Abstraction Mechanisms Supported
by a Macro Processor

YOSHIAKI FUKAZAWA*

A macro language and its processor are described for various kinds of abstraction techniques.

1t is very attractive to support the use of abstraction in program construction by means of a general-purpose
macro processor with special facilities. For that purpose, a macro language MACLAM (A Macro Language
for Abstraction Mechanisms) has been designed and implemented. Attention of this macro language is focused

on data as well as on control.

MACLAM supports three kinds of abstraction techniques: (1) procedural abstraction, (2) data abstraction,
for which a user can define new data types, define associated operations and protect them from illegal operations,
and (3) syntactic abstraction to develop powerful mode of expressions and to give a method for sequencing
arbitrary actions. MACLAM offers a procedure and some special functions for these abstraction techniques.

The purpose of this paper is to illustrate the utilities of abstractions supported by MACLAM and to provide
an informal introduction to MACLAM through some examples.

1. Introduction

In current language design research, data abstraction
languages and very high level languages are major con-
cerns of many researchers [24]. The emphasis in both
types of languages is increasing the extent to which a
programmer may state ‘“what” is to be done rather than
the details of “how” it is to be done. The very high level
languages (VHLL) are an attempt to substantially raise
the level at which a programmer states a problem solu-
tion. The data abstraction languages have been designed
to support a methodology [6, 23}, in which programs are
developed by means of problem decomposition based
on the recognition of abstractions. The concept of
abstract data types was first implemented as a class in
the language Simula 67 [5]. Other implementations of
this basic concept have been included in many recently
proposed languages; for example, clusters in the language
CLU [13], forms in the language Alphard [17], classes
in Concurrent Pascal [8], and so on [10, 14, 22].

In order to add data abstraction facilities to an
existing programming language, some attempts have
already been made. Practically, either of the following
approaches is adopted: implementing a special purpose
pre-processor [4, 25] or modifying the compiler currently
used [1, 26].

On the other hand, various kinds of macro languages
have been developed since the middle of the 60s [3].
The advent of high level languages has not removed the
need for macro facilities. Actually, there are a number
of mucro based extensibility schemes for high level
languages [18].

Some macro languages, in which complicated macro
call statements are available, have been developed

*Department of Information Science, Sagami Institute of
Technology, Tsujido Nishikaigan 1-1-25, Fujisawa, 251, Japan.

Journal of Information Processing, Vol. 6, No. 2, 1983

[2, 16, 19, 21]. Above all, syntax-macros by Leavenworth
[12] are especially notable, since they allow a programmer
to extend the syntax and semantics of the given base
language by new statements or expressions.

It is particularly appealing for us to connect merits
of some kinds of abstraction techniques with those of
a macro processor. For this purpose, a macro language
MACLAM (a MACro Language for Abstraction
Mechanisms) has been designed. MACLAM is a general-
purpose and syntax-directed macro language, and
attention of this language is focused on data as well as
on control. The MACLAM processor is implemented
as a complete pre-processor for various kinds of base
language processors.

In the next section, we explain the goals of MACLAM
and then outline necessary facilities for them. Sub-
sequently, an informal introduction to MACLAM and
the current implementation of the MACLAM system
are described. We conclude by discussing the quality
and the efficiency of abstractions supported by macro
facilities of MACLAM.

2. Goals and Framework of MACLAM

MACLAM is a macro language intended to support
three kinds of abstractions: data abstractions, syntactic
abstractions and procedural abstractions.

To support data abstractions, the following three
facilities are essential:

(a) the facility to define new data types in terms of
primitive data types of the base language or other user-
defined data types,

(b) the facility to define operations associated with
these new data types by primitive operations, and

(c) the facility to protect defined data type objects
from illegal operations.

As regards abstract data definitions ((a) and (b)
above), in MACLAM, definitions of abstract data types,

60

definitions of operations on these new data types, and
actual operations for the variables of the created abstract
data types must be all expressed as macro call statements.
Therefore, in developing programs by means of a
programming language without data abstraction facili-
ties, first of all, a proficient programmer called a system
programmer must define a macro, which is called a
data abstraction definition macro from its nature. In
this macro definition, the system programmer must
incorporate such facilities as to generate macro defini-
tions for translating abstract data types into specified
primitive data types, to generate macro definitions for
translating operations for abstract data objects into
suitable subroutine call or function call statements, and
to modify definitions of abstract data operations into
legal subroutine definitions or function definitions of
the base language. Moreover, it specifies a syntax for
the definitions of abstract data types and their opera-
tions. In Section 3.2, necessary facilities for the data
abstraction definition macro and its example are given
in detail.

