A New Synchronization Mechanism called
“Forcing Expression” and its Implementation

KivosHr SEGAwWA*

A new synchronization mechanism—forcing expression—is proposed. Forcing expressions describe the
behavior of critical sections by denoting the allowable combinations of processes and data concerning the sections.
and cooperation problems can be treated equally be forcing expressions. Forcing expressions are high level
synchronization mechanisms, but can be implemented by simpler synchronization primitives such as binary
semaphore, cause/await and enq/deq operations. The definition and the implementation details of forcing ex-

pressions are described.

1. Introduction

Forcing logic is proposed to describe synchronization
properties of critical sections in Process-Data Represen-
tation (PDR) [3, 4, 5, 6]—a specification method for
parallel processings. Forcing expressions are defined as
formulae in forcing logic.

Forcing expressions denote the allowable combina-
tions of processes and data concerning the critical
sections. Combinations are specified in terms of “at
most . .. of” and/or “at least . . . of .

Forcing expressions can neatly represent exclusion
and cooperation of processes, the key issues of syn-
chronization, even in an equal manner. For example,

(A, B, C: 155D, E): 2

shall be read that at most one of the processes A, B or
C can perform their critical section CS as to (at least
2 of) the common data D and E, and therefore specify
mutual exclusion among A, B and C.

(A, BY: 25Dy 1

shall be read that all (at least 2) of A and B should
perform their critical section CS as to (at least 1 of)
the common data D at the same time, and therefore
specify cooperation among A and B.

Forcing expressions are truely high-level synchroniza-
tion mechanisms. Using them, synchronization opera-
tions of critical sections can be specified (programmed)
independently of others, e.g. contents of the sections.
When we have to use low-level primitives such as
semaphores, we should spread synchronization opera-
tions over the whole programs, leaving the programs
unstructured with spaghetti of P’s and V’s. We could
write programs in a more structured manner if we use
higher-level constructs such as monitors, but we are not
yet free from low-level primitives such as signal/wait
operations as well as from other mechanisms, e.g.
waiting queues.

*Department of mathematics, Waseda University, Tokyo, Japan.

Journal of Information Processing, Vol. 6, No. 3, 1983

The philosophy and the function of PDR are described
in [6] and the implementation of forcing expressions is
also roughly sketched.

We designed and implemented a parallel programming
language called PDRL (Process-Data Representation
Language) based on PDR principles, and forcing ex-
pressions play the key role as a synchronization mech-
anism in PDRL [9]. However, it is too complex to
implement all functions of forcing expressions. Especially,
as explained in section 3.2, the data-sides (the right-hand
sides of the arrow) of forcing expressions contain some
non-determinisms and these non-determinisms are not
easy to be realized. Moreover, the rough sketch in [6],
which describes the implementation of the process-sides
(the left-hand sides of the arrow) of forcing expressions,
is only a guide line and it contains several problems if
we concretely implement both cases in which forcing
expressions contain “‘[...]” and/or “{...)" nested
and multiple forcing expressions are specified for one
critical section. So, we place some restrictions on
forcing expressions, but these restricted forcing expres-
sions used in PDRL are as effective as the original ones.

In this paper, we describe the implementation of the
forcing expressions in PDRL by using simpler synchro-
nization primitives: forcing expressions can be translated
into combinations of binary semaphores, cause/await
[1], and enq/deq operations [2, 7, 10] in a systematic
way. We also show that forcing expressions, which are
high-level and powerful synchronization mechanisms,
are realizable.

2. Definition of Forcing Expressions

Forcing expressions are constructed of the names
of the critical sections and the allowable combinations
of processes and data specified by forcing operators.
In this paper, forcing expressions are defined infor-
mally. The formal definition is shown in [5, 6].

2.1 Forcing Operators

Forcing operators generate a family of subsets from
the given set as follows:

142

[xy, ..., x,): k generates the family of subsets, whose
cardinalities are not more than k, of
{xla ey X,,},

{Xy5 ..., X k generates the family of subsets, whose
cardinalities are not less than k, of
{xh R] xn}:

where k is an integer constant and called as the suffix

of the operator.

Example 1.
[x,,2]: 2
={¢, {x}, {»}, {z}, {x. y}, {0, z}, {z, x}}.

Example 2.
p,g,r>:2
={{p. 9}, {g, r}, {r. P}, {p. 4, r}}.
Forcing operators can be used within other forcing
operators. If nested forcing operators are used, we
apply the inner forcing operator first.

