Analysis and Improvement of Kahan’s Summation Algorithm

KAzZUFuMI OZAWA®*

This paper shows an example in which Kahan’s algorithm for summation is not at all effective, and consider
the reasons for the uneffectiveness. Next, this paper proposes a new algorithm similar to Kahan’s. Application
of this new algorithm to the same and other examples show that the algorithm improves the results over
Kahan’s. Error analyses of the two algorithms show that, in both algorithms, the quantities approximating the
accumulated errors can be obtained in the course of computations. In particular, this quantities of the improved
algorithm approximates the error more precisely than that of Kahan’s. The cpu time of the improved algorithm

is about 1.4 times that of Kahan’s.

1. Introduction

Various algorithms [1-4] have been derived for reduc-
ing the round-off error in summation of floating-point
numbers, and some algorithms are successfully applied
to the numerical integration of ordinary differential
equations [4].)

In Linz’s [2] and Wolfe’s [3] algorithms, a floating-
point number is added in such a manner that its mag-
nitude does not differ much from that of the partial sum,
so that the round-off error in addition is reduced.
However, these algorithms require large storage.

On the other hand, Kahan [1] has derived an algorithm
in which the round-off error in addition is estimated and
corrected. The algorithm requires smaller storage. Until
now, only the results of research showing that Kahan’s
algorithm is more accurate have been presented (see
[5), [6], and [7]). However, whether the algorithm is
accurate or not is unknown, since no one has analyzed
the error.

In this paper, we present an example in which Kahan’s
algorithm produces the same result as that produced by
the simpler and more conventional algorithm—In Sec. 2,
we will call it Algorithm 0. By considering the error in
this example, we improve the algorithm and analyze the
error of the improved one. The analysis shows that, in
the improved algorithm, we can always obtain a quantity
which approximates the accumulated error precisely.

2. Kahan’s Algorithm

We begin with the simpler algorithm, say Algorithm 0,
for the summation of floating-point numbers X,, i=
1,2,- -, n.

Algorithm 0
SO S,:=0
fori:=1ton
" *Sendai Radio Technical College, Miyagi, Japan.

Journal of Information Processing, Vol. 6, No. 4, 1983

S1 S,:=Si_1+Xi

If the sum were computed by this algorithm, then, in
almost all cases, the round-off error would increase, as
i increases. In order to prevent this, Kahan [1] has derived
an algorithm, which estimates and corrects the error in
addition. The algorithm is as follows:

Algorithm 1
KO Q4:=0, Sp:=0
fori:=1ton
Kl Vi=X,-0;,
K2 S;:=S8;_,+V;
K3 if [S;-4|<[|V;l, exchanges S;_; and V;
K4 0;:=(5;—S;-)-V,

In [1], Kahan has showed a FORTRAN implementa-
tion of the algorithm without exchanging S;_, and ¥,.
However, Shimizu et al. [8] and Linnainmaa [9] have
proved that it is necessary to exchange S;_, and V,, if
|Si—1]<|V;l, to make the algorithm more accurate. In
the following, we will restrict ourselves to Algorithm 1
not to the original one.

In Algorithm 1, the round-off error Q; arising at K2 is
calculated and stored to correct the sum S;, . In order
to perform this correction successfully, it is necessary
to use the following type of computer (see [8]):

Table 1 Specification of computer to be used.
base : any
representation of
negative numbers
accumulator

: sign and magnitude representation
: single-precision accumulator with
guard digit

mode of rounding : chopping

Even if we use the above type of computer, however,
it is possible that the algorithm produces an inaccurate
result, because of that, in Algorithm 1, Q; does not ex-
press the sum of the errors at K1 and K2, in spite of
that the total local error at step i is the sum of the both

—

Analysis and Improvement of Kahan's Summation Algorithm

errors. We consider an extreme case that S;_, + V; at K2
is performed without error, but X;—Q,;_, at K1 is
performed with error. In this case Q;=0, and con-
sequently at the next step the quantity S;,, remains
uncorrected. In the following, we show an example in
which this extreme case occurs frequently.

Example 1

We compute S,=1+a—1+a+1+a—1---—1+a by
Algorithm 0 and 1, where a#0 is a small number such
that 1+ix=1, fori=1,2,---, non the computer. The
results are shown in Table 2 and 3.

Table 2 Result by Algorithm 0.

