Strategies and Performance Evaluation of Parallel
Computation in Solving the Laplace Equation

YosH1zo TAKAHASHL,' YosHIHIRO NoBuTOMO,
and TosHIKAZU KAWAMURA'

The factors which have influence on the efficiency of parallel computation are the scheme of problem decom-
position, the processor interconnection, and the OS overhead. In this paper, the scheme of problem decomposi-
tion of parallel computation in solving the Laplace equation numerically is studied from two different viewpoints,
the strategy of partitioning mesh-points into blocks and the strategy for assignment of these blocks to the pro-
cessors. Two matrices called the partition matrix and the distance matrix are introduced and an algorithm to
give an optimum processor assignment to the blocks in the sense that it results in minimum data transmission in
the whole system is presented. The performance of parallel computation in solving a Lapalce equation is evaluated
by developing a software simulator of CORAL system which is a binary tree processor network. The result, in
comparison with serial computation, shows that a speed-up ratio of 100 is attained with 300 processors in a binary

tree.

1. Introduction

The numerical solution of partial differential equation
is obtained by solving a set of difference equations with
respect to the unknown variables at the mesh-points
which are obtained when the whole domain is divided
into small subdomains. In order to solve this set of
difference equations by a parallel processing system with
multiple processors, the mesh-points are partitioned into
as many blocks as the number of processors, and the
computation of the solution of the equations at the
mesh-points belonging to one block is assigned to one
Processor.

The strategy for assigning the processors to the
blocks affects the performance of the parallel processing.
In the processor assignment it is desired that the follow-
ing conditions are satisfied:

(1) The load on each processor is balanced.

(2) The synchronization among processors is small.

(3) The iteration in the numerical computation

converges.

(4) The amount of data transmission among proces-

sors is small.

(5) The processors which communicate with each

other are located in the nearest neighbor,
The first condition may be satisfied when the same
number of mesh-points are assigned to each processor,
provided the overhead of the operating system is uni-
formly distributed to all processors. However, in a

tDepartment of Information Science, Faculty of Engineering,
Tokushima University, Tokushima 770, Japan.
ttDepartment of Industrial Control Systems, Omika Works,
Hitachi Co., Ltd., Omikacho 5-2-1, Hitachi 319-12, Japan.
tttHeavy Apparatus Engineering Laboratory, Toshiba Inc.
Toshibacho 1, Fuchu 183, Japan.

Journal of Information Processing, Vol. 5, No. 4, 1982

parallel processing system with a hierarchical structure
such as CORAL," this assumption may not hold. For
example, in CORAL which has a binary tree structure
as shown in Fig. 1, two processors No. 2 and No. 3
bear the largest routing load.? It is, therefore, recom-
mended to vary the size of the blocks depending on the
role of the processors to which they are allocated.

The second condition may lead to the attempt of
asychronous iteration in the numerical solution as
realized on C.mmp.> It was, however, observed that,
under certain conditions, the asynchronous iteration
diverged even if the acceleration factor of iteration was
less than 2.* It is also possible to make the synchroniza-
tion less often if the mesh-points are distributed properly
to the processors. The third condition has been studied
recently by Yokoyama.®

In the following Chapter, the strategy of partitioning
mesh-points to decrease the amount of data exchange
with other processors and the number of neighboring
processors with which one processor communicates is
discussed. In Chapter 3 the strategy for assignment of
the blocks to the processors which minimizes the inter-
processor communications is studied. In Chapter 4 the
effect of the partitioning on the process of numerical
iteration is studied. In Chapter 5 some results obtained

Numbers indicate Processor Numbers

Fig. 1 Binary Tree Processor Network CORAL.

240

from the simulation experiments of parallel computa-
tion in solving Laplace equations on CORAL with
several hundreds of processors are described. Chapter
6 presents conclusions.