Example 3.
[(rp I'2>: la W]I 1
=[{rl}’ {’z}, {rl’ ’2}: W]: 1
={¢1 {rl}’ {’z}a {rl: r2}9 {W}}.

2.2 Forcing Expressions

A forcing expression is defined as the following for-
mula:

A-L.B 0
where A and B are sets specified by forcing operators,
and P is the name of an operation. Forcing expression
(1) means that an element of A does the operation P
to an element of B. If A is the family of sets of processes,
B is the family of sets of data, and P is the name of a
critical section, then (1) means that a set of processes
enters the critical section P and uses a set of data
within P.

The left-hand sides of forcing expressions may be
called process sides and the right-hand sides may be
called data sides.

Simple forcing expressions are forcing expressions in
which forcing operators are not nested.

Let us consider the following forcing expressions
containing forcing operators on process sides:

Bps - - v s X.]: k——B, @)

gy ey X k=B, 3

From the definition of [. ..]: k, the process side of (2)
is the set

X\ Xc{x,...,x,) & X<k})}

where X denotes the cardinality of X. Then, the meaning
of the forcing expression (2) turns out to mean that
an element of (4) does the operations P, and this may be
said as “at most k processes out of {xy,...,Xx,} can
do the operation P (to an element of B)”. By the same

K. Secawa

way, the meaning of the forcing expression (3) turns
out to mean that *““az least k processes out of {x,, . .., x,}
should do the operation P”. So, the forcing operator
[...] may be called ‘“at most operator” and (...)
may be called “at least operator™.

Note that forcing expressions might specify that only
¢ does the operation if ‘“‘at least operators” whose
suffixes are 0 or “‘at most operators” appear on the
process sides. Such a case—¢ does the operation—can
be regarded meaningless, so it is ignored in the following
discussions.

We can also define the meanings of forcing expressions
containing forcing operators on data sides.

In this paper, we assume that the name of a process
or a datam does not appear more than once in one
forcing expression.

2.3 Examples

Some specifications for typical synchronization prob-
lems are shown using forcing expressions.

Example 1. Readers’ and writer’s problem.

Let R, and R, represent two readers, W represent
the writer, FILE represent the shared file to be accessed,
and ACCESS be the name of the critical section. Then,
the specification of this problem can be written as
follows:

[[Rx, R,): 2, W]: 1ACCESS
The concrete description of the critical section
“ACCESS” is out of the scope of this paper, but it might
look like the following:
process R, :
/* program of process R, */

(FILE): 1.

ACCESS:
begin
/* description of critical section */
end;

end.
Process R, and W also contain the critical section
“ACCESS” in the same manner.

Example 2. Dining philosophers’ problem.

Let PH, (i=1,...,5) represent the philosopher i,
F; (j=1,...,5) represent the fork j, and EAT be the
name of the critical section (in which philosophers eat
spaghetti). Then, the specification of this problem can
be written as follows:

EAT

[PH,): 1—(Fy, F,):2
EAT

[PH,]: 1— (F, F3): 2
EAT

[PH;): 1—(F3, F4): 2

AT
[PH,): 1225¢F,, Fyy: 2

A New Synchronization Mechanism called * Forcing Expression™ and its Implementation 143

[PH,): 1221¢F,, F,): 2

[PH,, PH,]: 152T¢F,>: 1
[PH,, PH,]: 122T(F,>: 1
[PH,, PH,]: 1EAT(F)1 1
[PH,, PH,): 1EAT(F,>: 1

EAT
[PH,, PH,]: 1= (F,): 1.

3. Implementation

Forcing expressions can be implemented by simple
synchronization primitives—binary semaphore, cause/
await [1] and enq/deq operations [2, 7, 10].

Forcing expressions are translated into initialization
parts, prologues and epilogues. At first, the translator
for forcing expressions generates initialization parts
for all of the forcing expressions and places them in the
initialization process, which is used to initialize the
whole program. Then the translator processes each pro-
gram for each process. If it finds a critical section, it
generates a prologue and an epilogue based on the
forcing expressions corresponding to the section. The
prologue and the epilogue serve as the front guard and
the rear guard of the critical section respectively.

We show one particular implementation for process
sides of forcing expressions. Implementations for data
sides can be omitted under some reasonable restrictions.
We explain this reason in the last section.

