An Approach to Construction of Functional Programs™

MORIO NAGATA**

An approach to the construction of reliable functional recursive programs is proposed. If a programmer writes
his/her programs as specified in our approach, called KANSUU, logical errors in the programs can be detected
automatically. The termination of certain types of programs can also be confirmed automatically.

Whenever a fragment of a functional program is given, its logical properties related to other fragments are
inspected. Using automatic theorem proving techniques (propositional calculus), KANSUU indicates conditions
which are necessary for the intended program. If the basic relations of functions and predicates have been given,
then KANSUU may confirm the termination of functional recursive programs by using propositional calculus.
Using KANSUU, we have implemented an interactive support system for functional recursive programming
and a consultation system for Lisp programming.

KANSUU can provide information for the correction of inconsistent fragments of given functional programs.
This approach is different from the viewpoint of automatic program verification or traditional debugging aids.
Moreover, KANSUU uses simple and efficient algorithms. Thus, this approach will be useful for building a

comprehensive programming system.

1. Introduction

In recent years, in order to overcome the difficulties
of program writing, there have been many arguments on
programming methodology, and as a result of them,
the functional style of programming has come to be
recognized as the most promising one [3]. Research
papers have been presented on programs in the functional
style. Many papers are on automatic verification or
synthesis of functional programs [4, 13, 14], however,
little works has been done on the debugging of such
programs [5, 16]. This paper gives a new approach to
interactive debugging of functional recursive programs.

Our approach, called KANSUU (Keio AdvaNced
approach for SUpporting fUnctional programming),
presents notations representing programs in functional
styles. If a programmer writes his/her programs in the
notations as specified in KANSUU, logical errors in the
programs can be detected automatically. The termina-
tion of certain types of programs can also be confirmed
automatically. Note that the author does not aim to
present a new programming language. We propose a
new approach to support the writing of reliable
functional programs.

Every technique for automatic program verification
is to show formally that a given program satisfies a
property expected by the programmer. Such a technique
assumes that the program is logically consistent. If the
automatic verifier fails to prove the correctness of the

*This work was partly supported by the Science Foundation
Grant of the Ministry of Education, Science and Culture of Japan,
Grant-in-Aid for Encouragement for Young Scientists, Grant
No. 56790033.

**Dept. of Administration Engineering, Faculty of Science and
Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223,
Japan.,

Journal of Information Processing, Vol. 5, No. 4, 1982

program, then we cannot distinguish the two possibilities
of inconsistency and incorrectness. Moreover, since
logical errors in consistency and/or the termination of
programs are apt to be detected during their executions,
the cost of debugging is high. Thus, from a practical
point of view, we must develop an automatic method
for correcting inconsistent functional programs.
KANSUU provides such a method by using simple and
efficient automatic theorem proving techniques (proposi-
tional calculus), that is, KANSUU can automatically
detect inconsistencies of functional programs and point
out how to improve the programs.

Using the same technique, KANSUU also confirms
the termination of certain types of functional recursive
programs. If KANSUU and traditional program verifier
can be effectively combined, a useful interactive support
system for functional recursive programming will be
built.

KANSUU is not bound to a particular programming
language. In this approach, a particular programming
language can be specified by data types and primitive
functions which have been built in the language.
KANSUU assumes that a program consists of control
structures of recursion, McCarthy’s conditional expres-
sion (or if-then-else construct) and functional com-
position. The main features of KANSUU are listed
below:

1) Using automatic theorem proving techniques,
KANSUU detects not only the existence of errors but
also provides information for the correction of in-
consistent programs.

2) It is not necessary that the user understand the
specific terminologies and techniques of mathematical
logics on which KANSUU is founded.

3) An automatic mechanism confirming the termina-
tion of certain types of functional recrusive programs is

232

embedded.

4) KANSUU is useful for the implementation of
interactive programming systems.

