On LLC(k) Pars»ing Method of LR(k) Grammars

KENzo INOUE* and FUKUMI FUITWARA**

This paper firstly describes the motivation of developing LLC(k) parsing method which is a kind of mixed
strategies for parsing LR(k) grammars. Secondly the structure and the generation-algorithm of parsing tables
for LLC(k) method are described and the parsing algorithm using these generated tables is given. Finally some
experimental results for several practical programming languages got by an LLC(1) parser-generator are shown
and analyzed in comparison with LR(1) parsers for these languages.

1. Introduction

Since context free grammars (CFG’s) have been ap-
plied to describe the syntax of programming languages,
many deterministically parsable sub-classes of CFG’s
were developed. The largest one of them is the class of
LR(k) grammars [1] and among rather small ones there
are the classes of LL(k) [2], simple precedence grammars
[3], and so on.

An objective of developing a sub-class, by defining the
class properly to cover languages to treat, is to make
possible, in the pertinent memory size, the generation of
parsers by the method combining a parsing algorithm
proper to the class and parsing tables of these languages.
For a larger class, the syntax of languages are naturally
described, but the parsers generated by the above method
are large and wasteful in terms of memory space. On the
contrary, for a smaller class, unnatural and clumsy re-
writing of syntax is necessary to include in the class many
languages, but the generated parsers are generally small
and compact. Moreover, a grammar does not generally
have uniform complexity. For example, for a CFG in
LR(k), its LR(k)-ness is not necessarily caused by all
combinations of productions. On the contrary, a con-
siderable part of the combinations is in a range of LL(k)
and only a part of these breaks the LL(k)-ness. Then if
the complex part of the grammar is not rewritten, the
generation of a wasteful parser is unavoidable for a
usual language. From the above situation for parser-
generation, it will be favourable to use a composite pars-
ing algorithm which consists of an algorithm making
parsable the complex part of syntax and another one
making parsable the remaining simpler part. If this is
possible, it will give a parsing method, in spite of the
acceptance of a wider class of grammars, producing
rather small parsers.

There have been several methods of algorithm com-
position up to now. There are, for example, the mixed
strategy precedence [4], the weak precedence [5], the
right precedence [6], and so on.

In the mixed strategy precedence, three kinds of algo-

*Science University of Tokyo.
**Fuji Xerox Co. Ltd.

Journal of Information Processing, Vol. 6, No. 4, 1983

rithm are combined. Firstly (1, 1)-precedence is used to
recognize the right end of a handle, next (2, 1)-prece-
dence is used if (1, 1)-precedence is ambiguous and at
last the method of so-called bounded context is used to
decide the handle itself, the right end of which was just
recognized. In the weak precedence and right prece-
dence, (1, 1)-precedence is used to recognize the right end
of a handle, for the determination of handle itself the
bounded context method is used by relating the multi-
plicity of precedences to the left context of a phrase.
Although the latter two methods are simplification of
precedence algorithm, they accept super classes of prece-
dence grammars. Especially the right precedence method
is able to expand the class of grammars it accepts, with-
out any modification of its parsing algorithm. However
the above methods are not able to give so much widely
expanded class from the original precedence grammar-
one, because almost the same kind of algorithms are
combined.

As another examples of composite parsing algorithms,
there are almost-top-down parsing algorithm [7] and
left corner grammars (LC(k)) [8] which use top-down
algorithms as basis and are partially supplemented
by bottom-up methods. Generally top-down parsing
methods are able to have good perspective on parsing
status, but accept only small classes of grammars. These
characteristics are just reversed for bottom-up parsing
methods. Especially LR(k) grammar class is the largest
one deterministically parsable of CFG’s. Then the com-
bination of top-down and LR(k) algorithms is expected
to give good perspective on parsing and a smaller parser
for a wide class of CFG’s.