2. Strategy of Partitioning Mesh-points

In this Chapter the method of partitioning mesh-
points which have a small amount of data exchange
with other processors and a small number of neighboring
processors is investigated. As an example the parallel
solution of a two-dimensional Laplace equation in the
rectangular domain 0<x<X, O<y<Y is considered.
The equation is:

Pu(x, y) 0%u(x,y)

o T oE

uCx, 0)=o(x), u(x, ¥)=£() J M
u(0, »)=g4(3), u(X,)=9:(»)
The domain is divided into small square subdomains as
indicated in Fig. 2 the side length of which is equal to
h=X/{(M+1)=Y/(N+1) ?2)

i.e. we assume here that X=A(M +1) and Y=h(N+1)
for simplicity. Then we obtain (M +1) x (N +1) mesh-
points including those on the boundary. If we denote
u(ih, jh) by u,;, the five-point difference approximation
to Eq. (1) is written as

0

U=yttt ot e)4
(i=1,,M,]=1,,N) (3)

This set of linear equations is solved with SOR method
in which the value of u;; corresponding to the (k+1)th
iteration, denoted by u{}* "), is calculated by
=[S ol + (- o)l

“
where » denotes an acceleration factor.®” The above
equation indicates that in order to obtain the value at
one mesh-point we need the values at the four neigh-
boring mesh-points.

Suppose that we want to partition all the mesh-points
into n blocks of equal size where n is the number of
processors of the system. Let the number of mesh-points
belonging to one block be K, then

K=MNjn. ©)

Fig. 2 Rectangular Domain represented by M x N Mesh-Points.

Y. TakAHAsHI, Y. Nosutomo and T. KAWAMURA

00 6 0 00 0

0—0-0-0-0 ©
000 00 0
000009

(a) (b) (c)
Fig. 3 Various Partitions.

There are various ways of partitioning. An example is
shown in Fig. 3(a). In this example the number D of the
data that the processor assigned to this block exchanges
with other neighboring processors is given by

D=2(K+1). (6)

When the blocks consist of two successive rows as in
Fig. 3(b), then

D=2K[2+2)=K+4 a

which is less than that of Eq. (6). The minimum D is
obtained when the shape of the block is a square of side-
length of /K. In this case

D=4/K. ®)

Since D is roughly equal to the number of the mesh-
points on the boundary of the block, the minimum D
is attained when the shape of the block is a circle. Let
K=12, then the partitioning of Fig. 3(c) results in the
minimum D, which is

D=12<4/T2. ©)

The result shows that circular partitioning is superior
to square partitioning. Circular partitioning, however,
increases the number of neighboring processors with
which data exchange is required. In Fig. 3(c) the number
the number of neighboring processors is 6, while that of
(a) or (b) is 4. When the block is composed of com-
plete rows or columns as indicated in Fig. 4(a), the
number of neighboring processors is 2 and D is given by

D=2M=2K|N, or D=2N=2K/M (10)

where M and N are the number of elements of the row
and the column of the mesh-point matrix, respectively.
The partitioning by row or by column is preferrable also
when variable-sized blocks are required.

Assume that the blocks are numbered from 1 to n,
where n is the number of processors as previously

- 999 po09olo 0ego0
SRR AN | SR ATI TTE
0-0 —0 * 0 9 % ofo-6-3-0 060 b0 00
0“0 o &3, 4 4, 'vv;v'asé—éq‘)éééﬁooo
oo o 0-6-0-0-0-0(6 9-0-0 30606 00[06 0000000000
0—3'9 o WO‘SOOOOO 609: M—é‘7$0—'0 0-0 68(‘)600069000
o o o 0600600069000
0'c o H—OZO—O—Q-OAO—IE—!H-(‘,

—=-
056 o (c)

(b)

Fig. 4 Various Partitioning Strategies.

Strategies and Performance Evaluation of Parallel Computation in Solving the Laplace Equation 241

mentioned. We denote the number of the data that the
processor assigned to ith block exchanges with the
processor assigned to jth block by p;;. We call the matrix
(pij) the Partition Matrix. The partition matrix is sym-
metrical. For example the partition matrix of Fig. 4(a)
is as follows.

03000

30300
(pp)=|03030 an

00303

00030

The partition matrix of a partitioning like Fig. 4(b) is as
follows.