An interactive support system based on KANSUU,
called KSR (Keio Support system for functional
Recursive programming), has been implemented in the
Lisp language on the PDP 11 minicomputer. We have
written many small programs and several medium-sized
programs using KSR. Since KANSUU proposes simple
and efficient algorithms, KSR attains our purpose even
though it is implemented on a minicomputer.

An outline of KSR and its real conversation record
are presented in [11]. However, [11] does not describe
the algorithms on which KSR is founded. Thus this paper
describes the basic idea of our approach and algorithms
for detecting logical errors and testing the termination of
such programs. The correctness of these algorithms has
been verified by using propositional calculus and
mathematical induction [10].

Moreover, using KANSUU, we are now implementing
a consultation system for noviece Lisp programmers,
and the effectiveness of this approach has been demon-
strated by our experience. For someone building an
interactive programming system, KANSUU will provide
useful guidance.

2. Notions for Illustrative Examples

2.1 Basic Notations

Showing a list processing programs as examples, we
first introduce the basic notions of list structures. The
notions correspond to those of the Lisp language in a
straightforward way. However they are useful for the
presentation of some ideas behind our work without
reference to a particular programming language.

There are two basic kinds of data, atoms and lists.
An atom is a string of alpha-numeric characters which
should be taken as a whole and should not be split into
individual characters. The fundamental structure of a
list is a b-/ist which is defined as follows (cf. [1]):

1. An atom or ¢ is a b-list.

2. 1If b, and b, are b-lists, then (b,: b,) is a b-list.

3. The only b-lists are those given by 1 and 2.

Here ¢, the null list, may be written as (), and regarded
as a special atom. b, and b, in the definition of the b-list
(by: b,) are called the first element and the second element
of the proper b-list respectively. A b-list is sometimes
called a list. (x;:(x3: (- :(x: () --)) will often
be abbreviated as (x,, x,,* -+, x;), and called a k-list.

There are three primitive functions which process lists
as follows.

1) hd(x) selects the first element of a b-list x.

2) tl(x) selects the second element of a b-list x.

3) cons(x, y) constructs a b-list whose first element is

x and second is y. The value is (x: y)

The following Boolean valued functions are added to

primitive functions.

M. NAGATA

4) If x is an atom, then atom(x) is true, else the value

is false.

5) x and y are atoms. If x equals y then eq(x,) is

true, else the value is false.

In addition to 1)-5), Boolean valued functions v (or),
A (and), 1(not) are used.

At first we must declare data types provided by the
language in KANSUU. For example, it is assumed that

Boolean, integer, string
are declared. We assume that Boolean values, integers
and character strings are atoms. By the definition of a
b-list, an atom is an element of the set of b-list and the
atom may be an element constructing the b-list. This
hierarchical relationship between atom and list is
represented as ‘atom x list’ in KANSUU.

We may add conditions which we assume to hold
when evaluating the function. For example, we must
assume that hd and tl operate only on lists that are not
atoms. The value is regarded as undefined when hd is
operated on an atom. In this case, “1atom(x) is one of
the conditions which should hold for the arguments of
hd. We call such a condition a guard proposition of the
function.

2.2 Specification and F-program

When writing functional programs, we must give
specifications of data types and primitive functions in
KANSUU. A specification of a function is written as:

f(vl 'dlf') vn'dn):d;p,

where f is the name of the function, v; is a variable, d;
is its data type, d is the type of the value of the function
and p is a guard proposition. This proposition is optional
in the specification. If it is assumed that hd and tl
operate on lists not atoms, then examples of the specifica-
tions of our discussion are as follows:

Datatypes: ((Boolean, integer, string) =atom) x list

Primitive functions: hd(x.list)=>list; 1atom(x),
tl(x.list)=>list; T1atom(x),
cons(x.list, y.list)=list,
atom(x.list)=>Boolean,
eq(x.atom, y.atom)= Boolean

A component defining a function is of the form
{condition part—expression part)
in our approach. This is called a fragment. The condition
part is usually a proposition. If the expression part is a
proposition too, the fragment (C—E) is called a
propotional fragment and the value is 1Cv E.
A collection of fragments

[fragment, ; fragment,;- - - ; fragment,]

is called the conditional. The value of the conditional in a
valuation is the value of the expression part of a fragment
whose condition part is true. McCarthy’s conditional
expression,

[Cl_'El PR Cn_’EnL

is equivalent to the conditional,

An Approach to Construction of Functional Programs

[<Ci—>E/ >;
<C,ACy,—>E,>;

<C, ATICA - ATIC, o AC,—>E,>].

