On the Cardinality Predicting Problems of Set Operations

KoHEl NosHITA' and WiLLiam F. McCoLL

The cardinality predicting problems on various set-theoretical operations such as intersection, projection and
join, are proposed and their computational complexity is investigated in terms of the number of comparisons on
two types of the computing model. Those results are all optimal within constant factors. An approximation al-
gorithm for computing the cardinality of join is also presented.

1. Introduction

In this paper, certain computational complexity
problems concerning primitive operations on finite sets
are defined and investigated. Those problems may be
called “‘cardinality predicting problems,” or in short
“predicting problems,” because of the way in which
they are supposed to be applied, as explained below. The
predicting problem, for instance, for intersection is to
decide, for given two sets and a threshold integer,
whether the cardinality of intersection of those two
sets is no more than the threshold. The main purpose of
this paper is to derive the optimal complexity for solving
the predicting problems for various set operations.

Those set operations considered here appear, for ex-
ample, in the relational database system ([1], [9]), in
which the predicting problem may be of practical im-
portance. In this system, we often want to know in
advance the size of the result of primitive operations,
because it may crucially affect the computing time for
moving data as well as the amount of the output to the
external devices. Hence it is important to design efficient
algorithms for predicting whether the size of the result
is acceptable to the predetermined threshold. In this
situation, those algorithms are required to run much
faster than those for actually obtaining the final result
itself. Although in the relational database system the
basic operations are defined as operating on tuples, in
our context those operations considered here may be
easily reformulated in terms of sets and multisets.

In this paper, we consider decision trees [3] as the
model of algorithms to solve the predicting problems,
and derive the asymptotic complexity in terms of the
number of comparisons between two elements on two
different types of decision trees. They are the linear-
order model and the equal-unequal model. Both models
have been discussed in the literature in order to study the
complexity of various types of problems on sets as well

Department of Computer Science University of Warwick
Coventry CV4 7TAL United Kingdom,

*This work was supported by SRC grant No. GR/A/9418.8 of
United Kingdom.

tPresent address Department of Computer Science Denkitusin
University Chofu Tokyo 182 Japan.

Journal of Information Processing, Vol. 5, No. 4, 1982

as multisets. See [2], [4], [7] and [8].

The results obtained in this paper are summarised as
follows. In case of such operations as intersection,
difference, union and join, each corresponding predicting
problem has the same complexity as the problem for
computing the entire result of the operation. This gives
us the negative result in the sense that there is no asymp-
totically faster algorithm for prediction. On the other
hand, it is shown that, in case of the projection opera-
tion, the fast prediction is possible. The optimal com-
plexity for the projection operation is determined within
a constant factor. Finally, an approximation algorithm
for computing the cardinality of join is presented and its
complexity is analysed.

2. Basic Definitions and Predicting Problems

We shall deal with various operations on finite sets,
which are assumed to be subsets of some fixed universal
set Z of sufficiently large size. Two different types of Z
will be considered with respect to its ordering relation;
namely, Z is assumed either to be linearly ordered or
to have no explicit order.

For such operations as projection and join, multisets
as a generalised notion of sets will be considered [3),
where a multiset is defined to be a set in which elements
with the identical value may appear more than once.
The ordinary symbols to represent operations on set will
be used on multisets as well. When we particularly need
to distinguish multisets from sets, the symbols { and >
will be used to denote a multiset, in place of the standard
symbols { and } for a set.

Definition
For any multiset S, let p(S) denote the set of distinct
elements in S. For example, p(<1, 2, 1, 3>)={1, 2, 3}.

Definition

For two multisets S and T,

join (S, T)={(a, b)lain S, b in T and a=>b).
For example, if $=(1,2,1,3> and T={1, 1, 2), then
join (S, Ty=(1, 1), (1, 1), (2, 2), (1, 1), (1, D).

Now we are ready to list up our problems to be
investigated in the following sections.
(1) intersection (n): For two sets S, T and an integer

9}
w
(%)

h, decide whether # (S n T)<h or not.

In a similar way, the following two problems may be

defined.

(2) difference (—): # (S—T)<h.

(3) union (U): # (Su T)<h.

(4) projection (proj): For a multiset S and an integer
h, decide whether # p(S)<h or not.

(5) join: For two multisets S, 7 and an integer A,
decide whether # join(S, 7)< or not.

As mentioned in Sec. 1, in the relational database
system, the operations listed above, among others, are
defined as operating on sets of tuples. In our context,
those sets of tuples may be regarded as sets or multisets,
by ignoring all the columns of tuples that are not directly
manipulated by the operation in question. For example,
assume that S is a set of tuples

{1, @), (1, 5), (2,)}

and that the first column is to be projected. Then, by
ignoring all the second columns, the multiset <1, 1, 2)
may be defined to be an object for projection. Thus we
have p({1,1,2))={1,2}. For other operations, the
similar reformulation in terms of sets and multisets may
now be straightforward.