02600000
20060000
60026000
_|o6200600
(Pi)=100600260
00062006
00006002
00000620

Finally that of the partitioning of Fig. 4(c) is given by

020600000
202060000
020006000
600020600
(pi)=[060202060 (13)
006020006
000600020
000060202
000006020

Thus the strategy for partitioning is represented by the
partition matrix. In fact, some characteristics of the
partitioning are derived from the partition matrix. For
example, the number D; of the data which the processor
assigned to ith block exchanges with other processors is
given by

(12)

D=3 p,; (14)

3. Strategy for Processor Assignment

The next problem is how to assign processors to the
blocks. Assume that the processors are connected as
shown in Fig. 5(a). If the blocks of Fig. 5(b) are assigned

1 2 3
4 5 6 ‘

7 8 9

Partitions
(a) (b)

Allocated Partitions

Fig. 5 An Inefficient Partition Allocation to Processors.

to these processors as indicated in Fig. 5(a), all the
exchanged data must pass through other processors, so
that the efficiency of parallel computation would be
very low. Hence a strategy of assigning the processors
to the blocks which results in minimum routing over-
head is required.

Consider a processor network consisting of n
processors. Let the distance between two processors be
the number of connections in the shortest path between
them. The distance between directly connected
processors, for example, is 1. The distance from the ith
processor to the jth processor is denoted by d;;, and we
call the matrix (d;;) the Distance Matrix. The distance
matrix is also symmetrical. The distance matrix of the
CORAL in Fig. 1, for example, is given as follows.

011222233333333
102113322224444
120331144442222
213024411335555
213204433115555
231440255551133
231442055553311
(d;)=1324135502446666 (15)
324135520446666
324315544026666
324315544206666
342551366660244
342551366662044
342553166664402
342553166664420/
Assume that the blocks 1, 2, 3,-- -, n are assigned to the
processors k,, k,, k3," - -, k,, that is,
bock |1 2 3 ...i .. .n
processor ' ky ky ky - - - k- - -k,

The distance between two processors, which are assigned
to the ith and the jth blocks respectively, is represented
by d, - As the amount of data exchanged between these
processors is p;;, the total amount of data transmitted
by these two processors plus the processors on the path
between them is represented by p; d, ;. The total amount
of data transmission in the whole system, which we
denote by 7, is obtained as follows.

T= Z ZP; Kok (16)

We, therefore, conclude that given the partition matrix
(p:;) and the distance matrix (d;;), the permutation
(kik,- - -k,) that results in a minimum T gives the
optimum processor assignment. Although a straight-
forward method to obtain this permutation is not yet
known, the program shown in Fig. 6 may be used to
obtain it. Note that, as this program is a recursive one,
the computation time increases explosively as the number
of processors increases.

Here we note some of the results obtained by this
program. For CORAL with five processors, the optimum

242

program allocate{input,output);
const size=20; bignum=1000000;
type row=array[1..size] of integer; matrix=array[1..size] of row;
var 1,j,k,min,md,n:1 svectr,minrow:row; p,d:matrix;
procedure sum(yar m:integer);
var i,j:integer;
beqin
m:=0;
for i:=1 to n do for j:=1 to n do
m:=m+p[i,j]*d[vectr[i],vectr[j]]

end;
procedure select(length:integer);

var 1,j,k,e:integer;

if length=n
then sumgmd)

begin
fnn,i:fl to n do begin

k:=i;
if length #0 thep
for j:=1 to length da
if vectr[j]=i then k:=0;
if k#0 then begin
e:=length+l; vectr[e]:=k;
seIect?e);
if md<min then begin
min:=md; minrow:=vectr
end
end
end
end

end;
begin{*allocate*)

read(n); writeln('PARTITION MATRIX');

far i:=1 tan do i
for j:=1 tan do hegin read(k);write(k:3);p[i,j):=k;end;
writeln;

end; writeIn('DISTANCE MATRIX');

for i:=1 to n do begip
for j:=1 to n do begin read(k);write(k:3);d[i,j):=k;end;

writeln;

min:=bignum;

select(0);

writeTn("MINIMUM DATA TRANSMISSION IS',min);

write ('PARTITION'); far i:=1 to n do write(i:3);writeln;

write('PROCESSOR'); far i:=1 to n da write(minrow[i]:3)
end.