Error
i X, Si S s (exact) Si—sy
1 1 0 1 1 0
2 o 1 1 I+a —a
3 -1 1 0 a —a
4 a 0 a 2a —a
5 1 -4 1 142 —2a
6 a 1 1 143 —3a
7 -1 1 0 3a —3x
8 a V] a 4a —-3a
Table 3 Result by Algorithm 1.
Error
i X, Qi Vi Si-y St Qi si(exact) Si—s
1 1 0 1-0 01 1 0 1 0
2 a 0 a 1 1 —a 14+a —a
3 -1 -« -1 1 0 0 o —a
4 a 0 a0 O0->a o 0 2x —a
5 1 0 1>a a>1 1 -—a 142 —2x
6 a —a 20 1 1 —2¢ 143a -3
7 -1 -2 -1 1 0 0 3 —3u
8 o 0 a0 O-»a « 0 4a —3ua
9 1 0 1>a a»1 1 -—a 1+4a —4a
10 o —a 20 1 1 =2« 145« —Sa
11 -1 -2« -1 1 0 0 So —5a
12 o 0 >0 O0->a o 0 60 —5a

The S;’s of Algorithm 1 always have the same values
with those of Algorithm 0, i.e., Algorithm 1 is uneffective
in this example. This means that the correction of S; by
Q;-, is not done at all.

3. Improved Algorithm
In this section, we propose an improved algorithm,
in which not only the error at S;_, + V; but also the error

227

at X,—Q,_, are considered. The algorithm is as follows:

Algorithm 2

I0 Qy:=0,S,:=0

fori:=1ton
I vi=X—-0,,
12 S;:=8_,+V;
I3 if |X;|<|Q;-,l, exchange X; and (—Q;_,)
B Up=(Vi—X)+0Q;_4
I5 if |S;_,|<|¥il, exchange S;_, and V;
16 Wi:=(S;—-S.-)-V;
17 Qu:=U+W,

Example 2

We will apply this algorithm to the same calculation as
Example 1. As in Example 1, « is a small number such
that 1+ix=1 on the computer. The result is shown in
Table 4.

Notice in Example 2 that Q, is always equal to the
accumulated error at each step. This means that we
can estimate the accumulated error by using Q,. Next we
consider an example occurring in statistical problems.

Example 3
Let,
10000
(A) Sio000= '—21 X;
10000

(B) Stoo00= '21 x?
i=

where X;’s are the Gaussian random numbers with mean
0 and variance 1. All the results by Algorithm 0, 1, and 2
are shown in Table 5.

Notice that, in each of (A) and (B), the error of
Algorithm 2 is considerably smaller than those of Algo-
rithm O and 1, and moreover that Q400 of Algorithm 2
agrees with the accumulated error very well.

In this example, all the calculations are performed by a
COSMO-700S computer, the specification of which is the
same with that of Table 1, and the exact value is cal-

Table 4 Result by Algorithm 2.

: Error
i X, Q-1 Vi Si_1 S U, W, [N ¢ (exact) Si—st
1 1 1-0 01 1 0 0 0 1 0
2 o 0 o 1 1 0 ~a —a 1+a —a
3 -1 —a —1 1 0 o 1 0 B 1 o —a
4 « —a 20 >0 052« 2a 0 0 0 20 0
5 1 0 12 20 —>1 1 0 —2x -2 142a — 20
6 a2 -2 -0 3a 1 1 0 —3a —3a 143 —3a
7 -1 —3a -1 1 0 —3a 0 -3 3a —3a
8 a—>3a -3a>—a 40 >0 0 —>4a 4a 0 0 0 4a 0
9 1 0 1 >4a 4o 1 1 0 —4a —4a 1+4a —4a
10 o >4 —4da>—a Sa 1 1 0 —Se —5a 145« —5a
11 -1 —Sa —1 1 0 —5a 0 —Sa Sec —Sa
12 a—>5a —5¢—+>—a 6a >0 0->6a 6a 0 0 0 6a 0

228

K. Ozawa
Table 5 Results of Example 3.
(A) Sum of the Gaussian random numbers.
Algorithm 0 Algorithm 1 Algorithm 2 Exact
S10000 —0.2346869E 2 —0.2352652E 2 —0.2352655E 2 —~0.2352655E 2
Error 0.5786772E-1 0.3691111E-4 0.6393529E-5
Q10000 0.1120567E-4 0.6393529E-5
(B) Sum of the squares of the Gaussian random numbers.
Algorithm 0 Algorithm 1 Algorithm 2 Exact
S10000 0.1000155E 5 0.1001326E 5 0.1001326E 5 0.1001326E 5
Error —0.1171869E 2 —0.3850549E-2 —0.3850549E-2
Q10000 —0.2847075E-2 —0.3850540E-2
culated by double-precision arithmetic. The Gaussian R;=S,—s,
random numbers are generated by Box-Muller’s method.
8 v =8;1+Vi+0i~s
4. Error Analysis =Si-1+ Vit Qi—si-— X
=R, +V,+0;—- X,
The preceding examples show that the results of Algo- i=1,2,---,n,
rithm 2 have smaller errors than those of Algorithm 0, Ro=So—50=0. (4.4)

and 1, and moreover that the quantity Q; of Algorithm 2
approximates the accumulated round-off error almost
precisely. In this section, we shall derive relations be-
tween Q; and the accumulated errors for both of the
algorithms.