As concerns data protection, some symbol-table-
handling facilities are necessary by all means for a
complete pre-processor like the MACLAM processor.
Therefore some special macro-time functions are
available in MACLAM. These functions are usually used
in data abstraction definition macros. So it is enough
for only the system programmer to be in charge of
protection of abstract data. Detailed mechanisms for
protection will be described in Section 3.4.

That is to say, data abstraction facilities are integrated
into the base language through the data abstraction
definition macro. At the same time, it enables ordinary
programmers to define their own data types and opera-
tions in suitable form.

As the result, the data abstraction definition macro
becomes relatively complicated. According to our
experiences, it is very desirable to be able to specify
abstract data definitions in a similar fashion to the
notation of the base language. Therefore, it is usually
sufficient to define only one data abstraction definition
macro for each base language. The complexity can be
nothing serious.

The objective of syntactic abstractions is to develop a
powerful mode of expressions and to give a method for
sequencing arbitrary actions. For example, to provide
a CLU-like iterator or a REPEAT-UNTIL statement
for PL/1 (F-compiler) is syntactic abstraction.

A syntax-directed macro processor provides syntactic
abstraction facilities for a base language. A complete
syntax-directed parser is, however, time-consuming
even if an effective parser is developed. So in MACLAM,
the first symbol of a macro call statement must be a basic
symbol called a prefix macro delimiter.

For syntactic abstractions, it is necessary to specify
a syntax of the base language in advance. The syntax
notation employed here follows a BNF-like notation.

Macro languages originally aim at providing open

Y. FUKAZAWA

procedures. In addition, conventional languages support
the procedural abstraction well, through procedures or
subroutines. Therefore MACLAM does not have a
special facility for procedural abstractions except for
macro expansions.

3. Specifications for MACLAM

The purpose of this paper is to describe the utilities
of the three kinds of abstractions supported by
MACLAM in program construction, and to provide
an informal introduction to MACLAM. We do not
attempt a complete description of the language; rather
we concentrate on constructs that support the abstrac-
tions. For details, the reader is referred to the MACLAM
reference manual [15]. This manual is independent of a
base language, because of the language independency
of the MACLAM processor.

The syntax of MACLAM has been influenced by that
of PL/1 and Pascal. To illustrate the following examples,
PL/1 is selected as the base language.

3.1 Defining and Calling Macros

An example of a macro definition is shown in Fig.
1(@). It defines the REPEAT---UNTIL--- control
structure using the IF---THEN:--ELSE- - -statement
and the GO TO statements. Namely it means one of the
syntactic abstractions.

Character strings between reserved words ““ %, DEF”
and “ %BODY” are called a macro templete. *“ %, BODY"”’
starts a macro body and it continues until “ %, DEFEND”
appears.

The macro templete specifies the syntactic type and
the proto-type structure of the macro definition. Most
of the syntactic types are (STATEMENT), which is
the default type. The proto-type structure must begin
with a prefix macro delimiter. In this example,
“REPEAT” is the prefix macro delimiter. It may be a
little restrictive. But at present almost all statements of
conventional languages are assumed to commence with
fixed key-words, for example “DO”, “IF”” and “READ”.
In some languages (PL/1, Fortran, etc.), these key-words
are not reserved words, and semantics is determined by
the content. In MACLAM, this property is reserved,
because it is a syntax-directed macro language.

The character 9 starts one parameter. The parameter

RDEF <STATEMENT>
REPEAT <:ST: XS-STATEMENT 3> UNTIL ZE-EXPRESSION ;
1BODY LABELIZINDEX :
<:ST: XS 2>
IF XE
THEN GO YO LABEL2XINDEX 3
ELSE GO 7O LABEL1ZINDEX ;
LABEL2ZINDEX :
TOEFEND

(a)

REPEAT NEXT = NEXT + 1 ;
AX = MAX - 1 3
UNTIL NEXT > MAX ;

(b)

Fig. 1 Example of a MACLAM program. (a) A macro definition.
(b) A macro call statement for Fig. 1(a).

Abstraction Mechanisms Supported by a Macro Processor

consists of its name and attribute. The definer of the
macro can access the parameter by means of the name
in the macro body. The attribute must be previously
specified in a BNF-like notation or the syntactic type
of the other macro templete.