Fig. 6 A Pascal Program for Optimum Processor Assignment.

me»m

1
3
5
7

allocation
{a) T=30

allocation
(b) T=136

partitions partitions

{c) T=132

Fig. 7 Optimum Processor Assignments to the Blocks of Fig. 4.

assignment of the blocks of Fig. 4(a) is obtained as in
Fig. 7(a). The result coincides with the one previously
obtained by another algorithm of the authors’.” The
optimum assignment of the blocks of Fig. 4(b)
to the CORAL with eight processors is obtained as
(1532647 8), which is shown in Fig. 7(b). Finally the
optimum allocation of the blocks of Fig. 4(c) to
the CORAL with nine processors is obtained as
(618324759), which is shown in Fig. 7(c). From

Y. TakAHAsHI, Y. Noutomo and T. KAWAMURA

this figure it is observed that the neighboring blocks
(142),(258), and (3 6 9) are allocated to the proximate
processors. If the allocation of Fig. 5(a) is used the
value of T is as large as 296 which is more than twice
of that of the optimum allocation which is 132.

4. Effect of Partitioning Strategy to the Process of
Iterations

In the parallel SOR method, the processors are
forced to sysnchronize with each other for exchanging
data. As the processor synchronization causes a decrease
in the efficiency of parallel computation, we investigate
a process of iteration in conjunction with the mode of
partitioning which has high influence upon synchroniza-
tion. To make the discussion simpler, a rectangular
partitioning is assumed as shown in Fig. 8. The processor
which is assigned to this block exchanges data with the
other four processors which are assigned to the neigh-
boring blocks. In the block shown in Fig. 8 the computa-
tion is performed according to the algorithm described
below:

begin
repeat
for i: =il toi2 do
for j: =j1 toj2 do
begin
if i=i1 then receive data from left;
if i=i2 then receive data from right;
if j=j1 then receive data from top;
if j=j2 then receive data from bottom;
compute u[i, j];
if i=il then send u[i, j] to left;
if i=i2 then send ui, j] to right;
if j=j1 then send u[i, j] to top;
if j=j2 then send u[i, j] to bottom;
end
until it converges.
end.

Left, right, top, and bottom denote the processors
assigned to the blocks in these directions respectively.
We call this process a local iteration in a block. In this
algorithm the computation of u;; can be done only after

ToP

o—d—bio

LEFT RIGHT

o

Fig. 8 A Rectangular Partition with its Neighbors.

Strategies and Performance Evaluation of Parallel Computation in Solving the Laplace Equation 243

u;_,,;and u; ;_, in the same local iteration are computed.
Thus the computation in each block proceeds in a
sequential manner.

We can estimate the number of local iterations that
each mesh-point encounters as follows. Let /;;(k) denote
the number of local iterations for u;; in the kth iteration
step, then the following relations hold.

(1) At the initial computation step, only u,, can be
computed, so that

1,,(0)- 1, and [,;(0)=0, for i#1 and j#1. (17)

(2) When the computation of the last mesh-point of
the block is finished, a new local iteration starts
from the first mesh-point of the block. So that,

Ly itk + D=1 00+ 1, if Iy ((K)=1,; j,(k). (18)

(3) Unless a mesh-point is on the left side, the computa-
tions proceed from left to right in one local itera-
tion. Therefore

L+) =I,_, k), if iil (19)

(4) The computation for a mesh-point on the left side
is performed when all points on the right side of
the previous row are finished. Therefore

Ly fk+ DI= 4y ;1 (k), if j#]1. (20)

However, if a mesh-point is in the first row of the
block, the computation is performed after the
computation of the mesh-points immediately above
it is finished. That is,

Iptk+ D=1, ;_ (k). 21

Using the above recurrence relations the total number of
local iterations at any mesh-point can be calculated.
Figure 9(a) shows the numbers of local iterations at
each mesh-point, when 2nd local iteration is performed
in the last block of 15x 15 matrix partitioned into 15
rows. Figure 9(b) also shows the result for another
partitioning, where 5 x 5 mesh-points compose a block.
The difference between the first and the last blocks is 1
for Fig. 9(a), whereas the difference is 3 for Fig. 9(b).
When the difference is large, the efficiency of the parallel

