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An Automated Debugging Method for large-scale software systems and an experiment performed to

determine its effectiveness are described.

Debugging steps performed by experienced programmers, such as analyzing memory dump lists, can be
done by machines even though there are a variety of target software. In paticular, checking data values, using
templates of data structures declared in a program, can be performed by the machine more quickly and

accurately.

The method described here consists of Data Checking Specification description Language (DCSL), Data
Checking Program Generation, and Execution History Information Compression for debugging. A prototype
system CHASE (CHecking and Analyzing System for program Errors), that realizes partial specification of
the method, was constructed and applied to two software systems (FORTRAN and COBOL compilers) in
order to perform the automatic data checking experiment. About 152 of the seeded buges, which simulate
real bugs of the compilers detected after delivery, were analyzed automatically by this experiment.

1. Introduction

Automatic testing and debugging systems [1]-{10], [12]
have been implemented making use of assertions for
compilers or pre-processors in order to accomplish auto-
matic checking. As for debugging of delivered large-
scale software, however, these assertions have the
following disadvantages:

(1) Assertions need recompiling.

(2) Run-time checking is ineffective in delivered soft-
ware. Because, assertions have been eliminated, in order
not to deteriorate runtime efficiency.

(3) Correction of assertions may degrade the original
source codes.

(4) Assertions depends on a programming language
in which source codes are written.

Our solution for these problems is to describe checking
conditions independent from source codes; Data Check-
ing Specifications, acquired by programmers during
development, are accumulated in Data Base; the specifi-
cations are utilized for automatic data checking in order
to reduce the cost of testing and debugging as well as to
give experience to maintenance programmers via the
Data Base.

After delivery, insufficient information is provided for
debugging of large-scale software systems. Only a por-
tion of the error messages from the system and memory
dump lists are usually given. Moreover, system errors
cannot be detected so quickly by the system after the ex-
ecution of abnormal codes thus debugging is difficult to
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perform through simulation of execution or backward
tracking with minimum information. Only experienced
programmers have been able to perform such difficult
debugging using the knowledge about the software which
they had acquired on their own.

2. Features of Automatic Debugging Method Using Data
Checking Specifications

2.1 Construction of the CHASE System

Fig. 1 shows a schematic overview of the CHASE
system:

(1) Describing DCSL

Source codes are statically analyzed by the compiler to
acquire program structure information, like module
construction of the system, path information and static
data structure information, which is then accumulated in
the Program Data Base (PDB).

DCSL is used to describe both dynamic data structures
and checking conditions modifying data structure infor-
mation in the PDB.

(2) Generating Data Checking Programs

Possible static relationship checking is performed on
all information in the PDB. Data checking programs are
then generated according to each data structure modified
by DCSL.

(3) Collecting Runtime Memory Information

The program to be debugged is run with the informa-
tion collecting routine that will collect necessary informa-
tion about the program’s behavior. This information is
stored in the execution history file. For the interactive
debugging mode this routine does not access the file, but
rather communicates with the terminal indicating the
current derail point.
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Fig. 1 Schematic overview of the CHASE system.

Derails can be set at entrance points and exit points of
modules, and branch points of execution path.
(4) Checking Memory Information

Finally, generated data checking programs retrieve
corresponding information from the execution history
file or directly from the current memory and will automa-
tically check each field of data structures.

A memory dump file, collected by the operating system
when a delivered software system indicates a logical con-
tradiction, is also checked in the same way.

Abnormal values will be shown with some identifica-
tions together with the symbolized data values and
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corresponding checking conditions.

Normal values can also be shown symbolically.

An abnormal value is traced backward in the execution
history file to where the derail point was set.

Source code around the derail point is then shown in
order to judge whether there is a bug or not.

2.2 Advantages

(1) Abnormal values can be checked automatically
using data checking specifications described by DCSL.
(2) Data checking specification can be added after
source code compiling. Therefore, it can be described
and/or updated independently from source codes.

(3) The history file can be analyzed by generated
programs faster than an interpretive checker, which fre-
quently refers to the PDB.

(4) DCSL is effective in delivered software through
memory dump file checking.