Braces, which are expressed by character pairs (:
and :) in EBCDIC, denote an occurrence one or more
times in succession. Each successive occurrence in the
macro templete is associated with a corresponding
successive occurrence in the macro body by a unique
name (a character string without a colon). This name
appears just after an open brace (or {:) and delimited
by a colon. If the correspondence is unambiguous, the
name may be omitted.

Other control structures in macro templetes are square
blackets which denote optional occurrences and vertical
strokes which separate alternatives. Character pairs
(: and :) are used as synonyms for [and] respectively.
Concerning optional occurrences, correspondences be-
tween the macro templete and the macro body are
similarly specified to successive occurrences.

In order to generate a unique symbol, the macro-time
special function %INDEX is attached to the end of a
symbol in a macro body. The facility of %INDEX is
analogous to that of &SYSNDX in IBM OS/370
assembly language [11].

Another example in Fig. 2 is a part of a macro defini-
tion. In MACLAM, macro-time variables preceded by
% must be declared explicitly in the %DECLARE
statements. The %IF statement, the % THEN statement
and so on are available macro-time control statements.
A pair of double quotation marks is used to suppress
the macro facilities.

This macro definition is called the data abstraction
definition macro according to the usage. The facilities

TDEF ABSTRACT DATA DEFINITION ;
TYPE XTYPE-IDENTIFIER = YISTRUCTURE-IDENTIFIER ZATTRIBUTE ;
31t SLABEL-IDENTIFIER : PROC {31:(XPARMI-IDENTIFIER
<323 o TPARM2-TDENTIFIER | 3>) :) (:2: SRETURNAFTRIBUTE :) 3
<:3: YISTATEMENVT-STATEMENT
END SLABEL2-1DENTIFIER ;

<

>
END ABSTRACT DATA OEFINITION ;

0DY
“ZDEF DECLARE INAME-IDENTIFIER * STYPE ;
"

TIF TSTRUCTURE = °*ARRAY®
STHEN “DECLARE INAME * SATTRIBUTE ;
mEVARIABLE (TNAME , “ XTYPE)
RELSE IF ISTRUCTURE = *STRUCTURE'
TTHEN “DECLARE 1 TINAME * TATTRIBUTE ;
#IVARIABLE (ETNAME o * STYPE) ()
TELSE “DECLARE SINAME " SATTARIBUTE
“IVARIABLE { XINAME ; * STYPE)
TEND
TEND

*SOEFEND™
RODECLARE TPARMCTR INTEGER INITIAL (1) ;
<:1: YOPERATION (XTYPE,TLABEL,IPARMCTR,IPARML))(Cf

IPARMCTR = ZPARMCTR + 1
TUIF TPARML == NULL
TTHEN "SDEF® DECLARE TPARML “ZPARMTYPE®
®YBODY™ DECLARE XPARML "XPARMTYPE™
#SOPERAND (* ILABEL,SPARML ",TPARMIYPE)" (D)
®IDEFEND®

ZEND
<32: XOPERATION(XTYPE,SLABEL,XPARMCTR, IPARM2)) "y
TPARMCTR = XPARMCTR + 1 R

%%BODY" DECLARE TPARM2 "ZPARMTYPE"
PZIPERAND (* SLABEL,SPARM2 ",TPARMTYPE)%
"IVEFEND™

“OEF" DECLARE YTPARM2 “ZPARMTYPE®] i
(D'

Fig. 2 Data abstraction definition macro for a subset of PL/1
(part).

61

of the data abstraction definition macro and the usage
of the built-in functions % OPERATION, % OPERAND
and %VARIABLE in Fig. 2 are given in Section 3.2
and 3.4, respectively.

3.2 Data Abstraction Definition Macros

Data abstraction facilities are integrated into a base
language through a data abstraction definition macro.
A system programmer defines the data abstraction
definition macro and shows ordinary programmers how
to specify new data types and relevant operations.
Fig. 2 illustrates a part of its simple example for the
subset of PL/1.

It is necessary for the system programmer to define
the data abstraction definition macro so as to incorporate
the following facilities.

(1) To generate a macro definition which translates
a defined abstract data type into specified built-in data
types. See Part A in Fig. 2. This generated macro
definition is named the declaration macro. It is called
and expanded when declarations of abstract data type
variables appear.

(2) To transform definitions of operations for
abstract data into corresponding subroutine definitions
or function definitions of the base language.

(3) To generate a macro definition which translates
operations for abstract data types into suitable sub-
routine call statements or function call statements. This
generated macro definition, which is named the opera-
tion macro, is called at operations for abstract data.

(4) To protect abstract data from illegal operations
(see Part B in Fig. 2). Detailed facilities of MACLAM
for data protection will be explained in Section 3.4.