333333333333333
333333333333322]
L333333333333222

333333333332222|

333333333322222]
333333333222222
333333332222222
3333333222222727]
3333332227277777]
[33333222222222 2|
33I3322222222222
333222222222222]
33222222222222¢2|
322222222222222
(222222222222222

55444/6aaa4/68aa2s
44sa8f6aaaafssaas
1a4a4qafaaaaafassaag
aa4aafasaasfaazss
sa444afaa333[33333
244484/43333j33333
43333]33333(33333
33333{33333|33333
33333[33333(33333
33333(33333|32222
33333]33333|22222
3333322222|22222
22222(22222f22222
22222f22222)22222
22222l22222|22222

(a) (b)

Fig. 9 [Iteration Steps for All Mesh-points when the Last Block
Completes the 2nd Local Iteration.

computation is poor, because the processors computing
for further iterations may be doing excessive tasks which
are unnecessary.

Let us now investigate an optimum partitioning
strategy which minimizes difference of the number of the
local iterations between the first and the last blocks.
In Fig. 10 the number of computation steps which are
required to proceed to the specified mesh-point in the
first local iteration is indicated for a typical partitioning.
Suppose that a matrix of M x N mesh-points is divided
into blocks with m x n mesh-points. The number of com-
putation steps required to proceed to the last mesh-
point for the first iteration, which is denoted by S, is
given by

N -1
S=M—m+(;—l>(mn—m+l)=M+ (m—mT)N—l.
(22)
Let K=mn, then S is represented as
N
S=M—2m*~(K+ym] - 1. 24)

From this equation it is observed that S attains its mini-
mum when either m or nis 1 or K and attains its maxi-
mum when m=(K+1)/2. The minimum and the maxi-
mum of S are as follow.

Spin=M+N-1 (25)

(K+1)? NK
S"‘“_M+TN_1~M+T (26)
S..in may not be attained if K< M or K< N. This con-

cludes that the partitioning by row or by column, if
possible, is superior to the partitioning by both row and
column. The difference between S,,;, and S, is rather
remarkable.

The difference in the number of local iterations of the
first and the last blocks is obtained from the following
reasoning. As S computation steps are required before
the last block completes the first iteration step, the
number of local iterations in the first block during this
period is S/K. Therefore, the difference between the

1 2 314 5 6|7 8 9
4 5 6] 7 8 910 11 12
7 8 9110 11 1213 14 15
10 11 12(13 14 1516 17 18
1M 12 13|14 15 16|17 18 19
14 15 16{17 18 19[20 21 22
17 18 19120 21 22123 24 25
20 21 =22 |23 24 25|26 27 28
21 22 23)24 25 26|27 28 29
24 25 2627 28 2930 31 32
27 28 29|30 31 32133 34 35
30 31 32§33 34 3536 37 38

M=9, N=12, m=3, n=4 K=12

Fig. 10 Number of Computation Steps Required to Proceed to
Each Mesh-Point for the First Time.

244

iteration steps of the first and the last block is
Ly — L1 =S/K— 1. 2"

5. Performance Evaluation by Computer Simulation

A software simulator of CORAL system is developed
and the performance of parallel computation in solving
a Laplace equation on CORAL is evaluated. The outline
of the simulator developed is illustrated in Fig. 11.
There are eleven subroutines and one main pregram.
The main program controls the computation steps of
up to 450 processors connected in a binary tree structure
by maintaining the system tables. It also controls the
clocks of all processors by the CPUTIM subroutine.
After reading the parameters such as the sizes of the
mesh-point matrix and of the blocks, the main program
initializes the system tables and then calls the
DISTRIBUTE subroutine which allocates blocks to
individual processors according to a given policy. The
PROCESS subroutine is then called to simulate the
operation of the processor as described in the algorithm
in Chapter 4. The routing algorithm used is as follows.

begin

leftadrs: =ownadrs*2; rightadrs: =leftadrs+1;
a: =destination; d: =0;
if a=ownadrs then d: =OWN;
while d=0 do
if a=Ileftadrs
then d: =LEFT
else if a=rightadrs
then d: =RIGHT
else if a <ownadrs
then d: =TOP
else a: =a div 2;
direction: =d
end.