3. New Concepts for Debugging

3.1 DCSL

In widely used system description languages, which
are subsets of PL/I, data attribute information, like
BINARY or CHARACTER, and data structure tem-
plate information, like ARRAY or STRUCTURE, can
be collected by their compilers and accumulated in the
PDB. Then, dynamic relationships between data struc-
tures in the PDB and Data Checking Specifications for
each field of data structures are described in DCSL.
Table 1 is an example of DCSL.

(1) Dynamic Relationships between Data Structures

In large-scale system programs, the memory work
area is often used dynamically in a mixed form of list
and tree structures using templates, such as based
variables in PL/I. Such dynamic memory management,
is left to system programmers so that detailed specifica-
tions tend to differ from program to program. For ex-
ample, there are three methods of identifying the last
element of a list structure which are typically found in
large scale system program, a NULL next pointer, an
element counter, and a last element flag. Dynamic re-

Table 1 Example of DCSL.

Classification DCSL Statements
Dynamic Data Data Structure Chaining POINT
Structure List Structure Construction HEAD, NEXT, TAIL
Specifications Data Structure Concatenation CONCATENATE
Existence Indication of Work Area EXISTCOND
Dynamic Data Length LENGTH, UBV
Value Checking Data Value Range RANGE, ENCODE-CODED
Specifications Logical Relation Expression IMP, EXC
Relation between Data Values COND
Selection of attributions declared for a data CASECOND
field
Conditional Checking CHECKCOND
Comments for Data or Checking Spec. NOTE
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{a) Example of Tree structure description

SYMT.DIMTP POINT DIMT:DIMTPA=NULL;
SYMT.COMTP POINT COMT:COMTPA=NULL;
DIMT.UP POINT OONT;
DIMT.LW POINT CONT;

SymT
NEXTP >

(b) Example of List structure description

SYMT.NEXTP NEXT:STOPPER=NULL;

3
.

NEXTP NULL

|

/
/

Fig. 2 Example of dynamic relationships between data struc-
tures.

lationships, essential for analyzing the memory dump
list, are implemented as program logics distributed in
several source modules and are determined at execution
time. Therefore, they are difficult to extract from source
codes by static analysis.

The dynamic relationships describable in DCSL are as

follows:

(i) Tree structure chaining among different data
structure templates declared in source codes
Fig. 2(a) shows an example of a tree structure
description. The first line means, for example,
DIMT is pointed by SYMT.DIMTP when
DIMTP is not NULL. Underlines show
KEYWORD:s of DCSL.

(ii) List structure chaining of the same data structure
template
Fig. 2(b) shows an example of a list structure
description. ‘STOPPER =NULL’ means the last
element of SYMT is identified by a NULL value
of its NEXTP.

(iii) Overlay references to the same memory work
area by different data structure templates which
may be declared in different source modules
Fig. 3 shows an example of overlay references in
module-A and module-B using different templates
(a) and (b) respectively. These templates have
a common part (NEXTP, ID) and different
structure parts (X, Y).

(2) Data Checking Specifications

Data Checking Specifications are classified into three
groups according to their meaning. The first and the
simplest one checks the value of a data structure field. The
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Example of overlay reference description

TBL.X CASECOND:MODULE=A;
TBL.Y CASECOND:MODULE-8: where declaration of the templates
= may be:
DCL ! TBL BASED,

2 coM,

3 NEXTP PTR,

3 1D BIN,

2 OWN  CELL,

3% ...,

3Y ...,

Fig. 3 Example of overlay reference to the same work memory
area.

second checks the relationship between two or more data
structure field values. The third checks the relationship
between values and the excuting program codes. The first
and the second extend the global assertions to all the
system modules, while the third has the same meaning as
local assertions.

