorithms will be discussed in the follow-
ing sections. On the other hand, the algorithm generat-
ing a body of a formula is implemented by simple sym-
bol manipulation. The key of this algorithm involves
referring to the schema of the relational database con-
cerned, listing the predicates required, and assigning
constants and functions obtained from a GOING
expression to the arguments of the predicates. Since the
implementation of the algorithm generating a body
contains no novel techniques, it is not discussed here.

4.2. To Get Variables From a GOING Expression

Variables are generated according to the following
rules.
(VG-1) For a domain represented by simple ellipse, a
variable defined on the domain is generated, say X1;
(VG-2) For a domain represented by doubl-ellipse,
two variables are generated, i.e. a variable defined on
the set of subsets of the domain, say X2, and a variable
defined on the X2, say X1;
(VG-3) For a domain represented by triple-ellipse,
three variables are generated, i.e. a variable defined on
the set of powersets of the domain, say X3, a variable
defined on the X3, say X2, and a variable on the X2,
X2, say X1.
(VG-4) For an expression containing a predicate con-
stant, and the arguments take the form of (relation
name): {attribute name), a variable is generated.
(VG-5) For a function whose value is to be answered,
a variable is generated.

4.3. To Generate Priority Information of Variables

Another type of information to be produced is that of
priority of variables. This information is obtained from
the following rules:

(PI-1) For the variables generated by the rules (VG-1),
(VG-2) and (VG-3), the priority information are N*100,

Y. UpAaGawa and S. OHSUGA

where N=1 for (VG-1), N=2 for (VG-2) and N=3 for
(VG-3).

(PI-2) For the variable generated by the rule (VG-4)
this information is 100;

(PI-3) For the variable generated by the rule (VG-5)
the priority is 100+ ‘the priority information of the
output varialbe’, which is set at 99 at first and is
decremented by one for each time an output variable is
generated.

4.4. To generate a Matrix To determine the Logical
Order of Variables

The variable matrix discussed in this section is a matrix
that is used to determine the logical order of variables in
the prefix of a formula. The logical order of variables
are expressed in the GOING expression by means of
directed arcs and the structure of domains. The former
is the logical order explicitly expressed by directed arcs,
while the latter implicitly indicates the logical order of a
variable whose value is set and a variable defined over it.
The variable matrix represents both these logical orders
of variables. The value of an element of the variable
matrix e(i, j) is defined as follows:

e(i, j)=N, if the j-th variable precedes the i-th vari-

able, where N is an integer obtained by ‘priority

information of the j-th variable’+100; e(i,j)=0,
otherwise.

As an example, the variable matrix shown in Fig. 9
(preceded by the data structure constructed in the
system) is obtained from the GOING expression for
query 4 in Section 2. The leftmost column represents
priority information corresponding to the variables in the
second column.

4.5. To Generate a Prefix

Algorithm for generating a prefix is given below.
Step 1. If the rank of the matrix is O then stop, else go
to Step 2.

Step 2. Get a set V of non-evaluated variables whose
row-wise summation is 0, i.e. a set of a variables preceded
by no variables. If V is empty then a given GOING
expression is illegal, else go to Step 3.

Step 3. If the set V is empty then go to Step 1, else
select a variable L having maximum priority from V and
go to Step 4.

Step 4. Print the variable L. The variable L is
evaluated. Get a set W of non-evaluated variables i
which satisfy e(i, L)#0. Go to Step 5.

Step 5. If the set W is empty then go to Step 3, else
select a variable M having maximum priority from W
and go to Step 6.

Step 6. If e(M, j)=0 for all non-evaluated variable j
then print the variable M. The variable M is evaluated.
Go to Step 3.

The result of the application of this algorithm to the
variable matrix given in Fig. 9 is shown in Fig. 10.
Typical GOING expressions are translated into cor-
responding formulas in the multi-layer logic in a second.

Novel Technique to Interact with Relational Databases by Using a Graphics Display

263

1 1828 25@¢ 448 5 4 | 8 @& @ @4 a @ a a
2 11 a g @ 8 @ a 8 8@ a8 @ @ 54852 a
J 1048 @@ 4408 & 9 2 I 4 @ 8 @ @ a a
4 Ja a g 8 8 8 @ 8 8 8 9 @ 7182 a
5 2a a a a8 a 8 8 8@ 8 a8 o @ a a
& 11 a e @ 8 8 @ 8 8 8 @8 8 5193 51937
1 218 318 LU-USAL
& 388 288 LU:LAND
3 588 2608 LDA:LAND
4 568 248 LYP:LAND
3 338 548 LYP:YEAR IS #1331
& 350 o650 LDOA:RRER IS @GE #1880
7678 888 SAUGCUCOUNT X))
Z1 Y3 Y2 YI H I
@@ 21 & 8 v @& a @
Jga Y3 a4 8 9 o o @
209 v2 1 2 @& @& o @
lag Yt 8 a8 1 @& @a @
189 H @8 3 8 8 8 @
lag I a ¢ & 1 9 @

Fig. 9 Data structure and variable matrix for query 4 in Section 2.

CE Y3<¥XLAND)D

(E Y3-¥¥LANDXXE H
CE Y3I-¥¥LANDXE H
CE Y3IZ7XXLANDXCE H

~/REAL D

Y1 I
187 Y1 @ @
10@8 1 1 @8

Y37¥¥LANDXCE H
Y3/¥XLANDXCE H
I Z7ARER)

AsREAL XX
~/RERL X

I Z/RRER)

LYPC
& LUC

Y1, #1981/YEAR, @
Yi. 21)

& LDAC Y1, @, I)

& GEC I, #1@87ARER)

& LETC H

~/REAL XA
~/REAL XA

Z21-USAG)
Z17USAGXCE Y2,Y3)

Z1/USAGXE Y27Y3XRA Y1-Y2)
Z17USAGIXCE Y27Y3XA Y17¥2)

Well-formed formula reduced from a GOING expression

X
E YI-¥ILANDOXCE H ~/REAL XA Z1/USAGIE Y2/Y3 XA Y1/Y3)
E

)

RUGCUCQUNTCYZ)))

8 4

Fig. 10 The translated formula in the multi-layer logic for query 4 in Section 2.

