Short Note

HELP: Interactive Programming System

KenNst KADIRIT*

HELP has been designed as an interactive programming tool for the structured FORTRAN RATFOR-R,
which assists stepwise construction of programs. HELP has the following facilities: refinement of abstract
instructions, integration of program elements, modification of program elements, monitoring of program
states, incremental parsing, and selective listing. HELP is implemented with RATFOR-R on ACOS-600S.

1. Introduction

Stepwise refinement is a topdown design approach to
program development. In a stepwise refinement, a pro-
gram is gradually developed in a sequence of refinement
steps. This refinement requires so many housekeeping
tasks to be done that programming tools which assist
this approach are essential for use in interactive environ-
ments. Several programming environments have been
proposed which assist the stepwise refinement: Program
Synthesizer [1], Poesy [2], etc.

Synthesizer uses the template method and is only
capable of refinement with syntactic categories (e.g.,
statements, expressions, etc.). With Poesy, on the other
hand, a user is allowed to write special comments, which
are later refined with refinement instructions. Only
Synthesizer has a selective, though limited, listing facility;
a user can attach a special comment to a syntactic cate-
gory, and if a user has selected the ellipsis mode, this
comment is displayed instead of the program element
corresponding to the syntactic category.

We have designed an interactive programming en-
vironment HELP as a training tool for learning the
stepwise refinement. It executes only the housekeeping
tasks in the stepwise refinement, and it is the user that is
responsible for the refinement. HELP has the following
facilities:

(1) Abstract instruction

We can write abstract instructions as special comments
within a program in the Poesy style.

(2) Integration of program elements

HELP integrates refined program elements into a com-
plete program, and has the selective listing facility.

(3) Monitoring of program states

The user can monitor the refinement process and the
usage of variables.

(4) Incremental parsing

HELP parses refined program elements incrementally.

*Faculty of Engineering, Sinshu University, Wakasato, Nagano
380, Japan.

Journal of Information Processing, Vol. 6, No. 4, 1983

2. The HELP System

A program which is to be developed with HELP is a
compound object composed of abstract and/or con-
crete instructions. We call abstract instructions PROC-
ESSes, and refined abstract instructions and subprogram
bodies their INSTANCEs. An INSTANCE may include
PROCESSes. A PROCESS may be regarded as an open
subroutine (macro). We can write the same PROCESS
many times in a program. In HELP an abstract instruc-
tion is written as a comment as follows: #SOLVE AN
EIGHT QUEEN PROBLEM #. An abstract instruction
can be left as an ordinary comment in the head of a
refined INSTANCE. There are three kinds of sub-
programs in RATFOR-R, i.e., subroutines, functions,
and remote blocks.

A program is represented as a tree called a “‘program
tree,” whose node represents an INSTANCE and whose
edge represents a PROCESS-INSTANCE relation (e.g.,
edge (1, 2) means that the INSTANCE “1” includes a
PROCESS whose INSTANCE is “2”). The root of a
program tree is the top level description of a given
problem, i.e., the initial INSTANCE. An INSTANCE is
parsed, and is stored as a parse tree. A number, called the
entry code, is assigned to each PROCESS automatically,
and a PROCESS and its INSTANCE are identified by
this number. In Fig. 1(b), “1” and *“2” are the entry
codes. Fig. 1(b) shows a program tree for the program
(INSTANCE) of Fig. 1(a). In Fig. 1(b), “1” represents
the INSTANCE of Fig. 1(a) and ‘“2” represents the
INSTANCE of the PROCESS #PRINT RESULT#
(when refined).

The commands of HELP are classified into six groups
as follows:

(1) Program input assistance (PROGRAM,
PROGRAM fname, SAVEL fname, SAVET fname,
PROGEND, and BYE)
(2) Subprogram input assistance (REMOTE,
REMOTE fname, REMEND, SUBPROG, SUBPROG
fname, and SUBEND)

240

EXECUTE SETQUEEN(k=1) @
PRINT RESULT # —
sTOP SETQUEEN \@

END

(a) AN INSTANCE (b) A PROGRAM TREE

Fig. 1 An instance and its program tree.

@@2@@
ONGE

Fig. 2 An example of a program tree.

(3) Refinement (REFINE i, BACK, FORTH i, and
TRANSFORM)

These commands relate to the scanning of a program
tree and the incremental parsing. An INSTANCE is
parsed by the “TRANSFORM?” command and its parse
tree is inserted into the corresponding node in the pro-
gram tree.

(4) Selective listing (LIST, LIST C-, LIST C-i, LIST
-C, LIST i-C, and LIST name)

These commands display several sectional lists around
the current INSTANCE. For example, in Fig. 2, we sup-
pose that “4” is the current INSTANCE being processed
and that all the PROCESSes have been refined. The
“LIST” command shows only the INSTANCE “4.” The
INSTANCE: “6” and ““7” are displayed as PROCESSes,
i.e., abstract instructions. The “LIST C-1” command
shows the INSTANCEs “4”, “6”, and ““7” in an in-
tegrated representation. The INSTANCE “8” is dis-
played as a PROCESS (“-1” means “one level down™).
The “LIST 2-C” command shows the INSTANCEs “1”
to ““5.” The INSTANCE:s “6” and “7” are represented as
PROCESSes (‘“2-”” means “two level up”).

(5) State monitor (STATE, ASTATE, and ASTATE
ALL)

These commands display PROCESSes, subprograms,
and identifiers which are referenced. The “STATE”
command displays those which are referenced in the
current INSTANCE. The “ASTATE” command dis-
plays those which are referenced but not declared in all
INSTANCEs.

(6) Miscellaneous (EDIT and HELP)

The “EDIT” command invokes a simple line editor.
The “HELP” command explains the set of HELP com-
mands to users.