Generalized LC(k)parsing method (GLC) [9] is a gener-
alization of LC(k) one and an applicable production is
decided when the subtrees of its leftmost i symbols have
been recognized by LR(k)-like method (0<i<n,=the
length of production). Therefore GLC(k) equals LL(k),
LC(k), or LR(k) according to i=0, 1, or n, respectively
for every production. For GLC, however, the transfer
from bottom-up to top-down algorithm must be in-
dicatde by a special symbol (-) between the /~th and i+
1-th symbol of production. The difference of the GLC-
method from LC-one is not only in increasing the num-
ber of left-corner symbols to be LR-likely recognized,
but is in attempting equivalently to treat the LL- and LR-

On LLC(k) Parsing Method of LR(k) Grammars

methods in a parsing.

Least LC(k) parsing algorithm (LLC(k)) described in
this paper is such a combined parser of LL(k) and LR(k)
as GLC(k), but the fundamental aspect is to realize the
smallest parser for a LR(k) grammar, by applying LR(k)
algorithm for only parts of productions that are un-
parsable by LL(k) algorithm. Because these parts of
productions are automatically recognized, special sym-
bols on productions to indicate the transfer from bottom-
up parsing to top-down are not necessary in this
method.*

In the case of combined algorithm, the size of a parser
also depends on the method of transfer from one algo-
rithm to another in a parsing state. If there is a big differ-
ence between the context information required by the
two algorithms, a large quantity of computation, a
large table, or both are needed for the transfer, or the
transfer might be impossible. At this point, it should be
noted that the methods of mixed strategy, weak prece-
dence, and right precedence combine algorithms re-
quiring almost the same context information. LLC(k)
parsing method adds a typical example about matching
of context informations required by algorithms com-
bined.

Basic definitions, general symbolisms, and so on are
described in 2, and the informal and formal descriptions
of the LLC-parser and its parsing algorithm are given in
3 and 4 respectively. In 5, some experimental results are
discussed and conclusions are given.

2. Definitions, Symbolisms, and Others

The knowledge of LL(k) and LR(k) grammars,
symbols, procedures, and functions not given in this
paper are based on section 5.1 and 5.2 of Aho and Ullman
[11]. The parsing tables and their generation algorithms
of LL(k) and LR(k) of [11] are referred as canonical ones,
and by LL(k) and LR(k) parsers and so on, without any
notice, canonical ones are meant in this paper. The
supplementary definitions are given here.

(1) A CFG, G, is represented by G=(N, Z, P, S), where
N, T, and P are finite sets of non-terminal symbols,
terminal symbols, and productions respectively.
S is the start symbol of G. G is not ambiguous and
does not include a useless nonterminal and a cycle.

(2) Following ordinary conventions,

A,B,C,---eN, a,b,c,---€Z, X,Y,Ze(Nu%),
o, B, 7, - -e(NUZ)*, s, ¢t u, - -€x*

are used with or without subscripts, but e denotes a
null string and ¢ an empty set.

(3) In G, the productions are properly indexed: that is,
in i: A—acP, i is the index of A—o sometimes
represented by p, or p,..,. The production of start
symbol is unique and the index 0. I={i}.

*LLC-algorithm was developed independently from GLC-
method {10).

207

(4) The length of o =|a|, the number of elements in a set
J=J|.

(5) When n=lal|, m=|$|, and y=ap,

a=My=y=™ and f=y™ =M=y

However if n, m> |y|, then MWy =9 =y, and W~ y=
Y —m) — o,

(6) The local follow set of A4 with prefix u is
LFOLLOW, (A)=V FIRST,(v;) for all possible i,
where

SZuAv; and FIRST,(v)={®1|v;S>1}.
Because there are cases of
LFOLLOW"“(4)=LFOLLOW(A), u, #u,,

different local follow sets of A are denoted
LFOLLOW{(A) using j=1,2,--+, but with the
omission of j where there will be no confusion.

FOLLOW(A)=yu,LFOLLOW{(A).
If G is an LL(k) grammar,
LFOLLOW,(A)=FIRST(v),

because of the uniqueness of the leftmost derivation
generating prefix uA.

(7) If there is no confusion, U®V stands for UD,V,
where

U, V={wlw=®(xy) for xeU and yeV'}.