(i) Data structure field checking specifications
Range checking of a variable, such as an itera-
tion index or array subscript, can be specified
throughout the system. (Fig. 4(a))

System status fields usually have some discrete
value patterns. These patterns, corresponding to
the enumeration type in Pascal language, can be
defined by symbolic codes for both automatic
checking and symbolizing. (Fig. 4(b))

(ii) Relationship between plural data values

They are given as Boolean expressions such as
assertion descriptions. For example, the system
control table holds system status fields that spec-
ify other table structures and their field values.
(Fig. 4(c))

(8 SYMT.NUM RANGE (1: 7);
(b)) DOT.COLOR CODED COLORDEF;
COLORDEF CODE RED=1, BLUE=2, YELLOW=3;
(¢) CONT.I4 POINTED DIMT.UP>CONT.I4 POINTED
DIMT.LOW;
(@) TBL.ID RANGE (0: 4) :MODULE=A;
TBL.ID RANGE (5: 9) :MODULE=B;

Fig. 4 Example of data checking specifications.
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(iii) Relationship between data values and execution
status
This relationship specify more limited conditions
compared with (i) and (ii). Relationships des-
scribed in (i) and (ii) are connected with the
execution points of a specified module. Execu-
tion points are specified by a combination of
one or more line numbers, labels and a module
name.
Fig. 4(d) shows that RANGE check conditions
for TBL.ID is specified with effective module
names, A and B.

3.2 Data Checking Program Generation

Data Checking Specifications in the PDB are trans-
lated into Data Checking Programs.
(1) Automatic Data Checking

Table 2 shows a comparison of three automatic data
checking methods. Automatic data checking can be done
interpretively by referring to PDB information whenever
it is needed. For a small program with a small-scale
PDB, it is feasible and efficient to use a general purpose
interpreter. For large-scale software systems, however,
PDB access time becomes so long that the interpretive
analysis method cannot be performed efficiently. There-
fore, the generation method is introduced in our experi-
ment to solve this scale problem.

The disadvantage of the generation method is that
modification of a data structure declaration necessarily
results in regeneration. However, modifications of data
structure declaration are, considered so rare from system
integration tests that this disadvantage is assumed not to
be a problem.

Generated data checking programs are called from the
CHASE command interpreter according to user de-
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mands.
(2) Requirements for Generated Programs
Generated program functions consist of (i) table ad-
dressing in the memory dump file, (ii) tracing pointer
relations between data structures, (iii) data value check-
ing and (iv) printing the results.
(i) Addressing
Table names demanded should be translated into
memory addresses. It is not possible to address
all tables directly, but addressing common or
external tables is possible. Other tables are
accessed by tracing pointer relations.
(ii) Table relation tracing
Pointer relations have been given by DCSL.
They are used for table tracing from the tables
described in (i).
(iii) Checking
Each value in the data structure field is checked
by the conditions described in DCSL according
to the data structure.
(iv) Printing
Each value is symbolized and printed with error
flags, if there are any. All data structures and
their values can be printed if necessary. Fig. 5
shows an example of Symbolized Debugging
Information.
Header lines show the information identifica-
tions: the first line shows the execution history
information file name and the derail point identi-
fications; and the second line shows the table
name and its address. These are given by an oper-
ator except the table address. The table address is
translated from the table name, ICCT, automati-
cally. The fourth line shows the titles for each
column. FLG and L mean flag and data structure

Table 2 Comparison of data checking methods.

Method | Data Checking Program Generation Data Checking Interpretor Run-Time Assertion
Item
Description of Register the DCS by DCSL Describe in the Source Program by
Data Checking Programming (Assertion)
Condition Language
The Time for Checking Program Generation Time Analyzing Time Run-Time
Data Chceking (Run-Time or Postmortem)
Condition
Reference
Effective Range The Whole System In the Module
of Checking
Checking PDB Modification and Re-Genera- PDB Modification Modification of Assertion
Condition tion of Checking Program Statements and Re-Compiling
Modification
Applicability Because of independency, the Efficiency does not change Because of redundancy the
for delivered Efficiency decreases
Software
Checking Ability | The Whole Memory through the whole execution time can be checked Only Variables, which are described

by Assertion Statements, are
checked
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Fig. 5 Example of error flags and symbolized data values.

level.

The function of (i) as well as (ii) is realized as one
generated program for each software system. These func-
tions may be altered according to the needs of the operat-
ing systems. The functions of (iii} and (iv) are generated
for the data structures; their checking specifications are
described in DCSL.

The top address of the data structure and the dumped
memory are input into the generated program. The
symbolized data values and error diagnosis messages
are output from it.