3.1 Implementation of Process Sides of Forcing Expres-
sions
3.1.1 Translations of Simple Forcing Expressions
The process side of the simple forcing expression

A,..]1: kS

is translated as shown in Fig. 1 (A is the process with
which the translator deals).

P/V operations are ordinary binary semaphore
operations which operate on “b_sem” and “wait_
queue”, and CAUSE/AWAIT operations are variants
of Brinch Hansen’s cause/await operations [1] which
operate on ‘“wait_queue” and ‘“‘event_queue”. He
separates “‘event-queue” from the semaphore, but we
extend the semaphore to include ‘“‘event_queue”. If a
process executes “AWAIT” operation in the prologue
surrounded by P/V, the process will release the ownership
of the prologue (i.e. execute V operation), block itself
and enter into the event_queue. When the other process
executes “CAUSE” operation for the same semaphore,
all of the blocked processes will be moved from the
event-queue to the wait-queue and wait for V opera-
tion. When the process resumes its execution, it will
resume from the (last executed) P operation (the first
line of the prologue).

If only one ‘““at most operator” (without nestings) is

s: the counter for the forcing operator [. . .}
sem: the extended binary semaphore for the critical section CS,

whose type is
type extended _binary _semaphore=
record
b_sem : binary semaphore;

wait_queue : queue;
event_queue: queue

s:=k;
sem. b_sem:=1;
sem. wait_queue:=empty;
sem.event_queue:=empty;
prologue:
P(sem);
if s>0 then s:=s—1
else AWAIT (sem)
fi;
V (sem);
critical section: CS;
epilogue:
P (sem);
si=s+1;
CAUSE (sem);
V (sem);

Fig. 1 Translation of at most operator.

used, a counting semaphore is enough to implement it.
We implement ‘‘at most operators™ by the rather little
bit complex way shown in Fig. 1 because we use nested
forcing operators and multiple forcing operators. These
things are described in the following sections.

For “at least operator {...)»”, the type inverse
semaphore is prepared (Fig. 2).

The process side of the simple forcing expression

(A,...):kgs—»

is translated as shown in Fig. 3.

3.1.2 Translations of Nested Forcing Expressions

For nested forcing operators, we must notice that the
processes contained in the inner forcing operator are
regarded as one process for the outer forcing operator.
For example, if the forcing expression is

(A, B,[C, D, E: 2): 3.5,

the processes A, B and one of the elements of [C, D, E]: 2
are needed to execute the critical section CS (from
the discussion in section 2.2, ¢ is not considered as an
element of [C, D, E]: 2). On the other hand, the processes
B, C and D, for example, can not execute CS because two
processes C and D belong to the same element of the
outer operator.

type inv_semaphore=

record
counter : integer;
init : integer;
wait_queue: queue
end

Fig. 2 Type inverse semaphore.

144

s: the inverse semaphore for the forcing operator <. ..)
sem: the extended binary semaphore for the critical section CS
(it may be an ordinal binary semaphore in this case)
initialization part:
s. counter:=k;
s. init:=k;
s. wait_queue:=empty;
sem. b_sem:=1;
sem. wait_queue:=empty;
sem. event_queue:=empty;
ENQ (s. wait_queue, EXCLUSIVE);
prologue:
P (sem);
s. counter:=s. counter—1;
if s. counter=0 then
DEQ (s. wait_queue, EXCLUSIVE)
fi;
V (sem);
ENQ (s. wait_queue, SHARED);
critical section: CS;
epilogue:
P (sem);
DEQ (s. wait_queue, SHARED);
s. counter:=s. counter+1;
if s. counter=s. init then
ENQ (s. wait_queue, EXCLUSIVE)
fi;
V (sem);

Fig. 3 Translation of at least operator.

“ENQ” is an enqueue operation and “DEQ” is an dequeue
operation. ENQ/DEQ and programs (prologue/epilogue) are ex-
plained briefly in the appendix.

To implement such a situation, we must distinguish
whether or not a process is the first/last one to enter/
exit the critical section among processes belonging to
the same (inner) forcing operator. In the above example,
suppose that the process C attempts to execute CS.
The condition specified by the inner forcing operator is
checked, that is, the prologue for the inner forcing
operator is executed. Only when the process C is the
first one to enter CS among C, D and E (i.e. the processes
D and E are not executing CS), is the prologue for the
outer operator executed. On the other hand, suppose
that the process C attempts to exit CS. The epilogue
for the outer operator is executed only when the process
C is the last one to exit CS. Of course, the epilogue for
the inner operator is always executed.

