Simulation of a Hybrid Machine—Another Pedagogical Aid for
Programming Operating Systems in a High Level Language

TsUNETOSHI HAYASHI*

There are some inherent difficulties in programming operating systems (OSs) in a high level programming
language. This is chiefly because an OS program requires close interaction with the hardware on which it runs,
while a high level programming language tends to hide the machine structure. In this paper, a model and im-
plementation of a hybrid machine which enables programs to cope with such difficulties is proposed. The model
can handle both OSs written in a high level language and job programs in a binary machine code, and it can
also provide a good environment for OS programming. An implementation has been used in an educational pro-
gramming laboratory course in operating systems. Some drawbacks of the model and measures to address such

drawbacks are discussed in detail.

1. Introduction

As programming methodology and software engi-
neering were developing, it became apparent that systems
programs such as compilers and operating systems
(OS) as well as user applications should be coded in a
high level programming language. A high level pro-
gramming language can help to shorten the time be-
tween coding and certification of the program.

It seems, however, current implementations of high
level languages and system supports such as program-
ming environment, debug aid, and dump utility are not
sufficient for this purpose, especially in OS program-
ming.

On the other hand, writing a compiler in a high level
programming language is much easier than writing an
OS in such a language. For, the former can be done in
a good programming environment such as TSS, unless
it handles object binary machine code. In addition, the
compiler writing methodology seems almost unified in
comparison with that of OS writing. The difficulties of
OS programming in a high level programming language
are caused by lack of these properties.

A hybrid (virtual) machine model which will remedy
these difficulties and provide a good programming
environment for OS programming in a high level lan-
guage will be proposed in this paper. The readers,
however, should bear in mind that it is the concept
being proposed which is important and not the par-
ticular details of how it is implemented.

In the following, considerations on the difficulties
and OS programming environment are given as pre-
liminaries. Outline of the hybrid machine will be de-
scribed in section 2. Section 3 gives outline of an
example OS. Section 4 deals with an implementation
using simulation of the hybrid model, some drawbacks

*Educational Center for Information Processing, Kobe Univer-
sity of Commerce, 4-3-3 Seiryodai, Tarumi, Kobe, Hyogo 655.

Journal of Information Processing, Vol. 6, No. 1, 1983

of the model, and their solution.

1.1 Difficulties of OS Programming in a High Level
Language

An OS program must have close interaction with
the machine on which it runs. But a program written
in a high level language cannot have such interaction,
since the language tends to hide the machine interface
from a programmer unless some special facilities are
provided with the language. The low level functions
such as context switching, process scheduling, and
interrupt handling are hidden from a user, and are
dealt with by the run-time routines, or by the run-time
environment OS, as parallel programs, monitors,
exceptions, synchronization primitives, and pseudo
processes. A high level language is based on much more
abstract terms than the hardware for the sake of porta-
bility and reliability.

However the low level functions of the multiprogram-
ming mechanism and interrupt handler are difficult
to write in a high level language. This is the most
desirable part to be written in such a language because
its function is intricate and ill-defined, and its program
is hard to certify.

Other parts of an OS outside of the multiprogram-
ming mechanism layer may be written in a high level
language rather easily. There are many examples:
Multics, Solo [4], and Unix [5].

1.2 Good OS Programming Environment and Support

We should consider the criteria necessary for good
programming environment and support for OS pro-
gramming:

(1) An OS program should have to access several
machine features such as interrupt handling, and
context switching explicitly and directly (without
intervention of a run-time routine or environment
0S). This is required for implementing the multipro-
gramming mechanism, and evaluating traffic control
or synchronizing primitive algorithms.

Simulation of a Hybrid Machine— Another Pedagogical Aid for Programming Operating Systems in a High Level Language 11

(2) Programs must be able to implement basic
facilities constituting an OS: monitor functions, proc-
esses, and command interpreters.

(3) Subtle details of the hardware should not have
to be exploited by OS programs: for example, an OS
should be started without initial program loading or
binary bootstrap operation.

(4) Diversification of OS concepts should not be
restricted.

The hybrid machine model proposed fulfills these
criteria well, and helps one to concentrate his efforts
to develop algorithms constituting an OS. The model
was first conceived for a laboratory course in systems
programming, and an implement has been used for
developing a small OS [1]. The model can be, however,
of use for experimenting with OS algorithms at the
kernel level and evaluating their performance and
behavior, as well as for educational purposes.