An F-program is written as:
{specification<the conditional}.
An example of the F-program is as follows:

{equal(x.list, y.list)= > Boolean;
< =[<atom(x) A atom(y) — >eq(x, y)>;
<atom(x) A "atom(y)— > false> ;
< T1atom(x) A atom(y)— > false> ; m
< 1atom(x) A T1atom(y)
~ >equal(hd(x), hd(»)) A equal(tl(x), tI(»))>]}

3. Detection of Logical Errors

3.1 Properties of F-programs

In our discussion, the following properties of
fragments in the conditional should be verified.

A: Each condition part is not identical to true or

false.

B: Disjunction of all condition parts is always true.

(Exhaustiveness)

C: Conjunction of condition parts of distinct frag-

ments are always false. (Exclusiveness)

We easily understand Property A. If a fragment does
not satisfy Property A, then the fragment is called a
trivial fragment. Property B confirms that the value of
an F-program consisting of non-recursive fragments is
never undefined under its specification. If Boolean con-
stant true is used in the condition part, this property
always holds. In KANSUU, true may be written in a
similar manner to Lisp programming. In this case,
KANSUU automatically assumes the actual proposition
represented by true.

If there exist two fragments of an F-program which
do not satisfy Property C, then those condition parts
are non-deterministic. In McCarthy’s conditional ex-
pression, every C,— E, depends on all C;(—»E(1<i<k).
Thus, Property C is not always assumed in the expres-
sion. However, in the conditional of our approach, all
fragments are independent of each other.

Certain types of logical errors of F-programs can be
detected by algorithms based on these properties.
Suppose that one of fragments of (1) is lacking, then the
property B is not satisfied. Algorithms for detecting such
errors will be described.

3.2 Automatic Theorem Proving and Trivial Fragment

We shall use a formal system which is a subset of
Gentzen’s LK [7]. The formal system is useful for
describing the above properties and our algorithms.
In this paper, we use the notations of the formal system
which are described by Kleene [8].

233

In KANSUU, a sequent is used as an internal
representation for detecting logical errors. The sequent
is the same as Gentzen’s sequent, that is, a sequent is a
formal expression of the form

A,,---,A,>B,,---, B,

where /, m>0 and 4,,---, A,, B,,- -, B,, are proposi-
tions. When /, m>1, the above sequent has the same
interpretation as

A A - AAd,implies B,v --- VB,

The interpretation extends to the cases where /=0 or m=
0 by interpreting A, A--- A A4, for /=0 (the ‘empty
conjunction’) as true and B;v ---v B, for m=0 (the
‘empty disjunction’) as false. The number of logical
connectives of a sequent is called the degree of the
sequent.

Logical axioms of KANSUU are:

rh A, rz"’Ap A, Az,
'—A,, true, A,
and
Iy, false, ', > A,
where 4 is any proposition, and Greek capitals represent
zero or more propositions. Let P and Q be arbitrary
propositions, then the logical rules of inference are the

following.
Rules of Inference:

r,P,QTI;,-A

(eft-A) F FAOT,5A

ithen) DLt Toh 0.0
(left-v) b P}? ;é Q,Ff;_Q.’Arz—'A
(right-v) %

(left-—1) %

(right-1) ot

T5A,, —P, A,

A sequent is provable if it is an axiom or the result of
applying a rule of inference to sequents which are
already known to be provable, that is, a provable sequent
means a statement which is capable of being proved by
an automatic theorem prover which works in accordance
with the formal system.