Similarly, FIRST(v), LL, LR, and so on are sub-
stituted for FIRST,(v), LL(k), LR(k) and so on
respectively.

(8) If Uis the LR-item set for viable prefix ua, and Vis
LFOLLOW(A) with u being S=>pAv=>pax,a,v and
u u, then "

[A—o,-a,, x]eU for xeV
and
[A—>0a, a,y,x]¢U for x¢V.

In this paper the item set with a production 4—
a0, is denoted by [4—a,;-a,, V]using LFOLLOW
of A, V, in the given context, that is

[A—a; 0y, V]I={[d—>a,a,, x]IxeV}.

And then U is treated as a set of these item sets.
U={[A—a,-a,, V]|all possible 4—>a,a, for viable
prefix ua,}.

(9) Ker[U,] is a kernel set from which set U,y, with
viable prefix pX, is generated by a closuring opera-
tion [11].

(10) L={A|A>Ay}, N(A4)={B|A>By}.

(11) A parse is an ordered sequence of the indices of
productions used in parsing an input text.

3. Informal Description of LLC-Parsing and Parser
An LLC-parser executes the leftmost derivation by

LL-parsing method for an input text as far as possible
and then transfers to actions similar to LR-parsing,

208

when an applicable production cannot be uniquely de-
termined by LL-parsing.

In Fig. 3.1, let us assume that a prefix « of uv has been
recognized by LL-parsing method, that is

Séqu,
but
BB, " FIRST(B)DVp#¢, i=1,2,-- (ER)]

with the LFOLLOW of B, Vp, in the given context. In
this situation, the LLC-parser transfers its parsing mode
to the next LR-like parsing for the partial text v,,

*
B=v,, v,v,=0.

The range of v, is determined by the condition ®v,eVp,
when the parsing of B is completed. This requires that the
starting state of LR-parsing of v, is determined using the
string Bx (xeVjg). However it is uneconomical and un-
necessary to execute completely the LR-parsing of B.
LLC-parser is able to transfer to the LL-parsing for y, of

(G2

when an LR-item [C—y,+7,, y] is uniquely selected by a
lookahead string ®¥(u,v,x) at the LR-like parsing stage

(3.3)

C,=,‘,.°”1'Yz

»
Bx,%f)’luzvox, Y1

(cf. Fig. 3.1). This starting status of LL-parsing is uni-
quely given by selecting [C—~7,+y,, ¥] from an item set
of C with a particular LFOLLOW(C) included in the set
of LR-item sets for viable prefix £y,. In the LL-parsing
for y,, LR-like parsings are repeatedly executed if
necessary. When the completion of LL-parsing of C, the
status of parser again transfers to LR-like parsing with
the LR-state for viable prefix £C and LFOLLOW(C),
regarding as if &u,u,v, was reduced to £Cv, by LR-like
parsing (cf. (3.3)).

After the completion of LR-like parsing of v, to B, the
parser returns to the leftmost derivation of v with the LL-
state for uv,v and LFOLLOW(B), regarding as if deriva-
tion uBvuv,v was completed (cf. (3.1)).

From the above explanation, it is understood that

N

rtext

Fig.1 Parsing tree for Eq. (3.1)

K. INouE and F. FUIIWARA

LLC-parser utilizes two kinds of tables, M and My for
LL-parsing and LR-like respectively. Table M has almost
the same structure as a canonical LL-parser table, but My
is different from canonical LR-one. Several notations
must be prepared now, for the explanation of table struc-
ture in the following.