The relation of the data abstraction definition macro
and generated macro definitions is shown in Fig. 3.
In Fig. 3, subscripts (1), (2) and (3) at arrows indicate
the above description. This relation is explained with
program examples in Section 3.3. Figure numbers in
Fig. 3 correspond to those examples.

Since specifications for data abstractions are deter-
mined by defining the data abstraction definition macro,

Data abstraction
definition macro

I YA (Fig. 2
4 %

Base language|
compiler

Declaration macro

%é; Fig. 5)

Operation macro

Source program | |
in a base
language

~ 7 MACLAM source

program programs

The MACLAM system

"> pata streams
NS R
Fig. 3 Translation process of an abstract data definition and a
source program by the data abstraction definition macro.

62

various kinds of data abstraction techniques can be made
available. For example, a system programmer can ever
provide mechanisms allowing user-defined abstract
data types to be parameterized, if necessary.

Concerning data abstractions, some error detection
facilities can be incorporated in a data abstraction
definition macro by a system programmer. For example,
when global data types of the base language (EX-
TERNAL in PL/1, COMMON in Fortran, and so on)
are specified in abstract data type definitions, warning
messages can be issued.

3.3 Definition of Abstract Data and Its Usage

A user of MACLAM may define abstract data types
which conform to a data abstraction definition macro.
One example is illustrated in Fig. 4. It defines data type
“SET” and relevant operations. The “SET” type data
object is a set of bit strings, each with an associated
element. The operations are “FULL”, “DELETE”,
“IN” and “PRINT”. For example, “DELETE” is used
to delete the first parameter from the set indicated by the
second parameter. In general, a definer of abstract data
can provide as many operations as seems reasonable.

If abstract data type “SET” is defined as in Fig. 4,
the declaration macro in Fig. 5 is generated by the data
abstraction definition macro in Fig. 2. The declaration
macro aims at replacing abstract data type “SET”’ with
built-in data type array and bit strings. The operation
macro, which translates operations on abstract data
types into subroutine call or function call statements, is
as simple of this declaration macro.

An example shown in Fig. 6 is a program to compute
prime numbers based on the algorithm known as
Eratosthenes’ sieve. The method of Eratosthenes is first
to put all numbers in the sieve and repeat the followings
until the sieve is empty: Select and remove the smallest

ABSTRACT DATA DEFINITION 3
TYPE SET = ARRAY (021000 } BIT (L } 3
FULL : PROC | SIEVE) ;
OCL SIEVE SET
DCL COUNTER BIN FIXED U 15,0) 3
0D COUNTER = 0 TO 1000 ;
SIEVE { COUNTER } = *1*8 ;

_ END
END FULL
DELETE : PROC { NUMBER , SIEVE) 3
DCL SIEVE SET 3
DCL NUMBER BIN FIXED [1540) ;
SIEVE | NUMBER) = '0°B ;
END DELETE ;
IN : PROC | NUMBER , SIEVE) RETURNS { BIT (1)) 3
DCL SIEVE ET
DCL NUMBER BIN FIXED (15,0) :
LF SIEVE (NUMBER) = "1'B

THEN RETURN (*1*B) 3
ELSE RETURN { '0°B) ;
END IN 3
PRINT 3 PRUC { SIEVE) 3
SIEVE T
COUNTER BIN FIXED U 1540 3 3
oo CUUNYER = 0 70O 1000 ;
IF SIEVE (COUNTER) = *1'8
THEN PUT LIST (COUNTER) 3
D i
END PRINT
END ABSTRACT DATA DEFINITION

Fig. 4 Example of an abstract data definition based on Fig. 2.

TDEF DECLARE INAME-IDENTIFIER SET 3
_ZBODY DECLARE INAME { 031000 ¥ BIT (1) ;
IDEFEND
Fig. 5 Declaration macro generated by the data abstraction
definition macro in Fig. 2.

Y. Fukazawa

PRIME : PROC OPTIONS { MAIN) 3
OCL TARGET BIN FIXED (1540) 3
DCL NEXT BIN FIXED { 15,0) INIT ¢ 2 2
DCL SIEVE SET
FULL [SIEVE }
DELETE { 0 , SIEVE)
DELETE (1 » SIEVE) ;
DO WHILE (NEXF <= SQRT (1000}) ;
D0 TARGET = 2¢NEXT TO 1000 BY NEXT ;
DELETE (TARGET , SIEVE) ;

END
REPEAT NEXT = NEXT + 1 ;
UNTIL IN [NEXT o SIEVE)

END ;
PRINT (SIEVE)
END PRIME

Fig. 6 Sample program for the usage of abstract data type
variables.