The checking and printing functions have same simple
patterns for all data attributes. Taking advantage of such
features of a generated program, these patterns are
precoded as macro-skeltons. Generation can be done
easily combing these macro-skeltons and data checking
specifications according to the data structure and its
attributes. An example of a macro-skelton described in
SYSL-macro language [15] and a part of a generated
program corresponding to it are shown in Fig. 6.

0U0010 %JIRANGE : PROC(EP1.#P2, #P3)
020020 *DCL (#P1, #P2, #P3)  CHAR :

1uuoozo *IF #P3 = '' XTHEN %D® 3

10040 TF #P1 ~= %P2 THEN D@ 3
LIZ00S0 BIERTLO = "E3” ¢
000060 END 3 -

anoe7o %t NL
000uao

~LLSE %Da ¢
000090
500610

1F (WP ( #P2) ' (#P1 ) #P3) THEN DO :]
#FERFLG = "E3' =
GC0110 END s |

0.0 X=ND 3
GOGIT0 XEND

~»Skelton parts

(a) Example of MACRO-SKELTON for RANGE checking

Macro call statements

’EBBRQNGE(ICET TYPEG, O e

Q0S5 —
[ 1YPEIA ~= O THEN DB 3 1

{,3353‘3 q;gun,u | Generated source statements
ran260 / by a macro, @ERANGE
000380 uamu E1 lccr [ T T —

000390 TF CICCT.MODE (1) * (ICCT.MBDE 5 Z2) THEN DB :

000s0N #IERFLG = 'EJ’

000410 END ¢

(b) Part of Generated Data Checking Program

Fig. 6 Example of data checking program generation.

3.3 Collecting and Compressing Execution History
Information

(1) Derail Points

Derail points are set at every entry and exit point of a
module as well as every source code level branch point of
execution paths in a module. A derail point is identified
by a module name and a statement number of the source
program. Derail point information is also accumulated
by the compiler in the PDB in order to support source
code level debugging.

As for the proto-type CHASE, the compiler generates
routine calling codes for the information collecting rou
tine with a parameter set of the module name and the
statement number.

(2) Postmotem Debugging Mode

Usually, a module or function of a module changes a
small part of the whole work area. Therefore, it is not
necessary to collect the whole memory dump every time
the memory collecting routine is called. Only all the
differences in the whole work area between now and the

“last time it was called are needed, with the initial whole

Whole Work Area of the Program
to be debugged

Fig. 7 Image of execution history information compression.
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memory as the basement. Fig. 7 shows the image of the
compression principle.

Crosshatched sections contain all the memory infor-
mation to be collected: Delta-1 shows changed memory
area at time T-delta-1 compared with that at T-base.
Base memory information and Delta-1 are sufficient
complete information for T-delta-1. Similarly complete
memory information at T-delta-n is reconstructed using
all Deltas 1 ~n.

Compressed Execution History Information consist of
Base memory information and all Delta-n information
including control information such as derail point identi-
fication, data addresses and lengths. The information
collecting and referring routine keeps the current work
area in a work file for efficient processing. To extract
Delta-n information, the routine compares the current
memory information with the work file. For forward data
flow tracing of the execution history file, Delta-n infor-
mation is overwritten on the work file at T-delta-n+ 1.
Backward tracing can be realized easily in the same way:
Delta-n— 1 information is overwritten on the work file at
T-delta-n in this case.

An experiment performed on a compiler shows that the
execution history file can be compressed by 1/2000.

It is not possible to collect only changed variables
described in source codes [14], when pointer variables
are used for memory management. Because an incorrect
data setting using an incorrect pointer value may result
in destruction anywhere in the work area, in this case the
whole work area should be collected for efficient de-
bugging.

(3) Interactive Debugging Mode

The information collecting routine communicates with
the terminal at the first derail point. If the interactive
debugging mode is selected by the operater, it requests
debugging points as a set of derail points. At the derail
point, current memory is analyzed by data checking
programs by order of the operater.

4. Experiment and Evaluation

An experiment on our method has been carried out. A
prototype CHASE system was constructed and applied
to two compilers (FORTRAN and COBOL) in order to
evaluate the Automated Data Checking Method. The
two compilers used were from a Commercial Time
Sharing Service.