An LLC-parser uses a left-open stack. Corresponding
to the leftmost derivation from af to uf in

A=ofSuf, B=x;_(Bix; - Xp_1B,x,

(x=e when j=1),

which may be represented in LL-parsing as
Ty, =3p .'?...’“B s
where B=x;_(Tg,y,%;" * * Xm— 1T, 1, Xms

the leftmost derivation of LLC-parser is denoted by

- L -
Ty > EPP s ap P UBP 4~ ap = 117,
where V=x;_, Tpv % Xm—1T8,v XmPa-aps

reduced to A=>af=> up with a homomorphism A(T,y,) =
A, h(Ty,y,) =B, h(a)=a, and h(p ,_..5) =e. Here Ty, and
Tp,v, are the LL-states of 4 with LFOLLOW ¥, and
B, with LFOLLOW V, respectively, called Il-states in
LLC-parsing. The /-state of the start symbol denoted by
T, is unique because of the uniqueness of the LFOL-
LOW of S, that is Vs={e}.
Corresponding to the reduction from u to « in

S udw=>poupw povw=>puow, a=X, X,- - - X,

that is, the reduction from LR-state S, to S,; of LR-
parser in

S,S2S,- -+ S,AS, W
=8, 8, X18,1 X8, - X;Sujr - - SpapgW
25, - 8,X,81X,8,2 - X;S,0w=S, - - - S,uvw,
the LR-like parsing of LLC-parser is denoted by
UduaUs,
fA=U}. . - UsU{=inverse(U{U%- - - Uf).
Here S,, S,, Su4 Su(1shs<j), and S,,, are LR-states
corresponding to viable prefixes e, p, pd, pX; - X,,
and paf respectively. Udl is an r-state with viable prefix
X4---X# of the LR-like parsing to the goal A with
LFOLLOW V,, and U} is the starting state of this pars-
ing. U4 and Uy correspond to S, and S, respectively.
In general, because LL-parsing and LR-like are alter-
natively executed
Ty, =:>u191 =:"‘1'4272‘71 :’“1“2”3%72‘71 T
or

- = = ~
Ty 32UV, u=uthatiy - -, V=" -V3¥,¥,.

where 7 is the content of the stack. It is understood later
that symbols other than XeXuYuUWuU/ are entered into
the stack without any modification for the above sym-

On LLC(k) Parsing Method of LR(k) Grammars

bolism of stack content, where Y and ¥ are the sets of
I-states and r-states respectively. In the following, pars-
ing of LLC-parser is called /lc-parsing, and it consists of
I- and r-parsing.

The next example grammar is used for the illustration
of table structure.

Example 3.1

G=({S,F,4,B,C, D}, {a,b,c,d,f}, P, S)

0: S—F,1: FoaA,2: F-bB, 3: F>Ab,
4: F-Ba,5: F»CD, 6: A>cA,7: A—c,
8: B—¢B,9: B~c, 10: C—fc, 11: D—Dd,
12: D>d

P=

End of Example 3.1

In Example 3.1 and the succeeding ones, symbols used in
them do not have any relation with ones at the outside of
them.

Let us assume that the lic-parsing of the input text uv
has proceeded to

Tso=t' Tay V' =218, Tyy z>uTpy ¥, where A—a, Ba,.
3.4

(1) The structure of table M.

A row of M is named by an /-state of 4 (eN), T,y ,,
with an LFOLLOW V ,, a column is named by x (eZ*¥),
and there are four kinds of entries: TD-, NTD-, SNTD-,
and error-elements.

(L1) TD-element. For Ty, in (3.4), when an applicable
production pg: B— f is uniquely determined, the entry
of M(Tpy,, ®v) is the same as the canonical one. That
is, if

ﬁ=y0C1yl' . 'Cmym

209

then

M(TBV,,(”U)=BPB, ﬁ-_-}’oTclv,)’l s Te vmdm 3-5)

where V; (1<i<m) is the LFOLLOW of C, in the
given context.

(L2) NTD-element. This is the case of (3.1) which gives
rise to r-parsing with the starting state generated from

{[B—+B:, Villi=0, 1,- - -}, ®ven (FIRST(B,)® V).
If U, represents the starting state,
M(Tyy,, ©)=US. (3.6)

Example 3.1.1

If the parsing table for Example 3.1 is constructed with
k =1 using the canonical LL-method, the productions 3
and 4 are applicable for M(Ty,,, c). In this case,

M(Tr,)=Ug =U,={[F~+4b,{e}], [F~-Ba, {e}]}

for the LLC-parser (see Table 3.1), where it is superfixed
with F, to discriminate from one more starting r-state of
F (cf. Example 3.1.2).