Where ownadrs, leftadrs, and rightadrs are the processor
numbers of the own, the left, and the right processors,
respectively. OWN denotes the direction towards the
own processor, that is, the message is to be received by
the routing processor.

The SENDL and SENDR subroutines send informa-
tions concerning the initial conditions to the left and the
right processors. The SOR subroutine is called in every
computation step in order to compute ;. When data
transmission is required it calls POST subroutine which
prepares a message by attaching a destination address
to the transmitting data and puts it in the outgoing mail-

DISVRIBUT[\CPUT]H

Fig. 11 Structure of the Simulator for CORAL System.

Y. TakaHasHI, Y. NoButomMo and T. KAWAMURA

box. It is the role of the SENDD subroutine to read
the destination address in the message and to move the
message into the incoming mailbox of another processor
in the proper direction. SENDA subroutine sends the
result of computation to the processor at the root of the
binary tree after the iteration converges. The output
from the simulator is generated by OUTPUT subrou-
tine. It includes information such as the average number
of active processors, iteration steps of all blocks, total
computation time, total routing overhead time, etc. The
history of the status of all processors throughout the
computation period is also obtained. Figure 12 shows
a part of the simulator output, where the processor status
is represented with the following codes.

receiving initial data

preparing initial data

sending initial data

computing starting values

computing u;;

sending data

receiving data

sending result of computation

receiving result of computation

waiting

A processor with a status other than waiting is considered
active.

Some of the results obtained with the simulator are
illustrated in Figs. 13, 14, and 15. Figure 13 shows the
changes in the number of active processors as the com-
putation steps proceed where the number of total
processors is 30. As the computation starts all the
processors become active quickly because the initial
condition is broadcasted to all the processors. After
this period, the iteration starts from the first block.

L NPRLOMUETE

TIME ACTIVP1 23456789012345617

0 1

OCEONNNON DLW

n

@
MOV —ONOUN—PNAN—~OWN DD
MMM M MMM MM MMM T TMOOIOT
COOTXIOUCUITIIIEEX

COXITICOCOODOTITIITIEEE-
OOOXTITEEZEE: -

TOOOUOIITIEEEE

ITTITEETX
TrIXTXIETET

WL
W
W
LW
LW

H .

8

1580.
1584.
1585.
1586.
1586.
1588.
1588.
1589.

oo

N—OWVENN®
— NN
o=
D7 RVE T

B R X7 R ¥

coooxmT.

Ccooc00o0oo

DRV RV F R

OcOTDAOOOO

Ccoo0o

DLOLDDOOO

Fig. 12 History of Processor Status obtained by the Simulator.

Strategies and Performance Evaluation of Parallel Computation in Solving the Laplace Equation 245

\— INITIAL DATA
BROADCAST NG

Il Ay

R r/,l.,, 15T ITERATION — € = 7ND ITERETION - 'ﬁi

5 NUMBER OF ACYIVE PROCESSORS

o B O ¥ i
> 14

Fig. 13 Number of Active Processors versus Time for CORAL
System with 30 Processors.

(28D ITER
El

180 IST ITER,
AN T rans™0-1 sec

ST 1TER. ek 2w TER.

140 i N
WNWW‘” Tyenns™0:6 msec

120 !

’Mq“ 1.2 msec

ol

80

/Fl

/

'!VIIIS
ST TR T g

| ooeR. |

~—> NUMBER OF ACTIVE PROCESSORS

e
L

0 H 0 [3 10 sec

—— TIME
Fig. 14 Number of Active Processors versus Time for CORAL
System with 180 Processors with Different Data Transmission
Times.

M=N=30

-7
1[”“5 0.1 msec T&or 3 msec

E: CONVERGENCE ERROR [PR/ |CE
1: ITERATION STEPS

12

SPEED,UP RATIO

01530 60 Thweo T 300 450

NUMBER OF PROCESSORS

Fig. 15 Speed-up Ratios versus Number of Processors of CORAL
system for Different Covergence Errors.