In the following, we call the OS under scrutiny the
proto type OS, and the environment in which it runs
the environment OS.

2. Outline of Hybrid Machine Model

The hybrid machine model is uniquely and exclusively
designed to meet above criteria: that algorithms con-
situting an OS as a whole should be written in a high
level language, and that OS programs can have direct
access to machine functions such as interrupts and
input/output handling.

The basic principles of the model are:

(1) The machine has, at least, two program status:
supervisor and user. The status is kept in a simulated
program status word (PSW). The machine must be
provided with the definition of the PSW.

(2) In the supervisor status, the machine inhibits
interrupts and runs OS programs written in a high level
language.

(3) In the user status, the machine permits interrupts
and runs a program in binary machine code which is
stored in (simulated) main memory.

(4) The machine is provided with several hardware
status registers, PSWs, and main memory. These registers
hold and indicate previous, current, and next status of
the machine. They can be referred as data structures
to by OS programs written in a high level language.

(5) The machine is provided with several instructions
requisite for OS programming (probably the least set
of these instructions may be idle, start I/O, supervisor
call, and test and set). OS programs in a high level lan-
guage invoke these instructions as either library pro-
cedures or primitive operations, depending on the
implementation of the language used. The declarations
for the registers and library may be included in the
program prologue.

The language can be of any algorithmic type such as
Algol 60, Pascal, and PL/I, or of typeless language such
as BCPL and Bliss. The machine code can be of any

real machine or of imaginary machine depending on the
implementation of the model. We should make the point
that the programs in different status run on completely
different (virtual) machines, if OS programs in a high
level language might ever be compiled into the same
machine code. At first glance the model seems peculiar
but it is natural and convenient for OS programming
and development.

An implementation of the hybrid machine model is
described in the following example. This one is very
small in scale and is slightly modified from the model
given in [1[for explanation. However the same principle
can be applied for much larger models.

The configuration of the model is shown in Fig. 1.
It has a standard input device, output device, and a
console device such as a card reader, line printer, or type-
writer. This is the minimum configuration of the model.
If necessary, some direct access devices may be added
to the configuration.

The machine also has an operator call interrupt button
in its imaginary console for convenience of operation.
As for the interrupt, much will be mentioned later.

Programs can refer to the status of the machine
through the data declarations given in Fig. 2. It also
shows library procedure declarations, and as mentioned
above, they can be regarded as hardware registers,
PSWs, and privileged instructions provided with the

standard console standard
input output
(card (console (1line
reader) typewriter) printer)

v ¢ v

supervisor status

(programs in high level language)

user status
(programs in binary machine code)

Fig. 1. Configuration of a model machine.

/* Hardware registers accessible in supervisor status */
const bitg==--c -+ +-- ;
max memory=---: --- +-- 5
type PSW =record
status: (supervisor, user);
program counter: 0- - -max memory;
program environment: -+ c-- ---;

interrupts =(operator call, PCI, card end,
printer end, typewriter end);

word =array [bits] of Boolean;
var old PSW, new PSW, current PSW: PSW;

ISR : array [interrupts) of Boolean;

main memory: array [0- - -max memory] of word;
procedure start io (device: - - -, var data: --+)---;
procedare idle -+ +-: -
procedure supervisor call (- -+ =+« +-:)eee cen s

Fig. 2 Hardware registers in Pascal-like language.

12

machine.

In this model, interrupt events are indicated by the
interrupt status register (ISR). To be more precise,
some parts of the functions implemented simulate such
interrupt events and set the register. The interrupt
sources are program controlled interrupt (PCI), operator
call interrupt, and device end interrupt signals. More
interrupt sources such as program failure may be easily
added if necessary.

The PCI is invoked either when a program in the
supervisor status issues a supervisor call instruction,
or when a program in the user status executes a program
controlled interrupt machine code. The operator call
interrupt is invoked when the operator call button is
pushed by an imaginary operator, and the device end
signals are invoked when the corresponding devices
terminate their operation.

When such an interrupt event takes place, the model
takes following actions.