FULL : PRUC (SIEVE) 3
OCL SIEVE (031000) BIT (1) 3
DCL COUNTER BIN FIXED (15,0) ;
DO COUNTER = 0 Tu 1000 ;
SIEVE { COUNTER) = '1'8 ;

END
END FULL ;
DELETE : PROC (NUMBER , SIEVE) 3
OCL SEEVE

€ 0:1000) 8IT (L) 3
DCL NUMBER BIN FIXED { 15,0)
SIEVE [NUMBER) = '0'B 3
END DELETE ;
IN @ PRUC (NUMBER o SIEVE) RETURNS (BIT (1)) 3

DCL S1EVE { g:lc00) BIVT (1)
DCL NUMBCER BIN FIXED [15,2) 3
IfF SIEVE | NUMBER } = '1l'B

THEN RETURN ("1'8) 3
ELSE RETURN (*0'B) ;

END N ;

PRINT 3 PRUC { SIEVE)
OCL SIEVE € 0:1000) BET (L) 3
DCL COUNTER BIN FIXED (15,0) 3

DO COUNTER = 0 TG 1000 ;
IF SIEVE & COUNTER } = '1'B
THEN PUT LIST (COUNYER }
- END 3
END PRINT

Fig. 7 MACLAM object program for Fig. 4.

PRIME : PROC OPTIONS (MAIN)
DCL TARGET BIN FIXED { 15,0) 3
DCL NEXT BIN FIXED { 15,0) INIT (20 3
DCL SIEVE (0:1000) BIT (1 1 ;
ocL IN RETURNS t BIT (1)) 3
CALL FULL (SIEVE)
CALL DELETE (0 , SIEVE I
CALL OELETE (1 . SIEVE }
D0 WHILE (NEXT <= SQRT (1000)) 3
DU TARGET = 28NEXT TO 1000 BY NEXT
CALL DELETE (TARGET , SIEVE) 3
END §
LABELLOL :
NEXT = NEXT ¢ 1
IF IN (NEXT , SIEVE)
THEN GO VO LABEL201 ;
ELSE GU YO LABEL1O1 ;3
LAHELZOl 3

CALL F’KINI (SIEVE }
END PRIME ;

Fig. 8 MACLAM object program for Fig. 6.

number remaining in the sieve, and then step through the
sieve, removing all multiples of that number. This
program was first used by Hoare [9] to illustrate data
structuring. It contains the “SET” type data defined in
Fig. 4 and the REPEAT:---UNTIL: - statement in
Fig. 1.

The abstract data definition in Fig. 4 is translated into
Fig. 7 by the data abstraction definition macro in Fig. 2.
The program shown in Fig. 6 is transformed into Fig. 8
by the declaration macro (Fig. 5) and the operation
macros, which are generated by the data abstraction
definition macro, and the REPEAT- - - UNTIL- - - macro
in Fig. l(a). Fig. 7 and Fig. 8 are ordinary PL/I
programs, which are compiled by a PL/1 compiler.

3.4 Protection of Abstract Data
In order to protect abstract data from violations, the
MACLAM processor supports two protection tables

Abstraction Mechanisms Supported by a Macro Processor

$NESTUP RNESTDOWN $OPERATION $OPERAND

Increment Decrement

Nest-level Counter

Operation Table

Ref T Ref
Ref Ref Ref
Token-Identification $SEARCH
Block in the
MACLAM processor Ref : Reference

Fig. 9 Relation of the protection tables and the relavant opera-
tions.

(the Variable Table and the Operation Table) and five
protection functions (% OPERATION, %OPERAND,
%VARIABLE, % FREEVAR and %SEARCH). These
are abstract data types and their operations prepared
for system programmers, provided by the MACLAM
system. The relation of these tables and functions is
illustrated in Fig. 9.

Illegal operations to abstract data are divided into
two classes: violations caused by operations for other
kinds of abstract data and by built-in operations of the
base language.

In order that abstract data may be protected from
violations caused by other abstract data type operations,
the following protection mechanisms are applied by a
system programmer.

The protection tables consist of the Variable Table
and the Operation Table. The former is used to protect
abstract data from illegal operations. By means of the
macro-time special function % VARIABLE, a variable
declared as an abstract data type must be set in it. The
latter is used to examine operations for abstract data
whether they have suitable types of variables as operands.
%OPERATION and 9%, OPERAND are prepared for
registering the operation name and expected types of
operands into this table. In a data abstraction definition
macro, a system programmer must check the type of the
operands using the % SEARCH function.