4.1 Error Analysis of Algorithm 1

We will first introduce the symbols @ and © to denote
floating-point addition and subtraction, in order to dis-
tinguish the approximate operations from the true
ones. By using these symbols and omitting the exchang-
ing process K3, we can rewrite Algorithm 1 as follows:

Algorithm 1
So=0, 0,=0
fori:=1ton
Vi=X00;-,
§i=Si..1@V;
0,=(5,65,-)OV;

We first show that Q,; denotes the error in S;_;®V,,
exactly. As Shimizu et al. [8] have proved, if |4]|>|B|,
then the relation,

ADB=(A+B)+((4®B)OA)OB)

holds, provided that the computer specified in Table 1 is
used and that no exponent overflow and underflow
occurs. Applying (4.2) to (4.1), we have

Si=8_1@Vi=(Si-1 + V) +(((S$;- 1 ®V)OSi-)OV)

=S8, 1+Vi+(S:©5:-)OV)
=Sl—l+ Vi+Qis i= 1’ 2;' s, n,

@.1)

4.2)

4.3)

where |S;_,|>|V;| is assumed. It follows, from (4.3),
that Q, is the error arising at S;_,®V:

From the relation (4.3), we will derive the expression
for estimating the accumulated round-off error. Let s;
be the exact sum of X, X5, -+, X;. Then, the accumu-
lated error R;=S;—s, satisfies that

Summing up this relation from i=1 to n, we have

R= Y (Vi+0i-X)

"
=‘Zl (x.©Q;-)+0:— X 4.5)
Let ¢, be the relative error in X;©0,_,, i.e.,
X000 1=X,—Q,-)(1+¢), i=12,-- -, n,
then (4.5) reduces to
R,= zz:z Xi—Qi-e+ 0, "'(4-6)
where ¢, =0 is used.
From (4.6), it is easily shown that
[R,— @l < ‘Zz (X +1Q:-1Dieil
=
<(n—1)(L+M)p, @7
where
L= max |X|, M= max [Q,_,]|,
2<ign 2<ign
p= max lg].
2gign
The bound p is given by
p=b"'*1, 4.8)

if the length of the guard digit is greater than 1, where b
is the base of the floating-point system and ¢ is the
length of mantissa (see Sterbentz [11]).

We can conclude, from (4.7), the accumulated error R,
can be estimated by Q, precisely, since, in general, p is a
small number.

4.2 Error Analysis of Algorithm 2
As before, we first rewrite Algorithm 2 by using @, O
Algorithm 2
SO =0, Qo =0

Analysis and Improvement of Kahan's Summation Algorithm

fori:=1ton

Vi=Xi©0Qi

S5;=5:i.,1®V;

Ui=(VieX)®Q;-, (4.9)
W:=(5:0S5;-)0V;

o,=UW,

In the following, we show that, in (4.9), Q, is an ap-
proximation of the local error for the ith step. At the ith
step, we want to compute S;_, +(X;— Q;_,) exactly, but,
in fact, S, is obtained. Therefore,

r=8i—(Si-1+Xi—Qi-1), i=1,2,---,n

means the local round-off error for the ith step. The r;
satisfies that

ri=U+W,i=1,2,---,n,
since, from (4.2) and (4.9),

$i=8.1®Vi=(Si- 1+ V)+(5:05,-)OV)
=S, A VAW, i=1,2, - n (4.11)

(4.10)

and

VisX,®(—0i-)=X,— 0., +({(V:©X)DQ;_))

=Xi—Qi1+U, i=1,2,---,n (412)
hold, where |S;_,|>|V;| and |X;|>|Q,_,| are assumed.
By (4.10), we find that Q;=U,;® W, is an approximation
of r;.. Next we show that Q, is also an approximation of
the accumulated round-off error.

The accumulated round-off error R,=S;—s; satisfies
that

R;=8;—s;
=(Si-1t Vit W)—(s;- 1+ X)),
=R;_1+r—0Q;-y, (4.13)
where (4.11) and (4.12) are used. Here, we introduce the
relative error §; in U ®W,, i.e.,
o=UeeWw,

=(U;+ W)1+6). (4.14)

As before |0;| <p. Using 8; and neglecting the higher
order terms of §;, we may reduce (4.13) to
R=R;_+(1+6)7'Q:—Q;,
=R 1 +Qi—Qi-1— 0,

229

Summing up (4.15) from i=1 to n, we have

R,=— '22 Qi5(+Qn
-~ % 06+0.0-3)

n—1
x _iz'z 06+ 0, “4.17)
From this, the relation
[R,~ Qnl <(n—2)Mp,
M= max |Q)] (4.18)

2gign—-2
is easily derived.
Next we derive the bound M for |Q,|. From (4.11),
(4.12), and (4.14), we have

0i=(U+ W)(1+4)
=[(Vi~(Xi= Qi- D) +(S5;—(Si- 1 + V(1 +6)).