5. Conclusion

This paper concerns design and implementation of a
graphics oriented data landauage GOING. It is shown
that, by taking advantage of two-dimensional representa-
tion, queries are expressed within a simple and easy-to-
use conceptual framework. GOING expressions are
compared with two other graphics oriented languages,
i.e. CUPID and Query-by-Example. It is illustrated that
GOING has high expressive power and is systematic in
expressing queries. A GOING expression has a
theoretical counterpart in an extended many-sorted
logic, termed the multi-layer logic for relational

databases [7, 8]. The correspondence between GOING
and this logic is discussed. Implementation of a transla-
tion algorithm from a GOING expression to a formula
in this logic is also described. It is known that some of
the GOING expressions have direct counterparts in
relational algebra. For the subject, [7, 9] can be referred.
Three future research works are summarized here:
explanation facilities for sophisticated user interface,
study on database system to manage data with complex
data structures, design of total database system with
integrity and concurrency control.

264

Acknowledgements

I wish to acknowledge all the members of Meetings of
Information Systems for their encouragement and
constructive comments.

I am grateful to S. Kunifuji, IIAS of Fujitsu Limited,
for many helpful comments and providing valuable
documents.

I would like to express my appreciation to Dr. K.
Agusa, Ohno Laboratory of Kyoto University, for
providing the SAFE editor system. The SAFE system is
very useful and exclusively used for preparing this paper.

References

1. BeLL, J. R. Future directions in computing, Computer Vesign
(March, 1981), 95-102.

2. HenDRIX, G. G. etc. Developing a natural language interface
to complex data, ACM Trans. Database Syst. 3, 2 (June, 1978),
105-147.

3. Lacrorx, M. and PiROTTE, A. Example queries in relational
languages, MBLE Technical Note N107 (Sept., 1977).

4. McDonNALD, N. CUPID—A graphics oriented facility for
support of non-programmer interactions with a data base, ERL,
Univ. Calif. Berkeley, Mem #ERL-MS563 (Novem. 1975).

5. UpAGAWA, Y. and OHsSUGA, S. On the application of the multi-
layer logic to a relational database query language, (in Japanese)
WG DB Meeting of IPSJ 25-1 (1981).

6. UDAGAWA, Y. and OHSUGA, S. Design and implementation of
a database system based on the multi-layer logic, Proc. of Advanced
Database Symposium (Dec. 1981) 31-42.

7. UDAGAWA, Y. A Study on Design and Implementation of a
a Database System Based on Predicate Logic, Doctorial Thesis,
Tokyo University (Feb., 1982).

8. UbpAGawa, Y. and OHsuGa, S. Construction of SBDS-F3;
a relational database with inference mechanism, RIMS, Univ of
Kyoto, Kokyu-Roku #461 (1982), 49-78

9. UbAGAWA, Y. and OHSUGA, S. GOING—A data sublanguage
using a graphics display, WGDB Meeting of IPSJ 29-3 (1982).
10. Zioor, M. M. “Query-by-Example: a data base language,
IBM Syst. J. 4 (1977), 324-343.

Appendix

In the sequel the syntax for the data language GOING
is given. The syntax is described by the Backus notation.
In the following, the special symbols x=>y, s @)t are
used for expressing connection from an expression x
to y by a directed arc and connection from a directed
arc s to t by a undirected arc.

{GOING expression): : =(domain specification|
(literal expression)|
{GOING expression){arcy{domain specification|
{GOING expression){arc)literal expression)

{domain specification): : = O ! % !

<domain name> <domain name>

<domain name> <domain name> <domain name>

<domain name> <domain name> <domain name>

Y. UbaGgawa and S. OHSUGA

|

<domain name>

== !

<domain name> <domain name>

@ @ @

<domain name>

(arc): :==|=>@D=

<domgin name> <domain name>

(literal expression): : =({Boolean expression}|
A {functional expression)|
{Boolean expression): : ={argument) IS (argument}|

{argument) IS
@(predicate constant)
{argument)
{functional expression): : =(function name)
({functional argument list))

{functional argument list): : ={functional argument),
{functional argument list)
{functional argument): : =*|{constant)
{constant): : = # (number)|‘{identifier)’
{argument): : =*|{domain name)|{functional
expression)
{domain name): : =(relation name): (attribute name)

| A {relation name): <attribute name)
(predicate constant): : =EQ|NE|GT|LT|GE|LE|SSET

{DISJ
{function name): : =add|sub|mult|divimod
Jucount|count|summ|avg
{function name): : =(identifier)
{relation name): : ={identifier)

{attribute name) : : =(identifier)

(identifier): : =(letter)|{identifier){letter)|
(identifier)(digit)

{number): : ={unsigned number)| + {unsigned
number)| — (unsigned number)

{unsigned number): : ={decimal number}|
{decimal number)E{integer)
{decimal number): : =(unsigned integer>|{decimal

fraction)|<unsigned integer)
{decimal fraction)
{unsigned integer): : ={digit)>|{unsigned integer)
(digit)
{decimal fraction): : =.{unsigned integer)
(integer): : =(unsigned integer}| + (unsigned
integer)| — Cunsigned integer)
(letter): : =A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q]
RIS|ITIUVIW|X|Y|Z
{digit): : =1|2|3)4|5]6/7|8/9/0

(Received March 29, 1982)