End of Example 3.1.1

(L3) SNTD-element. This is the case of BeL on (3.4),
in which it is necessary to prepare r-parsing in state
T,y That is, using U§ generated from kernel
{[A—ay+Bay, V,1},

M(Tap ,OW) =2, (U™ sm=ay |0 2" (3.7)
The next parsing actions are executed on the basis of

(3.7). Firstly, for the content of stack T, ¥, the top-
most symbol T, , is replaced by &,(U$)™*! and, by

Table 3.1 Parsing table for example 3.1.

M
a b ¢ d f e
Tse» T, T,0 T.0 T,0 T,0
Trier T, aTs1 bT,2 U, TsU,U,
Tue T, Us
Tn(,) Ts Ua
Tcwy Ts fc10
Mz action goto
a b c d f F A B C D a b c d f

Uh U, K r Us Us U,
Ufs U, 0,d12¢ D r Us

(] U, s r U,
U U, 5 r Uso
U Us 1,b3¢ F
Uh Us l,ad¢ F

1 U, 19¢ B 1,7¢4 s Uy, Uiz U,
Ufs Us 1,d11¢ D 25¢F
U¢ Uy 1,T56¢ A 1,7¢ 4
U U 1,7.8¢ B 19¢B
U U, 2,6¢ A
URr U, 28¢B

Notes: s and r are shortenings of shift and return respectively.

210

the /-mode parsing following the replacement, &, is
removed from the stack and (U4)™*! is exposed at the
stack top. At this point, the parsing transfers to r-
mode. In the final step of this r-mode parsing, the
content of the stack becomes &, B(U#)"*'¥. Here the
parser executes the following actions corresponding to
the reduction by A4-a,Ba,, that is, after |o;Bo,|
symbols are popped out from the stack, the parser
returns to /-parsing by goto (U4, A) (ref. R3).

Example 3.1.2

In Example 3.1, production 5 including D in the right
hand side gives an SNTD-¢lement, then

M (T,)=TeUs Uy, Uy=UG*={[F~C-D, {e}]}
End of Example 3.1.2

Unlike LL-parsing tables, M have no row for several
kinds of non-terminals, as described in the following.
(L4) No Ty, for BeL, as understood from (L3).

(L5) 1In (3.4), if there is an NTD-element on the row of

TBVB,

B-aCB,, B—»aXp,, C,X¢L and C#X,
and
W={FIRST(CB,)®V s} {FIRST(XB,)DVp}#¢,

then this is not a case that is able to discriminate the
following two item sets using a lookahead string, when
arrived to a parsing state including the item sets

[C_"Y: VC]’ [B“'a'Xﬂz, VB]

That is, it requires further r-parsing in this case. Then,
the row from C on table M is unnecessary so long as
it is not required from other context.

Example 3.1.3

About the grammar of Example 3.1, the rows of 4 and
B in M are not made from the context of

Uy =T5'={[F~-4b, {e}], [F~-Ba, {e}]}

described at Example 3.1.1. That is, there is no row
of Ty, and Ty, in M.

End of Example 3.1.3

(2) The structure of table Mj.

Table My is a merged table of tables ME’s constructed
from starting r-states US’s appearing in NTD- and
SNTD-elements of table M. Table My is divided to
action- and goto-tables, and a row of both table is named
by r-state U?, a column is named by xeZ** in the case of
action-table and by Xe(NUX) in the case of goto-table.

A state U? is evaluated, starting from UZ, by a closur-
ing operation which differs in the following point from
the canonical method for generation of LR-parsing
tables. That is, when Ker[Uf] is given, the closuring

K. INouE and F. FUNTWARA

operation is stopped at the point discriminating a unique
item by a lookahead string.

Example 3.1.4
In Table 3.1,
Us=Ut={[A~c-4, {e}], [A>c-, {e}]}.

For a lookahead symbol ¢, [A—¢- 4, €] is uniquely given.
Then, we need not execute further closuring operation.
When the lookahead string is ¢ at the state U%, the parser
selects production A—cA, then transfers to the /-parsing
of A following c.