Throughout this paper, all the algorithms will be
described by means of decision tree models. For general
definitions, see Knuth [3]. For our problems, either the
ternary branching or the binary branching will be used
depending on the assumption on Z. In the first case on
the “linear-order” set Z, the comparison a: b is used to
determine whether a> b or a=b or a<b, for any a and b
in Z. In the second case on Z without any order, the com-
parison a:b gives only ‘“equal-unequal” information
that either a=5 or a#b, for any a and b in Z. As usual,
the complexity of an algorithm is defined to be the
height of the corresponding decision tree, i.e., the
maximum number of comparisons. In this paper, we
consider only the worst case complexity.

Definition

C.(m, n, h) will denote the number of comparisons
required to solve the predicting problem for intersection
for two sets S and 7 with m=#S and n=#T and an
integer h. C, (n, k) will be used to denote an abbreviated
form of C.(n, n, h).

Similarly, the notations C_, C,, C,,; and Cj,, are
defined. Although two models are dealt with separately,
no new notations to distinguish them will be introduced,
because the model being used can be clearly understood
from the context throughout the paper.

For notational convenience, the symbol <- will
denote the asymptotic inequality when we ignore all
terms of lower order than the leading term. For example,
if f(n)=n? and g(n) = 10n® — 100n, then f(n) < - g(n). Now
the meaning of the symbols <- and =- may be clear.
The base of log is assumed to be 2.

K. NosHiTa and W. F. McCoLL

3. Complexity on the Linear-Order Model

In this section, we shall derive the complexity for each
predicting problem on the linear-order model. For our
proof, we need the following lemma, whose proof is
found in [7). See also [4] and [8] for the generalised
version of the lemma.

Lemma 3.1

The problem to decide, for any two sets S and T with
n=#S=#T, whether S~ T=¢ has the complexity
of 8(n log n). The problem for S=T has also the same
complexity.

Note that more generally the complexity for S n T=
¢ with m=#S and n=#T (m<n) is (n+m) logm
with lower terms. Similarly, the complexity for ST
may be shown to be (n +m) log m with lower terms.

Proposition 3.2
For any two sets S and 7 with n=#S=#T and any
integer h (0<h<n),

C(n, h) is O(n log n).

Proof

It is easy to see that the upper bound O(n log n) may be
achieved by the obvious algorithm, which sorts S and T
and merges them into a single sorted list.

The lower bound Q(n log n) may be proved by the
“padding” argument. Let X=S U {a} and Y=T vu {b},
where a, b¢ S U T and a#b. Apply the optimal algo-
rithm B for n+1 and A to the input X, Y and A. Since
#(X n Y)Sh iff #(Sn T)<h, we can regard B as an
algorithm A for n and h. Obviously, 4 is not faster than
the optimal algorithm for » and A.

Hence we have

C.(n, < C (n+1, h).
By a similar argument, we have
C.(n,))<C,(n+1, h+1).
If A>n/2, the first inequality can be applied repeatedly,
leading to:
C.(n,)= C (h+1, h).
Similarly, if A<n/2, the second inequality leads to:
C.(n,h)2C, (n—h,0).
By Lemma 3.1, we have
C.(n, h)y=Q(h log h) if h>n/2, and
C.(n, hy=Q((n—Hh) log (n—h)) if h<nj2. O
Note that algorithm A in the proof may be viewed in a
slightly different way. A4 faithfully minics B, except in
the following situation. A ignores all the comparisons
that involve any (n+1)-th element in X or Y, and

regards two (n+1)-th elements as being distinct when
those elements are compared in B.

On the Cardinality Predicting Problems of Set Operations

A similar argument can be applied to obtain the
complexity of C_ and C,. We can prove the following
propositions, by noting that, for any S and T with n=
#S=#T,

#(S-T)=0 iff S=T,
#(S—T)=n iff SN T=¢,
#(SuT)=n iff S=T, and
#(SuD=2n iff SAT=¢.

Proposition 3.3
C_(n, hy=0(nlog n),
where 0<h<n.

Proposition 3.4
C (n, h)=0(n log n),
where n<h<2n.

Proposition 3.5
Cproj(n, h)=0(n lOg h)y
where 1 <h<n.
The proof of this proposition is found in the accom-
panying paper [6], in which the adversary (oracle)
argument is applied.

Proposition 3.6
Cjoin(na h) = 0(" IOg n),

where 0<h< -n?.

Proof

The upper bound may be achieved by a straight-
forward algorithm. See [2] and [4] for sorting algorithms
for multisets.