The number of active processors increases rather slowly
until the first iteration step is completed at the last block.
This is because the large number of computation steps,
as represented by S in the previous chapter, are
required in this initial iteration. After the first itera-
tion is finished, the iterations proceed faster. In this
figure, the computation is assumed to have converged
by two iterations. A short period after the steep descent
in which a few processors are still active is caused by the
processors gathering results of computation from their
lower processors and sending them to the upper ones.
Fig. 14 shows similar results with a total of 180
processors, and where the data transmission time is

varied from 1.2 to 0.1 milisec per data. As the data
transmission time is decreased, the number of active
processors increases which results in shorter computation
time.

In Fig. 15 the speed-up ratios, which are the ratio of
computation speed with multiple of processors to that
with only one processor, for different numbers of proces-
sors and also of the convergence error tolerances are
indicated. As the iteration steps increase the contribution
from initial idling time due to S decreases and the speed-
up ratio is improved. As the convergence error tolerance
is set much smaller in practical computation, the iteration
steps may be several hundreds. Therefore the speed-up
ratio versus number of processors in practical computa-
tion may be approximated by the dotted line in the
figure, which is the speed-up ratio per one iteration in
later iteration steps. From this result we can conclude
that a speed-up ratio of 100 is obtainable with 300
processors of CORAL system.

6. Conclusions

The problems which arise when increasing the
efficiency of parallel computation in solving the Laplace
equation are discussed. Among them the strategy of
partitioning mesh-points and the strategy of allocating
the blocks to the processors are presented. Finally a
software simulator of a binary tree processor network
CORAL is developed and the parallel computation in
solving the two-dimensional Laplace equation is
simulated. In this simulation the transient behavior of
processors and the effect of data transmission time are
observed. Although the increase of the speed-up ratio
tends to slow down as the number of processors increases,
it was confirmed that a speed-up ratio of 100 is attainable
with 300 processors. The computation time of the
processors, the data transmission time, and the processor
sysnchronizations are taken into account in our simula-
tor. However, the random variations in the computation
time and the overhead of the operating system were not
sidered. The effects of these factors are being estimated
with the use of a recently developed CORAL prototype
consisting of 15 processors.®’ The estimation of the
efficiency of parallel computation with more than one
thousand processors would be very important but at
present it is impossible with our simulator. This problem
will be our target for future research.

The authors are grateful to an anonymous refree for
numerous comments that helped improve the article.

References

1. TAKAHASHI, Y., WAKABAYASHI, N. and NoBUTOMO, Y. A Binary
Tree Multiprocessor CORAL, Journal. Information Processing,
3, 4 (Feb. 1981), 230-237.

2. Horowirz, E. and ZoRrAT, A. The Binary Tree as an Intercon-
nection Network: Application to Multiprocessor Systems and
VLSI, IEEE Trans., C-30, 4 (Apr. 1981), 247-253.

3. Jones, K. A. and ScuwARrTtz, P. Experience Using Multi-
processor Systems—A Status Report, Computing Surveys, 12, 2
(June 1980), 121-165.

4. Personal communication from Yoshimura, S.

246

5. Yokovama, M. Convergence of Parallel Processing by Iterative
Method, Trans. IPSJ, 22, 6 (Nov. 1981), 535-540, (Japanese).

6. Tocawa, H. Numerical Computation of Matrices, p. 64,
Baifukan, Tokyo (1971) (Japanese).

7. TakaHaAsHI, Y., WAKABAYAsI, N. and NosuTomo, Y. A Binary
Tree Multiprocessor CORAL, Tech. Rep. IECEJ, EC79-60 (Jan.

Y. TakAHASHI, Y. NosutoMO and T. KAWAMURA

1980).

8. Nosutomo, Y. and TAkAHAsHI, Y. Performance Evaluation of
CORAL Prototype: An Experimental Binary Tree Parallel Pro-
cessor, Tech. Rep. IPSJ on Comp. Arch. 44-1 (Feb. 1982) (Japanese)

(Received January 18, 1982: revised May 31, 1982)