If a sequent to be proved is given, the above procedure
is applied in KANSUU. When a complete proof tree
can be constructed, the sequent is a provable sequent.
Every node of the tree is a sequent. A node is trans-
formed into its son or sons by applying one of rules of
inference which is relevant. Every terminal node of the
complete proof tree satisfies the logical axion. Figure 1

234

(sequent to be proved)

Fig. 1 An example of the complete proof tree.

(sequent to be proved _)

Fig. 2 An example of an incomplete proof tree.

shows an example of the complete proof tree. Each
terminal node ‘@’ is a logical axiom.

When the sequent is not a provable sequent, a incom-
plete proof tree is constructed. In this tree, there exist
terminal nodes which are not provable sequents and
have no logical connectives. We call these nodes non-
provable terminal nodes of the tree. Figure 2 is an ex-
ample of the incomplete tree. A terminal node ‘©’
represents the non-provable terminal node.

There exist predicates (atom, eq etc.) in F-programs,
however, when we analyze the logical relations between
condition parts, we consider only propositions (atom(x),
eq(x, y) etc.) in our approach. For example, we may
write atom(x) and atom(y) as P and Q respectively,
where P and Q represent propositions (cf. Example 1).
Thus, we use only Gentzen-type propositional calculus,
not the predicate calculus, as the automatic theorem
proving technique in KANSUU. In this technique,
the number of logical symbols of a sequent is always
reduced by applying the relevant rule of inference.
Therefore, if any sequent is given, then we can decide
whether it is provable or not with an efficient way, that
is, the complete or imcomplete proof tree of the sequent
can always be constructed automatically.

Now, the following algorithm tests whether a frag-
ment, {C—E), is a trivial fragment.

Algorithm 1:
Try to prove two sequents

C-» and -C,

where ‘C— ‘and’ —C’ are equivalent to ‘C—false’ and
‘true—C’ respectively. If one of them is a provable
sequent, then return *‘It is a trivial fragment”, else return
“It is not a trivial fragment™.

3.3 Exhaustiveness and Exclusiveness

We shall describe algorithms for detecting logical

M. NAGATA

errors by using Property B and C. If the conditional
[<Ci—>E >; -; <C,— >E,>]

is given, the following algorithm tests whether the con-
dition parts are exclusive.

Algorithm 2:
Try to prove sequents

CinCi>
for every i#j, 1<i, j<n. If all sequents are provable,

then return “‘exclusive”, else return “C; and C; are not
exclusive™.

On the other hand, the following algorithm tests
whether the condition parts are exhaustive.

Algorithm 3:
Try to prove a sequent

-C,vCyv---vC,

If it is a provable sequent, return “‘exhaustive”, else
apply Algorithm 4.

If the condition parts are found exclusive but not
exhaustive, the following algorithm suggests a proposi-
tion which may be lacking.

Algorithm 4.
If a sequent

Alr Az,') Ak_’Ak+1" t An
is the non-provable terminal node of the incomplete
proof tree of
—-C,vCyv---vC(C,

then propose the following proposition as the missing
condition part.

AN ANV Ay ATV A A A4,

where A4, is a proposition.

Example 1:
Consider the following condition parts of three frag-
ments.

C,: atom(x) A atom(y)
C,: atom(x) A Tatom(y)
C,: Tlatom(x) A Tlatom(y)

In this case, we may write propositions atom(x) and
atom(y) as P and Q respectively. Therefore,

S(PAQIV(PAIQIV(IPANIQ)
is not a provable sequent, and the sequent of degree 0,
g-P,
that is,
atom(y)—atom(x),

is the non-provable terminal node of the incomplete

An Approach to Construction of Functional Programs

proof tree. We can find that a fragment whose condition
is Tlatom(x) A atom(y) should be added.

If there are two or more different non-provable
terminal nodes, KANSUU cannot determine which
condition parts are missing. It can only proposes several
possibilities.