—The machine changes to the supervisor status if it
were in the user status;

—It saves the current PSW in the old PSW;

—It invokes an interrupt handling procedure which has
been supplied as a part of the prototype OS;

—At the exit of this procedure, it restores the current
PSW from the new PSW, and continues programs in
the mode indicated in the (restored) PSW.

This interrupt handling procedure with a specific name
is written as the nucleus of the prototype OS. The name
of the procedure is, by convention, defined in the
prologue declarations of the language, unless indirect
procedure call mechanism, or procedure variable is
provided with the language. The procedure can realize
the multiprogramming mechanism by switching the
PSWs. Note that an indicator is reset when a program
assigns a new value to it.

For the vectored interrupt architecture, not just one
interrupt handling procedure but as many procedures
as interrupt sources may be supplied and invoked when
a corresponding interrupt event occurs. In this case,
registers such as ISR holding interrupt source informa-
tion are not necessarily referred to by an interrupt
handling procedure. The information needs be main-
tained only in the program which implements the
machine model. This architecture seems more feasible
because of its simplicity.

Library procedures for OS programming, or privi-
leged instructions in the supervisor status, consist of
the following set, but more may be added if necessary.
~ idle—The idle procedure stops continuous execution
of programs unless there is at least an interrupt event
remaining. If an interrupt event is invoked while the
execution is stopped then the procedure resumes normal
execution of programs at the next statement to the call
to the idle procedure.
~start I/O—The start I/O procedure starts an input/
output operation of a device designated by the parame-
ter. The machine continues execution of programs in

T. HAYASHI

parallel with such operations.

~ supervisor call—The supervisor call procedure is for
passing control to the OS nucleus from programs in
the supervisor status. This is necessary for implementing
the wait (block) function.

~ test and set—The test and set procedure is necessary
for implementing multiple processor systems.

The hybrid structure of the model is adopted to
enable OS programs to be written in a high level lan-
guage, and to avoid machine handling, such as booting
an OS from a console, testing programs step by step,
patching memories from the console, etc. by using, for
example, interactive debugging facilities provided with
the language. Such handling is very cumbersome and
time-consuming, tends to fall into the program-debug
cycle, and does not improve the procedures of writing
correct programs from the beginning.

3. Notes on the OS Implementation

Naturally we must consider the question concerned
with the model: what OSs can we write and how?

The following small scale example OS shows answers
to this question. This example is, in principle, the same
as the one which appeared in [1] for educational purpose.
A large scale OS can be written within the same frame-
work.

3.1 Example OS Specification

The example OS is very small and concise but retains
the essential structure of existing OSs. The specifications
are:

(1) It handles a single job stream externally, but
has multiprogramming capability internally.

(2) It consists of the nucleus, several processes, and
several monitor functions (monitor macro instructions).

(3) It has a simple job control facility (job control
language) and a set of operator commands, but no
spooling or resource allocation facility.

(4) Each process corresponds to an interrupt source
and to job processing.

(5) Monitor functions which may be invoked by
processes are based on the interaction among the
processes.

(6) The nucleus establishes multiprogramming and
transfers the control between monitor functions, as well
as handles interrupt events.

Each process handles a corresponding interrupt
source and is usually waiting for interrupt events to
occur. A process is dedicated for job processing and
deals with the job control facility.

The monitor functions support coordination and
communication between processes. They can be of any
type of communicating primitives such as the P/V
operator, and are invoked by processes through the
PCI indirectly.

Simulation of a Hybrid Machine—Another Pedagogical Aid for Programming Operating Systems in a High Level Language 13

3.2 Example OS Implementation

The example OS can be implemented on the machine
model in the following way:

(1) The interrupt handling procedure (or procedure
entries) functions as the nucleus. For each interrupt
event, the handler awakes the corresponding process;
for the PCI, it enables the called monitor function to
run in the environment of the calling process. Then it
schedules the next process to run, and dispatches it by
restoring a PSW which has been saved on the entry to
the handler.

(2) A process is provided for each task: input/output
devices (for each device); operator interrupt; and job
stream processing. Processes for I/O devices usually
wait for an I/O request and device-end interrupt. It
issues an input/output command against the former,
and returns an end-of-operation message to the request-
ing process against the latter. A process for operator
interrupt accepts and processes operator commands.
A process for job processing is awakened by an operator
command and interprets the job control language.