4.19)
Here, we define the relative errors in V; and S;:
Vi=X00-1=Xi—0;_)(1+a)
$;=8;.10V;=(Si~; ~ V(1 +B), 4.20)
where |o,| < p, |Bi| <p.
Using this, we have
0i=((X;— Q- 1)+ (Si-, —V)B)1+6)
=(Vi(1+0o) e+ Si(1+8) 7' B)(1+6)
=V;+ S;8;+0(p?). 4.21)
and therefore,
Qi <p(Vil +1S:)+0(p?)
<p(1Si- 11 +1S:1D+0(p?)
<3018, 41, 4.22)
where
ISi =181 @V SIS | +1Vil <2184
is used. Thus, we have
M= max |Q|
2<ign—1
=3p max |5, (4.23)
1<isn—-2
and
IR,—Q,|<3(n—2) max |S;p> 4.29)

1<i<n—-2
Because of (4.24), the right-hand side of (4.18) is con-

i=1,2,,m, (4.15) siderably improved over that of (4.7). Therefore, it is ex-
and, from (4.9), we have mted that. the accumulated error in_Algorithm .2 can be
estimated in term of Q, more precisely than in Algo-

Ro=R,=0, 6,=0, rithm 1.

Qo=0,=0. (4.16)
Table 6 Cpu time ratio of various algorithms to Algorithm 0.
Algorithm 0 Algorithm 1 Algorithm 2 Wolfe Linz Algorithm 0 (double)
1.00 9.95 14.0 134 2.00 2.65

230

5. Proper Rounding Arithmetic

Until now, we have discussed only the case in which
the computer choppes the lower digits. But a computer
which rounds the lower digits properly is also frequently
used. If the two numbers A4 and B are added by the
computer, then the following relations holds [4], [10]):

A+ B=(4®B)—(4'©A)D(B"©B)
A'=(A®B)OB, B"=(4®B)o4’, .1)

where @ and © have the same meanings as before. If we
rewrite the step K4 of Algorithm 1 by using (5.1), and
delete the exchanging process K3, then Algorithm 1 is
changed into one suitable for proper rounding arithmetic.
The algorithm derived by this revision is called M¢ller’s
algorithm [4]. In the same manner, we can revise Algo-
rithm 2 so that it is suitable for proper rounding arith
metic. By these revisions of the two algorithms, no change
in the discussion of Sec. 4.1 and 4.2 is required, except
for the value of p, i.e., p must be halved.

Finally, we compare cpu time of the various algo-
rithms (see Table 6). In these experiments, a COSMO-
700S computer was used, and Wolfe’s algorithm and
Linz’s algorithm were performed by using the codes
proposed in [6] and [12], respectively.

Acknowledgment

The author would like to thank Dr. Takeda and Dr.
Abe for their helpful suggestions.

K. Ozawa

References

1. KaHAN, W. Further Remarks on Reducing Truncation Errors,
CACM 8, (1965), 40.

2. LNz, P. Accurate Floating-point Summation, CACM 13,
(1970), 361-362.

3. WoLrg, J. M. Reducing Truncation Errors by Programming,
CACM 7, (1964), 355.

4. MgLLER, O. Quasi Double-precision in Floating-point Addi-
tion, BIT 5, (1965), 37-50.

8. GREGORY, J. A Comparison of Floating-point Summation
Methods, CACM 18, (1972), 838.

6. YAMASHITA, S. Fudosyosuten-Enzan no gosa, bit Rinji Zokan,
(1975), (in Japanese), 14-26.

7. UsHumMa, K. and AsHipa, T. Fudosyosuten-Su no sowa no
keisan-ho no hikaku, Surikagaku Kokyuroku 215, (1974), (in Japa-
nese), 75-86.

8. Sumizu, T. and OoHasHI, T. Rounding Errors in Floating-
point Addition, TRU Mathematics 11, (1975), 41-50.

9. LINNAINMAA, S. Analysis of Some Known Methods of Improv-
ing the Accuracy of Floating-point Sums, BIT 14, (1974), 167-202.
10. KnutH, D. E. The Art of Computer Programming, Vol. 2,
Addison-Wesley, Reading Mass., (1973).

11. SterBENTZ P.H. Floating-point Computation, Prentice-Hall,
Englewood Cliffs, N.J., (1974).

12. Tocawa, H. Gosa-Kaiseki no kiso, Science Sha, Tokyo, (in
Japanese), (1974).

(Received February 28, 1983; revised July 18, 1983)