Example 2:
Let

C,: atom(x) Aatom(y) and C,: atom(x)A T1atom(y)

be condition parts of a given fragment. In this case, in the
proof of

-C,vC(C,,

the following sequents are not provable sequents of
degree 0.

—atom(x)
atom(y)—atom(x)

—atom(y), atom(x)

Therefore we have two ways of making the condition
parts exclusive and exhaustive. First, C,, C,, and
Tlatom(x) are exclusive and exhaustive; second, C,,
C,, Tlatom(x) A atom(y) and Tlatom(x) A “Jatom(y) are
exclusive and exhaustive. If an F-program satisfies all
of property A, Band C, it is called a consistent F-program.

The new idea of the algorithm on the consistency of
F-programs is that the algorithm provides information
for the correction of inconsistent programs by using
simple automatic theorem proving techniques.

4. Test for the Termination of F-programs

We shall show the way to confirm the termination of
certain types of F-programs. The general problems of
the termination of recursive programs would be too
difficult to be implemented on a computer, if possible
at all. Therefore our method is restricted to consistent
F-programs of particular forms.

If our approach confirms the termination of certain
types of F-programs, then they always terminate. How-
ever, when it cannot confirm them, they may or may not
terminate.

4.1 Termination of F-programs

Let us assume that an F-program

{fib(x.non-negative integer)= > non-negative integer,
<=[<x=0->1>;
< (x=0)—>fib(x—1)+fib(x~2)>]} (2)

is given by a programmer. We can find that the execution
of the program can not terminate for x <1. In order to
detect such errors, we give a semi-automatic approach
confirming the termination of consistent F-programs.
Our program is regarded as the definition of a func-
tion, and, roughly speaking, it terminates if the function

235

is total on a set, which is given by the data types of vari-
ables of the F-program. In order to introduce our method,
let us consider one of the simplest cases as an example.
A recursive F-program # with the variable x is defined by:

{h(x. type)= >type’;
<=[<p(x)->e(x)>;
<7p(x) = >a(h(b(x)) >} 3)

where e, a and b are primitive, specified or defined func-
tions. Our approach can be extended to mutual recur-
sive programs, however, it is assumed that this is not a
mutual recursive program in this paper.

We shall discuss the confirmation of the termination
of F-programs satisfying the following properties:

1) Consistent F-programs

2) Recursive but not mutual recursive F-programs

3) F-programs including only primitive, specified

and defined functions
Program (3) can be interpreted as

{h"*(x. type)=>type’;
<=[<p(x)- >e(x)>;
<7p(x) = > a(h"(b(x))N >},
where A° is a totally undefined function. Now,
Dom (#*)

represents the set such that A* is defined, i.e., Dom(h°)
is ¢, and in this example, Dom(#") is the set {x|p(x)}.
Further define

D

as the set given by the data type of the variable.

The programmer expects that the program terminates
if any element of the set D is given as a datum, so we call
D an expected set. For example, the expected set of fib
is the set of non-negative integers. When a program with
two or more variables is given, D is the Cartesian product
of expected sets which are given by data types.

We conclude that, if

D=Dom (h*)
=Dom (A') U Dom (h*)U- - - U Dom(A") U- - -

holds, then the F-program terminates. By the definition
of Dom, Dom(4*) increases (or does not decrease)
throughout the computation, and k may be regarded as
the index of the process of the computation.

4.2 Bottom Predicate and Control Variable

In order to show the termination of a given F-program,
we make use of a well-founded set (D, <) which is
defined as a set of the expected set D with a partial
ordering < having the property that there can be no
infinite descending chain of elements of D. We assume
that (D, <) is a well-founded set which consists of a
set of elements of D and the ordering < defined on the
elements. For proving the termination of the F-program,
we directly use the well-founded set (D, <) and the text
of the program.

236

By the definition of the well-founded set, there exist
minimum elements in the set. Suppose that b(x)<x
holds in (3). If p of (3) is true on every minimum element
of (D, <) and faise on all other elements, then termina-
tion of 4 is obvious. The predicate p is called a bottom
predicate. This is determined by the operation and the
relation over the domain.