(3) Monitor functions provide a means to exchange
messages and signal another process. They are invoked
by processes through the PCI, and run in the environ-
ment of a calling process. This is made possible by
maintaining the monitor function activation information
with each calling process.

4. Implementation of the Hybrid Machine Model

The hybrid machine model can be implemented in
many ways by interfacing (mapping) between the hard-
ware, and the software. Probably a machine with these
high level specifications may be built with little difficulty
by using recent LSI technology. In the following, ways
of implementation using only software techniques,
and exploiting existing computer systems are considered.

Some of the feasible implementations may be

(1) by using the firmware;

(2) by using the virtual machine concept; and

(3) by using an existing programming environment

through simulation.
In (1) above, resources provided with the hardware can
be fully exploited, and programs run as fast as in a
conventional machine. The run-time environment of
the high level language, however, must be also supported
by the firmware, and this fixes the language for OS
programming, and causes inflexibility of the system.

In case (2), the run-time environment is supported by
software emulation, and this method seems fairly flexible.
The programs in the binary machine code run as fast
as in a conventional machine. Programs in a high level
language might run a little slower because of traps re-
quired for the emulation. In both cases (1) and (2), the
link from prototype OS to run-time environment is
through a specially defined trap instruction.

In case (3), the run-time environment can be the same

as that of ordinary, non-OS programs. The link to run-
time environment from prototype OS is through a
conventional subroutine call mechanism. The binary
machine code must be fully simulated by software for
the sake of the linkage to prototype OS programs unless
an adequate exception handling mechanism is provided
and supported by the language.

In the following, this method of implementation is
discussed.

4.1 Support System

The support system implements the hybrid machine
model through simulation. Figure 3 shows the outline
of the support system and its relationship with an OS.
The principal control flow shown in the figure is as
follows:

—When a real or simulated interrupt occurs, it invokes
the OS nucleus (the interrupt handling procedure);

and at the end of the nucleus:

—If the current PSW is set to user status, it simulates
binary machine code stored in the main memory ac-
cording to the PSW;

and:

—If the current PSW is set to supervisor status, it dis-
patches the OS program according to the PSW.

The support system is written beforehand as a set of
library programs, and later when a prototype OS is
completed, the support system is linked together with
the OS programs. When the load module is started by
the environment OS, the support system takes control
and runs the prototype OS on the (virtual) hybrid
machine. No initial program load or machine handling
is necessary. The test of the prototype OS can be done
in an adequate programming environment, and if
necessary, the support system can implement useful

"8 interrurt
nucleus
lIIIIII!!!IIIII
end of
nuleus
surrert
supervisor interrupt
svstem
SLatus system
control
0s os l— N - surport
start 1o, system
process, superviscr call
prart monitor
functicn
binary b
status | © ST

Fig. 3 Outline of support system.

14

facilities such as program trace, snap shot, and memory
dump in interactive mode.

Some discussion on implementing interrupt events
are in order.

(i) Operator call interrupt: an attention signal of the
OS of the programming environment, or a message
entered at the terminal can be used for simulating an
operator call interrupt event. In the former case, the
support system must declare a program entry to the
environment OS for accepting attention signals. In the
latter, the idle instruction and machine code simulator
should be designed to accept a message input at any
moment.

(ii) Device end interrupt: real data transmission timing
or simulated timing may be used for this event. In the
former, the support system must have a provision for
acknowledging an end of transmission. In the latter,
the system has to do the timing while simulating machine
code and idling, or otherwise a timer provided for the
environment OS can be used.

(iii) Program controlled interrupt: implementing this
is straight forward and causes almost no problem. Note
that this interrupt is the main entry to the support sys-
tem from the prototype OS.

4.2 Considerations on Some Difficulties

There are a few difficulties or shortcomings in this
model. Some of them are (i) a language issue; and (ii)
parameter passing to monitor functions from job and
prototype OS programs.

(i) Language issue

The multiprogramming of a prototype OS might
violate the block structure control of that OS programs,
or at least, procedure call nest chains. Multipro-
gramming is established through indirectly called co-
routines, if the prototype OS and the support system
are to be regarded as an integrated program. The nucleus
determines a routine to be dispatched.