Let S and T be any given two sets, as particular in-
stances of multisets, with n=#S=#T. Clearly,

#join (S, T)=0 iff Sn T=¢, and
#join (S, T=n iff S=T.
By the padding argument used in the proof of proposi-
tion 3.2, we have
Cjoin(nn,)=Q(n log n)

provided that 0<h<n.

Consider the case for n<h< -n.
Let S and T be two sets with n=#S=#T. Append k
elements with the identical value a to S, where a is not in
S. Let X denote this new multiset; namely,

X=Su<a,a,- -, a).
Similarly, let Y denote the new multiset T U <a, a," -,
a), formed by appending k a’'s, where a is not in T.
By applying the predicting algorithm for n+k& and A+
k% to X and Y, we can obtain the desired result for S
and 7, because

#join (X, Y)= #join (S, T)+k>.

253

Hence we have
Cioin(n, NS Cpinln+ k. h+k?).
Rewriting this inequality leads to
Cioin,)2 Coinltt—k, h—K2).
Here we choose the value of & to be
k=LA

Since n—k>h—k? we can apply the result above,
yielding the following lower bound.

Cioinln,))=Q((n— k) log (n—k))
=Q((n—/h) log (n— /B)). 0
The lower bound given in the proof is valid even for
h very near n*. However, the gap from the upper bound
becomes large as 4 approaches n?. Thus we need another
consideration for A= -n?. In the extreme case, we have

Cjoinln, A)=2n—1

for n> —n<h<n?.
Note that #join(S, T) with n=#S=#T takes the
values, in the decreasing order, as follows:

nt,n*—n,n*-2n4+2,n*-2n+1, ---.

More generally, see the results in [5]. In this paper, we
shall not examine those extreme cases any more. For
a related result, see Sec. 5.

Note that, by generalising the argument above, we can
derive the complexities of C.(m, n, h), C_(m,n,h),
C,(m, n, h) and C,;,(m, n, h). They are all 6(n log m) for
m<n.

4. Complexity on the Equal-Unequal Model

In this section, the complexity of the predicting
problems is derived on the equal-unequal model. The
following lemma is used in our proof.

Lemma 4.1 [7]

The problem to decide, for any two sets S and T
with n=#S=#T, whether S " T=¢ has the com-
plexity of 8(n?). The problem for S= T has also the same
complexity.

Note that the constant factor of this complexity is
exactly one. The proof of this lemma is found in [7],
in which the results are presented in the more general
way. See also [8].

We list up the results in this section.

All the propositions may be proved by means of the
similar proof techniques used in the previous section,
except the proof of proposition 4.5 which is included in
the accompanying paper [6]. Thus, we omit the proof
of all the results.

Proposition 4.2
C(n,))=0(n’),

where 0<h<n.

254

Proposition 4.3
C_(n, Hy=06(n"),

where 0<h<n.

Proposition 4.4
C,(n, h)=0(n?),

where n<h<2n.

Proposition 4.5 [6]
Cproj(n , h)=06(nh),
where O0<h<n.

Proposition 4.6
Cioin(n,)= 0(n®),

where 0< h< -n?.

With regard to C,,;, the exact number of comparisons
can be determined for certain specific values of 4;
namely,

Cpros(n, 1)=n—1

Coroj(n, 2)=2n-3,

Coproj(n, n—2)=(n+1)(n—2)/2, and
Cproj(n, n— 1)=n(n—1)/2.

The lower bounds for #=2 and n—2 are not obvious.
Each proof needs the appropriate construction of the
oracle, which involves rather complicated case analyses.
Since the proof is too lengthy to be included in this paper,
it is left to the interested reader.

Note that the results for C,, C_, C, and Cy,;, may
be generalised to the case with three parameters m, n
and A. They are all 6(mn).

5. Computing the Cardinality of Join

In this section we present an approximation algorithm
to compute the cardinality of join on the linear-order
model.

Let X and Y be two multisets of n elements. In the
description of the algorithm, p will denote some con-
stant depending on n(l <p<n). For notational brevity,
let S<T denote that the relation s<¢ holds for any s
in S and 7 in 7. Similarly, S< T is defined.

begin
Step 1:
Divide X into (p+1) elements {a,, a,," " -
p multisets S;, S5, -, S,, such that

{a0}28,2{a\}>--- 25,2 {q,}

, a,> and

and
#S;=(n—p—1)/p for 1<i<p.
This partial sorting may be achieved by means of the

linear-time median-selection algorithm (3], applied
recursively to divide a multiset into two smaller

K. NosHita and W. F. McCoLL

multisets of almost equal size. Thus, the cost of this
step is bounded by O(n log p).
Step 2:

By scanning through X, for each a,(0<i<p),
compute its ‘multiplicity’; namely, find all the elements
with the value equal to a;. This yields the following
refinement of X:

A>T\ >A,>T,>--->T,> A,

where ¢<p and A4; is a multiset of elements with the
value equal to some q; (0<i<p, 0</<9q).