A part of this protection mechanism is illustrated in
Part B of Fig. 2. When the data abstraction definition
macro is called, namely when an abstract data type and
related operations are defined, the data type name, the
operation name, the parameter names and so on are set
in the Operation Table by the protection function
%OPERATION in Part C and C’ of Fig. 2. Successively,
in Part D and D’, a macro definition is generated. This
macro definition is called when the parameter of the
operation is declared, and sets the operation name, the
parameter name and its data type name in the Operation
Table by means of the protection function % OPERAND.
Protection of abstract data from illegal operations,
which are defined for other abstract data type, is per-

63

formed after preparation like this.

In the MACLAM system, all operations to variables
whose attributes are abstract data types are expected
to be macro call statements. As regards built-in opera-
tions, type checking is performed by utilizing this
property. Namely, every token (a lexical entity) fetched
by the MACLAM processor is examined whether it is
declared as a defined data type in the Variable Table.
This part of the MACLAM processor is called the
Token-Identification Block. Moreover, a system pro-
grammer must define a data abstraction definition macro,
in which expanded text is rescanned just after operands
of the operation for abstract data. Because of the above-
mentioned mechanism, if a token which is registered in
the Variable Table is fetched by the Token-Identification
Block, the MACLAM system can recognize a protection
error caused by a built-in operation.

In addition to these, the Nest-level Counter and two
macro-time functions % NESTUP and % NESTDOWN
are provided for visibility of variables. This facility is
very important when the MACLAM processor is applied
to a base language which supports block structures.
The protection function %, FREEVAR is used in order
to delete all variables defined at the current nest level
in the Variable Table. In a base language without special
scope rules, this facility is unnecessary.

In a2 number of languages, data protection is not
perfectly performed for some kinds of data types. An
example is where a PL/1 pointer, upon which a data
structure is based, is assigned an address of a different
data structure. Applying the MACLAM system can
make perfect protection possible in such a case. In the
above case, a user can define a new pointer type which
consists of a pointer and its tag, and check the tag in an
operation of the new pointer type variable for protection.

4. Structure of the MACLAM System

Fig. 10 is a general flow of the MACLAM system.

The inputs of this system are classified into three
categories: base language definitions, macro definitions
and a source program including various kinds of
abstractions. The outputs of the system are the
MACLAM object programs, which are compiled by a
base language processor, and three output lists such as
a source list and a cross reference list.

According to their usage, macro definitions are
classified into permanent macro definitions (PMD) and
temporary macro definitions (TMD). Permanent macro
definitions consist of data abstraction definition macros,
and other system macros if necessary. On the other
hand, temporary macro definitions are called only in
the source program currently processed.

For effective processing, definitions of a base language
are classified into two levels: the lexical information
(LIBL) and the syntactic information (SIBL). Specifica-
tions of the syntactic information of the base language
are based on the BNF notation.

An ordinary programmer has only to define temporary

64

Lexical information
of the base language

of the base language

Syntactic information
(SIBL)

Permanent macro
definition (PMD}

(LIBL) \\\

=

METAL processor

< >

Internal
form of
LIBL

Lexxcal Syntactlc
ESRES /

Internal
form of
SIBL

PMD

Internal
form of

Macro definition
handler

MACLAM
source

Temporary list

(macto ackinteionfN
MACLAM processor

MACLAM source MACLAM

program cross ref
list

MACLAM
object
program

Base language
processor

Fig. 10 Structure of the MACLAM system.

macros and to write a source program. Other definitions
(i.e. base language definitions and permanent macro
definitions) are all performed by a system programmer
previously.

The lexical information (the syntactic information)
is translated into the internal form of the lexical informa-
tion (the syntactic information) in the lexical part (the
syntactic part, respectively) of the Meta Language
Processor, which is called the METAL processor.
Experiences have shown, however, that people do not
often write correct grammars. Much of the METAL
processor is devoted to the production of rather com-
plete diagnostic messages for the various error condi-
tions.

The MACLAM processor parses given source pro-
grams and macro definitions (both permanent macros
and user-defined temporary macros) into tokens under
the internal form of the lexical information of the base
language. Input texts broken down into tokens are
syntax-directedly checked whether a defined macro is
matched.