Definition 1:

Let (D, <) be a well-founded set. A predicate p on D is

the bottom predicate of an operation g iff
For any element d of D excepting all minimum
elements, g(d) immediately precedes d, and p is true
for all minimum elements and it is false on all other
elements of D.

Example 3.

If 1 is a set of all lists, then atom is the bottom predicate
of hd. Figure 3 demonstrates that hd(b) immediately
preceeds b for any proper b-list b, here each «; represents
an atom (cf. [14]).

Example 4:

If 1 is a set of all k-lists, then null is the bottom predicate
of tl (Fig. 4), where null(x) is true if x is ¢, and false
otherwise. Here o represents an arbitrary atom.

Since an F-program may have two or more variables,
we introduce the notions of control variables.

Definition 2:

Let f be an F-program with n(n > 2) variables x,, x,," - -,
x,. The control variables of f are those variables which
appear in the condition parts of fragments of f.

In order to demonstrate the role of this notion, we

((ay 1 @) Tay) ((ay:ay) ' ay) (a2t @) & ay) ((as: @) tay)
(a1 ay) {a): ap) (ay: ay) (a5 2 ay)
ay \2 \43
Fig. 3 Structure of b-lists.
(e (ai()) (la:(ai () lai()) (a: ((a:()) 1 ()))
(a:()) ((a:()) - ()

)
Fig. 4 Null and tl on k-lists.

M. NaGgaTa

show the following example. Both of these programs,
frevl and frev2, reverse k-lists. The program frev2 has
two variables x and y, and the control variable is only x.
The termination of these programs will be confirmed by
the same method (see Algorithm 5).

Example 5:
Consider the following two programs, frevl and frev2,
both reversing k-lists.

{frev1(x.k-list)= > k-list;
< =[null(x)- >e>;
< —1null(x)— >append(frev1(tl(x)), cons(hd(x),
N

where append appends two lists.
{frev2(x.k-list, y.k-list)= > k-list;
<=[<null(x)—>y>;
< —1null(x)— > frev2(tl(x), append(y, cons(hd(x),
e))> [}

where frev2(x, ¢) returns the reverse of x.

4.3 Test of the Termination

When writing recursive programs, we consider the
relation of the program and its expected sets. The execu-
tion of a recursive program depends on the structure of
the expected set given by data types of its variables,
therefore the termination of the program should be
confirmed on the basis of properties of data types. In the
following descriptions, Algorithm 5 will assure the
termination of F-programs with one control variable,
while Algorithm 6 will assure the termination of F-
programs with two or more control variables.

Let an exclusive and exhaustive F-program f with a
control variable x be given. Let g(x) be the parameter of
the recursive call of f, and ¢q,(x)," - -, g,(x) be con-
dition parts of non-recursive fragments of /. We assume
that the expected set D and the bottom predicate p on
D of the function g are also given.

Algorithm 5:
Prove a sequent

PX)=q(X)V -+ v g,(x).

If it is a provable sequent, then the termination is con-
firmed, else is not confirmed.

The termination of two F-programs, frevl and frev2,
can be confirmed by this algorithm.

If an F-program does not include composition of
functions as the parameter of recursive call, Algorithm
5 is essentially the same method as the termination func-
tion approach. But, an F-program may include com-
position of functions as the parameter of the recursive
call, and in such a case, the bottom predicate of the
composition can be obtained as follows. Let py, -, p,
be bottom predicates of g4, - -, g,, respectively and let
the argument of the recursive call be

An Approach to Construction of Functional Programs

gm(gm— l(' " (gl(x)) :))1
then the bottom predicate of the composition function is

P1()VPAG1ONY -V Pl i (- - - (91(x))- - D)

Thus, suppose an F-program (2) is given, we find that

PvQ-P
is not a provable sequent, where P and Q are x=0 and
(x—1)=0 respectively. The system will detect that a
non-recursive fragment whose condition partis (x — 1) =0
is missing. Therefore the programmer is led to the
corrected F-program.