4.1 Scope of the Experiment

(1) DCSL

Relationships between different data structures were
not supported, mainly because of generation difficulties.
Internal data in each module were not able to give check-
ing specifications, because the PDB size would have be-
come too large.
(2) Generation

Generation was achieved to the macro facility in the
system description language. Therefore, generated check-
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ing programs should be compiled into object programs.
Source code generation has the advantage of being capa-
ble of being modified before being compiled. However,
throughout the experiment, no modifications were
required. Therefore, it is better to generate object pro-
grams directly in order to reduce handling.
(3) Execution History Information Handling

The differential memory dump collecting routine is
implemented to compress the file size. Any data values
at any derail points can be restored to the original state.
It is possible, of cource, to trace differences which show
the data flow from the original value to the last value with
the execution points where the value is changed. Derail
points were inserted as parts of the object code by the
compiler.

4.2 Experiment

(1) Evaluation Criteria

The evaluation criteria for the experiment were as
follows:

(i) Preparation costs for automatic debugging

(i) Automatic detection ability of abnormal data

value
(2) Seeding and Detecting

Fifty bugs simulating real bugs were seeded into three
modules of the FORTRAN compiler and two of the
COBOL compiler. Simulation was done so as to make
the seeding easy. Bugs were seeded to cause abnormal
compiler endings (20), incorrect compiler messages (17),
and abnormal object code production (13). The
simulated bugs were selected from the bugs that were
analyzed to cause abnormal data value somewhere in
the program. Such bugs constitute 449 of all bugs
which have been reported after delivery for the sample
systems.

Module names were known to two debuggers who had
no special knowledge of these compilers. Debuggers were
given the source code lists and the corresponding table
specifications for the modules. They collected the execu-
tion history file and called the generated data checking
programs interacting with the CHASE command inter-
preter in order to detect abnormal data values.

(3) Preparation Costs for Automatic Debugging

About 19 of the total development cost of the sample
compilers was needed for development of the automatic
debugging by the prototype CHASE system. Develop-
ment costs may be neglected, because they are lower than
the costs of making dump routines by hand. For the sam-
ple compilers, dump routines for external tables were
made by hand in their development phase. They are
generated automatically in the CHASE system.

(4) Ability of Detecting Abnormal Data Values

Abnormal flags were shown by the system for 17 bugs
out of 50. These 17 bugs constitutes 159, of all reported
bugs of the sample systems. Another 29 bugs would have
been flaged if a full-set DCSL was implemented and
enough specifications were given. It means that detection
ability of the CHASE will highten to 40 % for the sample
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compilers by the full specification of this method.

Because a large amount of detailed information is
required to find the remaining four bugs, it is th ought to
be difficult to do this automatically. It is unaccep table to
describe DCSL for every source statement about every
data structure.

5. Conclusions and Future Projects

An automated debugging method for large-scale soft-
ware systems based on the Data Checking Specifications,
as well as an experiment conducted on the method, are
described. Data Checking Specifications are given to the
Data Structure in order to provide the experience and
knowledge of development programmers. Data Check-
ing Programs are then generated for each Data Structure.
Three types of memory information are applicable to
these automatic Data Checking Programs: Compressed
Execution History File, Current Memory at an execution
derail point and Memory Dump File produced by an
operating software system. The method is effective for
both development and Maintenance Phases.

The Experiment, performed on two software systems
(compilers), shows that the method is effective for bugs
that cause abnormal data values.

Future projects are as follows:

(1) DCSL Extension: Relationships between plural
data structures will be achieved combining Generation
and Interpretive Methods.

(2) Application to Ada Programming Support En-
vironment: Some DCSL descriptions for dynamic data
structures may not be necessary, because the Ada lan-
guage specification makes it possible to collect this
information through the static source code analysis. This
improvement will cause the PDB to increase in size,
where nested-type information will accumulate. A size
reduction should be realized soon thereafter.

(3) Man-Machine Interface improvement: Input-
Output operation of the CHASE system will be refined
using CRT-display terminals and other hardware.

Operation steps such as Generation handling will be
simplified.

(4) Derail point setting methods using hardware
interruption without object code insertion will be im-
plemented soon.
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