So, the additional counter of the inner forcing operator
is prepared and used in the prologue and epilogue for
the outer forcing operator. v

To generate the prologue for nested forcing operators,
we generate the prologue for each of the forcing oper-
ators from inside to outside.

This sequence of prologues has a number of P’s, V’s
and ENQ’s (the last operation in the prologue for at
least operator). The sequences of “V;P;” are not
necessary, so they can be removed. Here, recall that it
is the P operation from which the process executed
AWAIT operation will resume its execution. So, before
the AWAIT operation will be executed, all counters
decremented/incremented after the last P operation

K. SeEcawa

must be reset to the former values.

The epilogue for nested forcing operators is generated
in the same way. If there are more than one CAUSE
operations, all but one are removed. Thus, the epilogue
has only one pair of P and V, and (at most) one CAUSE
operation.

In the prologue, the part from one P operation to the
next V operation and the following ENQ operation
(if it exists) is one prologue unit, in which there are, in
general, a number of prologues for at most operators
and after those there is one prologue unit, at least operator.
Then, a prologue unit corresponds to the set of some at
most operators and one at least operator. A typical
example of such a set is

A A, .. Jiky . Dk ks, 0]

A set of forcing operators like (5) is one of the general
nested forcing operators. So, we use the translation for
(5) to show how to use additional counters and how to
reset counters when AWAIT operation is executed. The
translation of (5) is shown in Fig. 4.

3.1.3 Translations of Multiple Forcing Expressions

Multiple forcing expressions can be specified for one
critical section such as Dining Philosophers’ Problem
in section 2.3, and a process can enter the critical section
if all conditions specified by forcing expressions are
satisfied.

We generate all prologues and epilogues for all
forcing expressions as before.

If possible, it is best to execute all prologues/epilogues
simultaneously. Note that, in Fig. 5, unit A-1, B and C-1
can be executed simultaneously if AWAIT operations
and ENQ operations are executed correctly. (i.e. when
AWAIT operation in unit B, for example, is executed,
execution of units A~1 and C-1 will be suspended as if
AWAIT operation in units A-1 and C-1 are executed.
For example, if ENQ operation in unit A-1 is not
completed but unit B and C-1 are completed, executions
after units B and C-1 will also be suspended. Recall
also that an execution of AWAIT operation causes
counters to reset.

This is accomplished, if unit A-1, B and C-1 are
merged into one unit and special attention is paid to
AWALIT operations (and mechanisms to reset counters),
as well as gathering parts for at least operators and
ENQ operations at the rear of the unit. Units A-2 and
C-2 are also merged. All epilogues are merged and un-
necessary CAUSE operations are removed. Finally,
there are one prologue and one epilogue. Thus, all
prologues/epilogues for multiple forcing expressions
are supposed to be executed simultaneously.

3.2 Comments on Data Sides of Forcing Expressions

One restriction imposed is that we can only use the
forcing operator {d,,...,d,>: m (the suffix must be
same as the number of elements and nesting is not
allowed) on the data sides of forcing expressions. With-

A New Synchronization Mechanism called * Forcing Expression™ and its Implementation 145

s : the counter for the innermost forcing operator

s, the counter for the outermost *“‘at most forcing operator™
8y+1: the inverse semaphore for the “at least forcing operator’
c;: the additional counter (i=1, ..., n)
sem: the extended binary semaphore for the critical section
initialization part:

s :=k,;

Spi=Ky;
Sp+1. COUNtEr =Ky, y;
Spe1. MNit:=Kpyy;
S,4+ 1. Wait_queue:=empty
c:=0(i=1,...,n);
sem. b_sem:=1;
sem. wait_queue:=empty;
sem. event_queue:=empty;
ENQ (544 1. wait_queue, EXCLUSIVE);
prologue:
P (sem);
if s, >0 then s, :=s,—1
else AWAIT (sem)
fi;
if ¢, =0 then
if s;>0thens,:=s,—1
else
Sy i=85;+1;
AWAIT (sem);
fi
fi;
cii=¢;+1;
if c;=0 then
if s3>0 then s3:=s;—1
else
ci=¢;—1;
ifc,=0thens,:=s,+1 fi;
s;i=85;+1;
AWAIT (sem)
fi
fi;
cyi=cCy+1;