When the termination of an F-program f with k(k >2)
control variables is to be confirmed in KANSUU, the
following Algorithm 6 is applied. Let D; be an expected
set of a control variable x;, and p; on D; be the bottom
predicate of g,(1 <i<k), where g,(x;) are the parameters
corresponding to x; in the recursive calls of frespectively.

Algorithm 6:
Prove a sequent

Pi(x) Vv v =g (x,) v - v gy(x),
where ¢,(x,)," - -, g,(x,) are the condition parts of non-
recursive fragments of f. If it is a provable sequent,
then the termination is confirmed, else not confirmed.

The termination of (1) can be confirmed by Algorithm
6. The basic ideas of Algorithm 5 and 6 are influenced
on the termination function approach. However, they
use simple and efficient theorem proving techniques.
Thus these algorithms enable us to make an automatic
method for confirming the termination of recursive
programs. The types of programs treated in KANSUU
are restricted and bottom propositions must be given,
but our algorithms are useful for the writing of programs
including compositions of functions as two or more
parameters of recursive calls, Moreover, Algorithm 5
and 6 may provide information for the correction of
non-terminative programs.

5. The KSR System

If knowledge on the user’s intended program has been
given to KSR, the system provides information for
making his program consistent and for assuring termina-
tion. Thus the user can write consistent and terminating
programs in cooperation with the KSR system.

At first the user gives specifications and bottom
predicates of primitive functions of the language. Next
he gives a specification of the intended program. When-
ever the user writes a fragment of the program, the KSR
system inspects guard propositions and examines the
fragment’s triviality and exclusiveness. If some condi-
tions are wrong, they are indicated. KSR is provided
with a simple structure editor capable of correcting
fragments [12].

When a whole F-program defining a function is given,
the exhaustiveness is checked. Having detected logical

237

Structure

KSR1 KSR2 Editor

F-programs
(Internal
forms |

Theorem
Prover

Fig. 5 Structure of KSR.

errors, KSR points out how to correct them. After a
consistent F-program is given, the system examines its
termination. KSR confirms the termination of the
program only when it can be assured.

KSR mainly consists of three parts, i.e., KSR1, KSR2
and the structure editor. These are separately
implemented now. KSR1 is concerned with the
consistency and KSR2 is related to the termination.
Both of them use the same automatic theorem prover.
Figure 5 shows the structure of KSR. The user writes
programs in M-expression-like forms shown in this
paper, but KSR stores them in S-expression-like forms.

KSR is a pilot model realizing KANSUU, and a
programming system which provides interactive facilities.
In spite of using a LISP interpreter on a minicomputer,
every response returns in a few seconds. Thus KSR
only spends an acceptable amount of time for every
response to the user.

We have written many small programs and several
medium-sized programs by using KSR. An example of
the real conversation record of writing a small program
is shown in [11]. An example of a medium-sized one is a
symbolic manipulation program. The program simplify-
ing symbolic polynomials consists of about twenty
fragments. Even though KSR is implemented on a
minicomputer, we can write such programs with KSR.
Moreover, we are now implementing a consultation
system for Lisp programming.

6. Conclusions

We shall conclude by comparing our approach with
other related works.

Lucid [2] is an excellent attempt to verify the
correctness of the user’s programs during the develop-
ment process. However, the author believes that it is
practical to deal with consistency and correctness
separately. If an inconsistent program is given, an
automatic verifier fais to prove the correctness of the
program. So that when the verifier fails to prove the
correctness, we cannot distinguish the two possibilities
of inconsistency and incorrectness. KANSUU can
detect the inconsistency of programs. There exist, on the
other hand, many programs which are consistent but
incorrect, and KANSUU can not detect errors of such
programs. Thus, the verifier should be used for the

238

verification of programs which have been checked by
KSR.