If a process calls a monitor function by invoking
supervisor call primitives, control will be passed to the
function, and will be returned again to the next point
of the invocation after process switching has occurred
several times. The activation information at the invoca-
tion might be lost if programs in different block levels
were dispatched while another process is running. The
PSW must keep this information in order to cope with
this problem.

In a contemporary programming language, the
activation information is kept in the run-time stack.
The language must be designed to have some provision
to save this information conveniently in a PSW, or a
whole stack must be kept in a PSW, and this should be
avoided. The run-time stack should be implemented
using a linked chain or a pointer so that a PSW needs

T. HAYASHI

to keep just a chain or a pointer. The run-time stack can
grow like a tree with each branch corresponding to a
process.

Another solution: the processes and monitor func-
tions of a prototype OS are all written in the same block,
and supervisor call primitive passes the label attached
to the next statement to the invocation as a parameter.
A PSW holds the label as a current value of the program
counter. Shortcomings are that the OS programs cannot
be adquately structured, no procedure is available in a
process or in a monitor function, and many labels and
““gotos” are distributed throughout the program.

(ii) Parameter passing

Parameters cannot be passed to a monitor function
from binary job programs or from processes in the usual
way as the link between a function and a program is
indirect, and is quite different from a conventional pro-
cedure call. Parameters must be reduced to pointers
referring to them, and held in activation information
with the PSW of a calling program.

In addition, there is the difficulty that user job pro-
grams and OS programs run on quite different virtual
machines (in a sense that a programming language
defines a virtual machine). Therefore parameters given
to a monitor function from user job programs and OS
processes are also quite different: binary coded data
and abstract type data.

A monitor function must determine the type of
parameters by examining the program status of calling
programs. This overhead may be a little annoying, but
the method is workable.

There can be another method, in which the support
system automatically converts the parameters from
source (calling) program type to destination (called)
program type. Shortcomings are that the data type of
parameters must be defined by the support system and
not by the OS writer, and that the life-time of parameters
must be well-known to the support system. In the
multiprogramming environment, this may be difficult.

5. Conclusion

So far a hybrid machine model for OS programming
in a high level programming language is described.
It illustrates that OS programs including the nucleus
can be written in such a language in an adequate pro-
gramming environment. This model seems to be a
good compromise between the current hardware
implementation and the programming system. It will
be of much help in exploiting the OS development
methodology.

In a sense, this model lies just in the middle of Solo/
concurrent-Pascal and Unix/C approaches. In con-
current-Pascal, the language implies the multiprogram-
ming mechanism, and an OS writer is unable to deal with
it directly. In this particular case, user jobs are restricted
to just one language (sequential-Pascal).

Simulation of a Hybrid Machine— Another Pedagogical Aid for Programming Operating Systems in a High Lavel Language 15

In the Unix/C approach, there is no such restriction,
but since the virtual machine implied by C is as low as
a real macine, the level of programming, especially in
data abstracting, also seems as low as that of an as-
sembler. Programs might also suffer from peculiarities
of the hardware such as interrupt architecture at the
cost of programming flexibility.

The hybrid machine model proposed in this paper
removes these restrictions. A language for the model
will be considered for development. Perhaps it will be
of a typeless language with chain-linked run-time stack.
This language can resolve parameter type matching,
since user job programs and prototype OS programs run
on similar, but not quite the same virtual machines.

References

1. SHiMAsAKI, M., HavasHl, T., Kitazawa, S., FURUTANI, S.,
WATANABE, M. and WATANABE, K. A Laboratory Course on Pro-
gramming in Department of Information Science, Trans. of IPSJ,
21, 2 (March 1980) 83-90, (in Japanese).

2. HayasHi, T. An Educational Project in Operating Systems
Programming Laboratory Course, Journ. of Kobe Univ. of Com-
merce, 32, 1, (August 1980), 40-55.

3. DonovaNn, J. J. and MADNICK, S. E. Software Projects,
McGraw-Hill (1977).

4. HANsEN, P. BRINCH The Architecture of Concurrent Programs,
Prentice-Hall (1977).

S. RurcHEE, D. M. and TuompsoN, K. The Unix Time-Sharing
System, Comm. of the ACM, 17, 7 (July 1974), 365-375.

(Received January 12, 1981)