if c,— ;=0 then
if 3,>0 then s,:=s,—1
else
Camzi=Cp_2—1;
ifc,..o=0Othens,_,:=s,_,+1fi

cyi=¢y—1;
ifc,=0thens,:=s,+1fi;
s;i=8;+1;
AWAIT (sem)
fi
fi;
Cao1i=Cp1+1;
if c,=0 then
Sa+1. COUNtEr:=§,,,. counter—1;
if s,+ (. counter=0 then
DEQ (84 +1. wait_queue, EXCLUSIVE)
fi
fi;
Cpi=Cpt1;
V (sem);
ENQ (s,+;. wait_queue, SHARED);
critical section: CS;

epilogue:
P (sem);
S;i=s8;+1;
ci=¢;—1;

ifc;=0thens,:=s,+1fi;

Ca—1:=Cp_1—1;

if c,— =0 then s,:=s,+1 fi;

DEQ (s.+ 1. wait_queue, SHARED);

Cri=Cp—1;

if c,=0 then
Sp4 1. COUNtEr:==s,, . counter+1;
if s, 1. counter=s, ., ,. init then

ENQ (8,+,. wait_queue, EXCLUSIVE)

fi

fi;

CAUSE (sem);

V (sem);

Fig. 4 Translation of nested forcing expression.

prologue A prologue B prologue C
P P P
unit unit unit
A-1 B C-1
v v \')
ENQ ! EN
l [
P P
unit unit
A=2 C-2
v

)
\ ENQ

[crITICAL SECTION |

epilogue

v v v

Fig. 5 Ideal execution flow of prologue and epilogue for 3 forcing
expressions.

out this restriction, there exists some non-determinisms.
For example, if the data side is {(d,, d,, d3): 2, the proc-
ess must check which data—d, and d,, or d, and d,,
etc.—are available in the critical section at run time.
We think such non-determinisms are interesting but
not necessary.

Under the restriction, you can regard acquiring all
of the data d,, ..., d, and entering the critical section
as the same thing, so it is not necessary to deal with
data sides of forcing expressions if process sides are
translated properly. The informations in the data sides,
however, must be used for checking (e.g. correct ac-
cessings to data) by the translator.

4. Discussion and Future Work

Forcing expressions can have several implementations

146

(interpretations) and only one of them is shown in this
paper.

Two forcing operators [[A, B]: 2, C]: 1 and [{A, B):
0, Cl: 1 generate the same set {¢, {A}, {B}, {A, B},
{C}}, but they have different translations. We adopt
such an implementation because we want to express the
differences among the nuances of two forcing operators
[...] and {...). There is, of course, the other im-
plementation by which two forcing operators have the
same translations if they generate the same set.

In order to show the correctness of the implementa-
tion and the equivalence among several implementa-
tions, we must formalize forcing logic more precisely.

We showed it is not necessary to implement data sides
in section 3.2, but we would like to implement them
and use non-determinisms in programs. The rough
sketch of the implementation for data sides is shown in
[3]. To implement data sides, however, more considera-
tions are needed about the mechanisms of deciding the
available data.

5. Conclusion

Forcing expressions are synchronization mechanisms
which have the following characteristics. They are
1. able to treat exclusion problems and cooperation

problems in the same manner,

2. high level mechanisms—they specify synchroniza-
tion operations separately from descriptions of
critical sections,

3. practical—they can be implemented.

Forcing expressions are powerful, but not sufficient
for describing easily the transitions of states. To sup-
plement it, process expressions [8) are used with forcing
expressions in our PDRL implementation on DEC-
SYSTEM-20 [9].

Acknowledgments

The author thanks Ken Hirose and Norihisa Doi
for discussing with him. He also thanks Hiroyuki Bando
and Haruyoshi Noda for helping him to implement
forcing expressions. Thanks are also due to Katsuhiko
Kakehi for his helpful comments.

References

1. Brinch Hansen, P. Operating System Principles, Prentice-Hall,
1973.

2. DEC. TOPS-20 Monitor Calls Reference Manual, Digital
Equipment Corporation, 1980.

3. Doi, N. “At most” and “at least” operators are useful for
specifying parallel processings, Reports of Summer Programming
Symposium 1981, (Jan. 1982), 82-92 (in Japanese).

4. Hirose, K., Saito, N., Doi, N., Segawa, K. et al. Process-Data
Representation, Proc. of 3rd USA-Japan Computer Conference,
(Oct, 1978), 225-230.