Algorithms in KANSUU are useful for the detection
of logical errors before the written programs are executed
Before the execution, KANSUU first checks the con-
sistency and the termination of the program, and a
verifier then proves the correctness. The use of these
algorithms will save much labor and time of the program-
mer. Although many existing program verifiers attempt
to verify only the correctness of completed programs,
some aspects of their techniques have been utilized in
our work. For example, the theorem proving techniques
of KANSUU are similar to the provers of verifiers [4,
13]. A verifier as a debugging tool based on Hoare’s
axiomatic basis and an assertion method has been
proposed [5], and it is useful for proving the correctness
of completed programs. However, the author believes
that our interactive approach is practical at the times
programs are developed. So far as Lisp programming is
concerned, the aim of Wertz’s PHENARETE system
[16] is the same as our system. But KANSUU does not
restrict programming language, so that we can write
specifications and programs in a uniform way.

This paper has proposed a new approach to interactive
debugging for functional recursive programming. On
the other hand, it is necessary that our approach and
other methods, i.e. automatic verifiers, traditional
debugging aids and new programming tools [6, 9, 15,
17], should be combined. A powerful programming
system would be built, if they are effectively combined.

Acknowledgements
The authour is indebted to Professors Hidetosi

Takahasi, Toshio Nishimura, Shoji Ura, Yoshio Hayashi
and Masakazu Nakanishi for accomplishment of this

M. NaGara

work.

References

1. ALLEN, J. R. Anatomy of LISP, McGraw-hill, N.Y. (1978).
2. ASHCROFT, E. A. and WADGE, W. W. Lucid-a formal system for
writing and proving programs, SIAM J. Comput. 5, 3 (1976), 336-
354.

3. Backus, J. Can programming be liberated from the von
Neumann style? A tunctional style and its algebra of programs,
Commun. ACM 21, 8 (Aug. 1978), 613-641.

4. BoYER, R. S. and MooRE, J S. A Computational Logic, Aca-
demic Press, N.Y. (1979).

5. BranD, D. Path calculus in program verification, Jour. ACM
25, 4 (Dec. 1978), 630-651.

6. DoD: Requirements for Ada Programming Support Environ-
ment “stoneman’ (February 1980).

7. GentzeN, G. Unterschungen ueber das logische Schliessen,
Mathematishe Zeitschrift 39, 1934-35, 176-210, 405-431.

8. Kueeng, S. C. Introduction to Metamathematics, North-
Holland Pub., Amsterdam (1952).

9. LieBerMAN, H. and Hewrtt, C. A session with Tinker: In-
terleaving program testing with program writing, Conference
Record of the 1980 LISP Conference (Aug. 1980), 90-99.

10. NAGATA, M. Interactive debugging for functional recursive
programming, RIMS Kokyuroku, No. 396, Kyoto University
(Sept. 1980), 131-169.

11. NAGATA, M., AKiYaMA, T. and FUJIKAKE, Y. An interactive
supporting system for functional recursive programming, Informa-
tion Processing 80, Lavington, S. (ed.), North-Holland, Amsterdam
(October 1980), 263-268.

12. NAGATA, M. and ORrITA, K. A structure editor of the support
system for functional programming, WGSYM 15-1, IPSJ, (June
1981), 1-10 (in Japanese).

13. NakanisHI, M., NAGATA, M. and UepA, K. An automatic
theorem prover generating a proof in natural language, Proc. of
6th IJCAI (August 1979), 663-638.

14. Summers, P. D. A methodology for LISP program construc-
tion from examples, Jour. ACM 24, 1 (Janvary 1977), 161-175.
15. Waters, R. C. The programmer’s apprentice: Knowledge
based program editing, IEEE Transaction on Software engineering,
SE-8 (January 1982), 1-12.

16. WEeRTz, H. Automatic program debugging, Proc. of 6th IJCAl,
(Aug,. 1979), 951-953.

17. WILANDER, J. An interactive programming system for Pascal,
BIT 20 (1980), 163-174.

(Received November 24, 1981 : revised May 26, 1982)