Note that #T;<(n—p—1)/p. It is easy to see that
this step may be achieved in O(#) comparisons.

Step 3:

Throughout this step, the index i (0<i<gq) runs in
such an order as [g/2] p/4], 1 39/4] Lq/8]),--".
Namely, the next value of i is chosen to be the middle
value of the range in order that it is divided into two
smaller ranges of almost equal size.

For each i, compare a; with elements in Y, so that
Y is divided into (g +2) sets R;(0</<q+1) and B;=
(blb=a;) (0<i<gq), where

Ro>By>R,>B;>--->B >R, ,;.

Note that R; as well as B; may be empty. Taking the
order of index i into account, the cost of this step
can be proved to be at most O(# log q).

end

Define

E=ugxvg+u; Xv,+ -+ +u,xuv,

where u;=#A, and v,=#B,; for 0<i<q. Note that
u;>0 and v;20. The output of the algorithm is the
value of E.

Proposition 5.1
E< #join (X, Y)<E+n*/p, and E can be computed
in O(n log p) comparisons.

Proof

The number of comparisons has been counted in the
description of the algorithm. The first inequality is ob-
vious. The second inequality may be derived by noting
the following relation:

#T %X #Ry+- -+ #T,x #R,
S@P) < (#R + #Ry+-- -+ #RY<n*lp. O

As direct corollaries of this proposition, we look at
some examples of the relative error of E. Let p=(log n)*
for some constant k(> 1). If #join (X, Y) is

(1) n*/(log n)’,

(2) n%log log n, or

(3) cn?for0<c<l,
then the relative error of F is, respectively,

@ 1,

(2) log log n/(log n)*, or

3) 1/c(log n)*.

On the Cardinality Predicting Problems of Set Operations

The complexity of all three cases is O(n log log n). Note
that the complexity for computing #join (X, ¥) is
0(n log n).

We can also show that, for any fixed & (0<e<1/3), if
there exists an approximation algorithm 4 with output
E such that |#join(X, Y)— E|<e(#join(X, Y)) for any
X and Y, then the complexity of A is Q(n log n).

6. Concluding Remarks

In this paper, we proposed the predicting problems
on set operations and derived their asymptotic complexi-
ties in terms of the number of comparisons on the linear-
order model as well as on the equal-unequal model. An
approximation algorithm to compute the cardinality of
join was also presented.

As final remarks, we suggest several related problems
for future study. With regard to the primitive operations
appearing in the relational database system, the quotient
operation is to be considered, where quotient (<) is
defined as follows: For two sets S and T such that
ScZxZand TSZ (T+#¢),

S+T={x|(x,y)in Sfor any yin T}.

Although our complexity results in Sec. 3 and Sec. 4
are all optimal within constant factors in terms of the
asymptotic functional growth, it may be natural to pose
the problem to determine the exact number of compari-
sons for each operation. However, the necessity of the
complicated case analyses in proving the lower bounds

255

for Cp,j(n, 2) and for C,;(n, n—2) in Sec. 4 suggests
the difficulty of this problem.

Finally, the predicting problem may be reformulated
on different types of computing model in order to make it
more directly applicable to real situations. For example,
a system based on the hashing technique seems worth-
while to investigate as a more practical model. In fact,
the hashing technique is reported to have been used for
prediction in some practical systems. Another possible
model for our study may be a computing model with
limited random access storage.

References

1. Copp, E. F. A Relational Model of Data for Large Shared
Data Banks, Comm. ACM, 13, 6 (1970), 377-387.

2. DoskiN, D. and MuNRo, J. 1. Determining the Mode, Theore-
tical Computer Science, 12, 3 (1980), 255-253.

3. KNuTH, D. E. The Art of Computer Programming, 3, Sorting
and Searching, Addison Wesley, Reading, MA (1973).

4. MunRro, J. I. and SpirA, P. M. Sorting and Searching in
Multisets, SIAM J. Computing, 5, 1 (1976), 1-8.

5. McCotr, W. F. and RmA, W. O. (m, n)-Expressibility and the
Join Operation, Technical Report No. 129, Department of Com-
puter Science, University of Leeds (1979), 18 pp.

6. NosHITA, K. Predicting the Number of Distinct Elements in a
Multiset, to appear in SIAM J. Computing, 11, 4 (1982).

7. REemNGoOLD, E. M. On the Optimality of Some Set Algorithms,
J. ACM, 19, 4 (1972), 649-659.

8. STOCKMEYER, L. J. and WongG, C. K. On the Number of Com-
parisons to Find the Intersection of Two Relations, SIAM J.
Computing, 8, 3 (1979), 388-404.

9. Uriman, J. D. Principles of Database Systems, Pitman,
London (1980).

(Receivd February 5, 1982: revised June 14, 1982)