Efficiency is the most important problem for a proc-
essor which acts as a complete pre-processor to a com-
piler and utilizes the syntactic information of the base
language. It results from a syntactic analysis which is
performed twice: on the macro processor and the base
language compiler. Besides, the more flexible syntax
of macro call statements becomes available, the more
a complicated recognition algorithm becomes necessary.

As the results of above trade-off, the notation of macro
call statements described in the previous section was
fixed and the following syntactic analysis algorithm is
employed. It is founded on Earley’s algorithm [7] and
further improved by utilizing the restriction of macro

Y. FUKAZAWA

call statements: prefix macro delimiters and lexical
information of the base language.

The MACLAM processor has been implemented on
the IBM 4341 processor system in Waseda University.
It is written in PL/1 for portability.

5. Experience and Discussion

In view of our experiences, various results were
obtained.

In the beginning, we selected PL/1 as the base
language. When the MACLAM system is applied to
some base language, a system programmer must define
the syntax of the base language and a suitable data
abstraction definition macro in advance. The syntax
definition of PL/1 is so complicated [20] that we adopted
a subset. SIBL for the subset is composed of about 280
lines. Current version of the data abstraction definition
macro for this subset of PL/1 is only about 70 lines,
though it is complicated. It took about 0.5 man month
to define and test the macro. The MACLAM system
spends approximately 39 ms and 31 ms on the sample
programs in Fig. 4 and Fig. 6, respectively. Note that
our PL/1 compiler processes the programs of Fig. 7 and
Fig. 8 in 13 ms and 18 ms, respectively.

Our second target is to apply the MACLAM system
to Pascal. The syntax of Pascal is much simpler than
that of PL/1. SIBL for Pascal is composed of about
90 lines. With an effort of only 3 man day, we have been
able to define the data abstraction definition macro for
Pascal, whose size is comparable to that for PL/1. The
ease is due to the facts that the syntax of data abstraction
for Pascal is essentially the same as that for PL/1, and
that the data abstraction definition macro can be defined
independently of the base language compiler. We believe
that the more data abstraction definition macros we
define for various languages, the less effort we have to
make.

A Pascal program, which is equivalent to the program
in Fig. 6, is processed in 20 ms by the MACLAM
processor. Therefore, it turned out that the greater part
of the processing time is spent for the syntax-directed
processing.

We can not compare these results with those of data
abstraction languages, because we do not have a proces-
sor of a data abstraction language presently. But the
approach, which is to attach data abstraction facilities
to the existing language, is very useful until data abstrac-
tion languages like Ada are arailable. We also believe
that it is easier to define a data abstraction definition
macro than to develop a special purpose pre-processor
or to modify a compiler currently used. But our scheme
is maybe less satisfactory in efficiency than the others.

The experiment has also pointed up some of the
important issues to pursue in developing this scheme
further. These are categorized as follows: results from
inherent properties of macro languages, and limitations
in abstract data definitions.

MACLAM was not able to get over a number of in-

Abstraction Mechanisms Supported by a Macro Processor

herent defects of macro languages of this kind. Some of
them are described below.

(1) A macro call statement requires a prefix macro
delimiter in MACLAM. Therefore an infix operator is
not permitted on the variables of defined data types.

(2) The MACLAM processor can never detect
collisions of names of identifiers (variables, labels and
so on) in two texts expanded by the MACLAM proces-
sor or in a source program and in an expanded text.
Macro-time special function %INDEX is prepared for
this purpose. Ultimately we can find no alternate way
but to define macros carefully.

(3) Statement numbers contained in error messages
detected by a base language compiler do not correspond
to source statement numbers. A cross reference list
indicating these correspondences is given by the
MACLAM processor, if necessary.

(4) The property of MACLAM is restricted by that
of a base language. For example, MACLAM can not
support a separate compilation facility for a language
without this facility.

Other weaknesses of MACLAM are common charac-
teristics to all data abstraction languages. For example,
defined data types must be expressed by a combination
of built-in data types of the base language.

6. Conclusion

In this paper, we have described some facilities
available in the MACLAM system for the use of three
kinds of abstractions.

Our first object was to apply the MACLAM system
to PL/1, since it lacks data abstraction facilities though
it is powerful. As a result, we got a very powerful pro-
gramming language. A specification language and a
hardware description language have been implemented
in this language. Though Pascal has some data struc-
turing facilities, stronger data abstraction facilities are
obtained by the application of the MACLAM system.

Further, we want to apply MACLAM to Fortran or
Cobol. Consequently, it will be necessary to modify the
MACLAM processor for the purpose of appending a
field specification facility.