5. Hirose, K., Saito, N., Doi, N., Segawa, K. et al. Forcing Logic
in Process-Data Representation, Technical Report KIIS-79-01,
Institute of Information Science, Keio University, 1979.

6. Hirose, K., Saito, N., Doi, N., Segawa, K. et al. Specification
technique for parallel processing: Process-Data Representation,
Proc. of AFIPS 1981 National Computer Conference, AFIPS Con-
ference Proceeding, Vol. 50, (May 1981), 407-413.

K. SEGAWA

413,

7. IBM. IBM System/360 Operating System: Supervisor and Data
Management Services, IBM Corporation, 1967.

8. Lauer, P. E. and Campbell, R. H. Formal Semantics of a Class
of High-Level Primitives for Coordinating Concurrent Processes,
Acta Inf. (1975), 297-332.

9. Segawa, K., Bando, H., Noda, H., and Doi, N. A specification
language for parallel processings and its implementation, WGSE
Preprints of IPSJ, No. 22, (Feb. 1982), 67-72 (in Japanese).

10. Shaw, A, C. The Logical Design of Operating Systems,
Prentice-Hall, 1974.

Appendix

ENQ/DEQ are the operations for managing first-in
first-out queues. The basic algorithms of ENQ/DEQ
operations are shown in Fig. 6. Some error-handlings
are omitted here.

Note that the first argument of ENQ/DEQ operations
is a record of two queues, but, in Figs. 3, 4, that record is
treated as one queue.

The roles of ENQ/DEQ operations are explained for
the simple forcing expression

(A, B, CY: 25

Let s be the inverse semaphore and sem be the ex-
tended binary semaphore.
The initialization process initializes as follows:
s. counter: =2;

type proctype=(EXCLUSIVE, SHARED);
Q=record
tq: queue of proctype;
Pq: queue of process
end;
procedure ENQ (var q: Q; var t: proctype);

enter t into q. tq;
if there is more than one elements in q. tq then
if not (t=SHARED and
all of the elements in q. tq=SHARED) then
inactivate current process and
enter it into q. pq
fi
fi

end;
procedure DEQ (var q: Q; var t: proctype);
begin
var p: record
t: proctype;
p: process
end
remove t from the head of q. tq;
if q. tq # empty then
p:=head of q;
if p. t=EXCLUSIVE then activate p.p
else if not (t=SHARED) then
repeat
activate p. p;
p:=next element of q
until p. t=SHARED
fi
fi
fi
end;

Fig. 6 Algorithms of ENQ/DEQ operations.

A New Synchronization Mechanism called “ Forcing Expression” and its Implementation 147

s. init: =2;

s. wait_queue: =empty;

sem.b_sem: =1;

sem. wait_queue: =empty;

sem. event_queue: =empty;

ENQ (s. wait_queue, EXCLUSIVE);
The initialization process can complete (the last) ENQ
operation because s. wait_queue is empty. After com-
pletion, there is one element whose type is EXCLUSIVE
in s. wait_queue.

If the process A, for example, attempts to enter the
critical section CS, it waits till no process is executing
prologue (/epilogue), and it will execute prologue. It
decrements s. counter, and skips DEQ operation be-
cause the value of s. counter is 1. It releases the owner-
ship of prologue and executes ENQ operation. The
process A is blocked because there has been the element
type EXCLUSIVE in s. wait_queue (in this stage, there
are two elements in the queue—one is type EXCLUSIVE
and the other is type SHARED).

If the process B, for example, attempts to enter the
CS, it executes prologue in the same manner. In this

case, it executes DEQ operation in prologue. The element
type EXCLUSIVE is taken out from s. wait_queue, so
the process A can resume its execution and the process B
can also complete ENQ operation. Thus, two processes
A and B enter the critical section CS (in this stage, there
are two elements type SHARED in the queue).

If the process A, for example, attempts to exit the
critical section CS, it waits till no process is executing
prologue/epilogue, and it will execute epilogue. It
executes DEQ operation and one element type SHARED
is taken out from s. wait_queue. It increments s. counter,
and skips ENQ operation because the value of s. counter
is 1 (the value of s. init is 2).

If the process B attempts to exit the CS, it executes
epilogue in the same manner. In this case, the process
B executes ENQ operation. After the process B exits
epilogue, there is only one element type EXCLUSIVE
in s. wait_queue.

Thus, the element type EXCLUSIVE is used as a
barrier.

(Received June 16, 1982)