3. Example

We show the program development process using
HELP for the well-known eight queen problem. On
starting HELP, we will be asked with COMMAND?” as
shown in Fig. 3. If we are planning to develop a new
program, we type “PROGRAM,” whereas if we are

K. KAunrt

planning to modify an existing program, we type
“PROGRAM fname.” When we type “PROGRAM,”
line numbers will sequentially be displayed. We type in
an INSTANCE of the top level PROCESS (in this case,
this INSTANCE can be something like #SOLVE AN
EIGHT QUEEN PROBLEM #) line by line following
these numbers. In Fig. 3, the INSTANCE includes one
subprogram call and one PROCESS (EXECUTE SET-
QUEEN and #PRINT RESULT#). A CR key just
following a line number indicates the end of the IN-
STANCE, which allows HELP to return to the command
level (COMMAND?).

Next the INSTANCE will be parsed and transformed
into a parse tree. HELP has a facility of monitoring the
state of the current INSTANCE to allow the user to con-
trol the refinement process. The “STATE” command
does this task as shown in Fig. 3. With three kinds of
entries, i.e., subprograms, identifiers, and PROCESSes,
their states are displayed. “US” means ‘“‘unspecified.”

2636 36 36 36 36 36 36 3 3 2 RATFOR HELP SYSTEM 3% %336 3 % 3 % % %
*®x COMMAND ?
10 EXE%UTE SETQUEEN(K n
Q STOP END

%% COMMAND ? TRANSFORM
*x COMMAND ? STATE
*%MAIN PROGRAMS

*%%x REMOTE BLOCK %
SETQUEEN Us

*®%x% JDENTIFIER %x

xx% PROCESS *
T EMENT # PRINT RESULT #

%% COMMAND ? REMOTE

'] REMOTE SETQUEEN

AT
K-TH QUEEN IN J-TH ROW 7#)
QUEEN

L(JI>8)
$ ENDBLOCK

~
o

DTILIC XM).

M em i

—HPCCONUE

QZImom m

Il i — %>

20m

.....................................

-TH QUEEN IN J-TH ROW 7?&
RD(K+J*1)==0 & LD(K-J+8)==0

.....................................

.................................

*x' COMMAND 2" (18T
10 REMOTE SETQUEEN

J 1
REPEAT

40
S50
60 IF(“K-TH QUEEN IN J-TH ROW 7#)
53 . 1ET QUEEN #

]
100 UNTIL(J>8)

.....................................

.....................................

*%x COMMAND 7?ASTATE

xxx TDENTIFIER %%

K US IN MAIN
J US 1IN MAIN
%%% REMOTE BLOCK %
SETQUEEN IS IN MAIN
*x% PROCESS #x%x

STATEMENT ?g ﬂ PRINT RESULT #

STATEMENT # SET QUEEN #

Ci COMMARD' 5 BBITT e
-5 INTEGER I,J.K,FLAG

- INTEGER Y{(83,lD(15),RD(15),P(8)

.....................................

*x PROGRAM IS SPECIFIEU *%
Fig.3 An example of program development by HELP.

HELP: Interactive Programming System

“Specified” means that (1) a PROCESS is refined, (2) a
subprogram is declared, or that (3) an identifier is de-
clared. Entry codes are also displayed with PROCESSes.
Next we will refine the remote block SETQUEEN. In
this case we first type “REMOTE,” and type in an
INSTANCE (a remote block body) line by line. This
INSTANCE includes two PROCESSes (#K-TH
QUEEN IN J-TH ROW?# and #SET QUEEN#). In
order to refine the first PROCESS, we type “REFINE
4,” where “4” is the entry code of the first PROCESS.
After the refinement we go back to the ancestor IN-
STANCE by the “BACK” command. We can get a
pretty-printed version of the current INSTANCE by the
“LIST” command. After completion of the refinement
of the remote block SETQUEEN, the “REMEND”
command terminates the remote block refinement
process.

As a final step we insert the declaration of variables
into the top level INSTANCE using the “EDIT” com-
mand. The current HELP system is capable of modifying
an INSTANCE only through line insertion, exchange,
and deletion. Fig. 3 gives an example of line insertion.
Programming has been completed. The “PROGEND”
command terminates the program input and indicates
whether the developed program has been specified or
not, i.e., whether all the entries in this program have been
specified or not. In this example the program has com-
pletely been specified.

241

4. Conclusions

We have been using HELP to develop several pro-
grams such as a simple lexical analyzer and a calculator.
Our experience in using HELP has led to a conclusion
that HELP requires us to design a program hierarchi-
cally, i.e., we must design the overall program structure
using PROCESSes and subprograms beforehand (a high
level program description). Thus the program should
have a hierarchical structure, causing any control trans-
fer beyond the scope of an INSTANCE to be seldom
used. The programming process and/or attitude is much
influenced by the programming environment, and the
programming metholodogy cannot really be used until
its assisting tools have become available. In view of
HELP being an experimental system, we would like to
investigate effects of programming environments like
this. In order to make HELP applicable to programming-
in-general, we must add the following facilities to HELP
in the future: transformation between an abstract in-
struction and a subprogram: a RATFOR-R interpreter;
an editor in token level.

References

1. TerreLBAUM, T. and REeps, T. The Cornell Program Synthesizer:
A Syntax-Directed Programming Environment, Comm. ACM 24,9
(September 1981), 563-573.

2, Mivamoro, E. and Asamr, K. A Text Editor Having Editing
Facilities Based on Program Structure. Trans. IPSJ 20, 6 (1979),
474-480.

(Received December 10, 1981 ; revised October 18, 1983)

