A Fast Method for Estimating the
Condition Number of a Matrix

MAKOTO NATORI* and ATSUKO TSUKAMOTO**

A method for estimating the condition number of a matrix is given. This method is based on the fact that
|14~ ||, can be approximated by ||(47)~ 'e|| ., if a vector e is appropriately chosen. Numerical experiments show

that this method gives accurate estimates.

1. Introduction

When a system of linear equations
Ax=b (.1

is numerically solved, the condition number of the
matrix 4 plays an important role. In fact, the condition
number is a measure of the sensitivity of the solution x
to changes in 4 and b, i.e. it can be regarded as a mag-
nification factor of relative error. The condition number
of the matrix A is defined by

cond(4)= |4l 1471 (1.2)

where we use for the matrix norm an induced norm given
by
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It is well known that if we choose the /; vector norm

(1.3)
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After this, we deal with the condition number with
respect to this norm

cond; (A)=4ll147"],. (1.6)

It is easy to compute ||A4]|,, while the computation of
|41, takes roughly twice as much time as that
required for the Gaussian elimination of A. Therefore,
it is desirable to obtain an estimate of the condition
number without computing the inverse.

The subroutine DECOMP described in Chapter 3 of
[1] estimates the condition number of the matrix 4 by

llzlls
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(1.7)
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that is

Izl
Iyl

where y and z are vectors determined by solving two
systems of equations

47"~ (1.8

ATy=e, (1.9)
(1.10)

where AT is the transpose of 4 and e is a vector with
components + 1 chosen to maximize the growth in the
magnitude of the components of y.

It must be remarked that the 128th and the 130th lines
in the subroutine DECOMP should read

T=T+A(, K)»WORK(I)
and

WORK(K) =T + WORK(K)
respectively. These corrections were confirmed by
C. B. Moler [2].

In this paper, we propose a new method for estimating
the condition number. Our method reduces to one half
the computational work required for the estimation
compared with the method in DECOMP. Moreover, it
is shown by numerical experiments that our method gives
more accurate estimates for almost all matrices adopted
in our experiments.

Az=y,

2. A New Method for Estimating the Condition Number

We estimate the condition number of a matrix by
cond, (A=~ | 4]l 1¥ll, 2.1
that is
14~ =Yl w, 2.2)
where y is a vector determined by solving the equation
(1.9), and |yl is the /., vector norm defined by
[¥llo = max |y. 2.3
1sisn

Since the vector z is not necessary in our method, the
amount of computational work is reduced to one half
compared with that required in DECOMP.

The matrix norm corresponding to the /,, vector norm
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is given by
Ax n
| A}l = max L Y ayl. @49
xxo Xl 15isn j=1

Suppose the maximum of Y}, |a;,| is attained for i=m.
Then it is clear that the vector x which maximizes [ Ax| ./
[x||, has the components +1 whose signs are chosen
to be equal to the signs of the elements of the m-th row
of 4, i.e.

x;=sgn(a,;), 1<jsn (2.5)
where
+1 for =0,
sgn(t)={—l for t<0. 26

Since it is obvious from (1.5) and (2.4) that
4l =14, 2.7

we have

1A Xl

147 = (47" ||, = max 2.8
x#0  IXls
We now claim that
A -1 AT -1
Ay D ey

~
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where e is a vector with components +1, the sign of
each component being determined by the algorithm
described below. The vector y is given by solving (1.9).

We describe the algorithm for computing the vector
y. If the Gaussian elimination with partial pivoting is
carried out, 4 is decomposed into the product of a
permuted version of a lower triangular matrix L and an
upper triangular matrix U so that

A=(PL)U (2.10)
where P is a permutation matrix. Thus the system of

equations (1.9) is decomposed into two triangular
systems

UTx=e,
(PLYTy=x. 2.12)

Let e=(—e,, —€,,..., —e,)T. The algorithm to solve
(2.11) is described as follows.

(2.11)

e, =1
Xy =—efu;,
for k=2 to n do

k-1
r= Z UpX;
i=1

e, =sgn(t)
x=—(t+e) uy,

The sign of e, is chosen to be the same as that of ¢. This
gives |x,| the larger of its two possible values. The
systems of equations (2.12) is solved by back substitution
with row exchanges. Suppose the record of pivoting be
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stored in the pivot vector p=(p,), where p, is the index
of the k-th pivot row. Then the algorithm to solve (2.12)
is written as follows.

yﬂ=x"
fork=n—1to 1 do

t= Z luy

i=k+1
V=X —1t
m=p;
if m#k then exchange y,, and y,

It is usually found that the vector y obtained above has
large component [3]. Then, from (2.8) and (2.9) it is
seen that ||y||,, gives a good approximation to |4~ 1||,.

3. Numerical Examples

In this section we give some numerical examples. The
computations were carried out on a HITAC M-170
(single precision).

Example 1. As a typical matrix whose condition
number is large, we chose the Hilbert matrix 4 =(a;)):

1

=TT
The condition numbers of the Hilbert matrices for
3=n<6 were estimated by DECOMP and by our
method. The exact values were computed using the
inverse matrices given in [4]. The results are shown in
Table 1. It is observed that our estimates are quite
accurate. For n=3 our estimate is slightly larger than
the exact value. This is due to the rounding errors in the
triangular decomposition.

1<i,j<n. 3.

Table 1. Results for the Hilbert matrix.

n DECOMP Ours Exact

3 6.808213 x 102 7.480132 x 102 7.48 x 102
4 2.152290 x 10* 2.837426 x 10* 2.8375 x10*
5 6.886816 x 10° 9.363152 % 10*% 9.43656 x 10°
6 1.975518 x 107 2.541669 x 107 2.907029 x 107

Example 2. As a matrix whose condition number is
of moderate magnitude, we chose the Frank matrix
A=(a;):

a;=n+1-max (i,j), 1=Zi,jSn. (3.2)
The inverse matrix A~'=(b;)) is tridiagonal, whose
non-zero elements are given by

by =1, b,=2 (2=gisn), (.3)
bii-y=byy,=—1 2=gign).
In this case
1
141l =3n(=+1) (3.4)



140

and

1474, =4 (3.5
hold for n=3. The results are shown in Table 2. Our
estimates agree well with the exact values. Again our

estimate for n=6 gives a slightly larger value than the
exact value due to the rounding errors.

Table 2. Results for the Frank matrix.

n DECOMP Ours Exact
3 19.33330 23.99995 24
4 34.61534 39.99997 40
5 53.82347 59.99988 60
6 77.00011 84.00017 84
Example 3.
1 2 3
A= 1 -1 1

-00002 1 1
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In this case [ 4], =5 and |47 !||; =9.990014, therefore
cond, (4)=49.95007.

The estimates by DECOMP and our method are
39.40695 and 29.97002, respectively. This is one of the
rare cases in our numerical experiments that produced
a poorer estimate than DECOMP.
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