Compiler writing systems are deeply related to our
approach. Surely, simple compilers can be generated by
making a practical application of this system. But the
generated compiler would not only be less efficient but
would also have a few shortcomings in code generation
and optimization. We emphasize that many advantages
are in extending a base language, for example, to add a
data abstraction facility by a macro processor with
special facilities.

While a new language with strong abstraction facilities
is very useful, we believe that it is more practical to provide
them for a familiar language.

65

Acknowledgments

The author wishes to thank A. Nojima and R.
Yamagata for their contributions to designing and
developing the MACLAM system, and is very greatful
to K. Utsunomiya of Tsukuba University, M. Sakakura
of Waseda University and S. Iwata of Tokai University
for their helpful advices. He is also indebted to Professor
T. Kadokura for his encouragement. Finally, the com-
ments of the referees were most helpful.

References
1. BANATRE, M. et al. An Experience in Implementing Abstract
Data types, Softw. Pract. Exper., 11, 315-320 (1981).
2. Brown, P. J. The ML/1 Macro Processor, Comm. ACM.
10, 10, 618-623 (1967).
3. Brown, P. J. Macro Processors and Techniques for Portable
Software, John Wiley & Sons (1974).
4. BurTON, W. A FORTRAN Preprocessor to Support
Encapsulated Data Abstraction Definitions, Comput. J., 22, 4,
307-312 (1979).
8. DawuL, O.-J. Hierarchical Program Structures, in Structured
Programming, Academic Press, New York (1972).
6. DuksTrA, E. W. Notes on Structured Programming, ibid.
7. Earcrey, J. An Efficient Context-free Parsing Algorithm,
Comm. ACM, 13, 2, 94-102 (1970).
8. HansEN, P. B. The Programming Language Concurrent Pascal,
IEEE Trans. on Soft. Eng., SE-1, 2, 199-207 (1975).
9. Hoareg, C. A. R. Notes on Data Structuring, ibid.
10. IcHBiAH, J. D. et al. Reference Manual for the Ada Pro-
gramming Language, SIGPLAN Notices, 14, 6 (June 1979).
11. IBM OS/VS-DOS/VS-VM/370 Assembler Language, File
No. $370-21, GC33-4010-4 (Jan. 1975).
12. LEAVENWORTH, B. M. Syntax Macros and Extended Transla-
tion, Comm. ACM, 9, 11, 790-793 (1966).
13. Liskov, B. et al. Abstraction Mechanisms in CLU, Comm.
ACM, 20, 8, 564-576 (1977).
14. Musser, D. R. Abstract Data Type Specification in the
AFFIRM System, IEEE Trans. on Soft. Eng., SE-6, 1, 24-31
(1980).
15. NonmMma, A. and Fukazawa, Y. MACLAM Reference Manual
((in Japanese), Dept. of Electrical Engineering, Waseca University
1981).
16. Sassa, M. A Pattern Matching Macro Processor, Softw.
Pract. Exper., 9, 439-456 (1979).
17. SHAw, M. WuLF, W. A. and LoNDON, R. L. Abstraction and
Verification in Alphard, Defining and Specifying Iteration and
Generators, Comm. ACM, 20, 8, 553-564 (1977).
18. SovLntserf, N. and YEezerski, A. A Survey of Extensible
Programming Languages, Ann. Rev. Auto. Program., 7, 5, 267-
307 (1974).
19. StRACHEY, C. A General Purpose Macrogenerator, Comput.
J., 8, 3, 225-241 (1965).
20. URSCHLER, G. Concrete Syntax of PL/1, IBM Technical Report
TR25.096 (1969).
21. WAITE, W. M. The Mobile Programming System: STAGE2,
Comm. ACM, 13, 7, 415-421 (1970).
22, WEGBREIT, B. The Treatment of Data Types in EL1, Comm.
ACM, 17, 5, 251-264 (1974).
23, WrTH, N. Program Development by Stepwise Refinement,
Comm. ACM, 14, 4, 221-227 (1971).
24, WuLr, W. A, Trends in the Design and Implementation of
Programming Languages, JEEE Computer, 13, 1, 14-24 (1980).
25. YoOung, S. J. Improving the Structure of Large Pascal Pro-
grams, Softw. Pract. Exper., 11, 913-927 (1981).
26. ZeLkowiTtz, M. V. and LarseN, H. J. Implementation of a
Capability-Based Data Abstraction, IEEE Trans. on Soft. Eng.,
SE-4, 1, 56-64 (1978).

(Received December 23, 1981: revised December 1, 1982)