End of Example 3.1.4

(R1) After the above restricted closuring operation of
Ker[UB), if

[C>y1+72, (¥} U7
is a unique item for a lookahead string w, let

action(UP, w)=(1], $2Pc-+y1y2¢ C)- 3.8)
The meaning of (3.8) is as follows: Let us assume the
parser transferred from the r-state U7 to U? having a
stacked state sequence 7, (that is UP=15)). In the
state the action (3.8) is decided by a lookahead to
string w. First 7, is popped out from the stack, then
F2Pcy,y,#C is pushed and the parser transfers to /-
parsing.

If, by the /-parsing continued, 7, is popped out from
the stack, it means the completion of the application of
production C—y,y,. At this point, there is p,..,,,,
¢CU? on the stack top. p,_.,,,, is appended to the cur-
rent partial parse and goro(UZ, C) decides the next
stack state.

Example 3.1.5
Action(Uy, ¢) and action(U,y, €) of Table 3.1 are
examples for this case.
End of Example 3.1.5

(R2) The case of no unique item on the closuring
operation. For example, for

[C—Yy+ Xy,, {x}]eU}, weFIRST(Xy,x),

another item set with the lookahead string w exists in
U?. In this case, [C—y,X+7,, {x}]is entered into Ker of
U} =goto(U?, X). Further, if X is a terminal symbol,
let action(U?, w)= shift.

Example 3.1.6

On Table 3.1,
U,=Un

_ {[F —+Ab, {€}], [F—~+Ba, {e}], [A—>+c4, {b}],}
[4—-c, {8}], [B—+cB, {a}], [B—~+c,{a}]. |~

All items in U, have a lookahead string ¢, then

On LLC(k) Parsing Method of LR(k) Grammars

goto(U,, A)=Us= U, goto(U,, B)=Ugs=UF1,
goto(U,, ¢)=U,=UJ", action(U,, c)=shift,
Ker[Us]={[F~>A4+b, {e}]}, Ker[Ug]={[E—B-a, {e}]},
Ker[U;]={[A—c- A, {b}], [A—c-, {b}],

[B—c:B, {a}], [B—c-, {a}]}.

End of Example 3.1.6
(R3) Let be goto(US, By=return.

4. Implementation of Parsing Tables and Parsing
Algorithm

In this section, an algorithm producing the tables M
and My, described in Informal Description 3, and a
parsing algorithm using these tables are represented.

The table producing algorithm consists of a prepara-
tion algorithm A1, and generation ones, A2 and A3. In
the following explanation, (*L1*), (*R1*), and so on are
comments on the algorithms and indicate to refer the
paragraphs with the same labels in Informal Description
3.

In Al, set Q={(4, V4, Qv tav,)} is generated,
where AeN, V, is an LFOLLOW of A4, t,y, is ‘yes’ or
‘no’ and if it is ‘yes’ then row T, of M is generated
using the corresponding triple (4, V,, Qv ,). Qv is a
set defined as follows:

Qv =W qW)1<j<ng =04}
q(Wj)

={A>7;{Vi1, Vizs s Vim,DI1 <i<ny=[q(W))i},
W,=(FIRST(y,)®V,), | <i<n, W,nW, =,
1<j,j <nuyp,. “4.1)

Here, Vy(1<h<m,) is the LFOLLOW of B, where
Yji=XioBuXuBiz * *Bim,Xim,, and LFOLLOW of 4 is
V4. W;is the set of valid lookaheads selecting the same
production set g(W ;) of A with LFOLLOW V. Set Q' is
used to memorize a triple (B, V, 15,,) newly generated
in the process generating an element of Q.

For convenience’ sake, hereafter k ‘$’s are catenated to
the right of a sentential form.

The input of Al is a grammar G=(N, Z, P, S) and the
output is Q for G.

Al. Preparation Algorithm Evaluating Q
(1) Initialization: Q': ={(S, {$*}, ‘yes’)}, Q:=¢.
(2) If Q' =¢, then the end of Al, otherwise let
Q:=Q'—{(4, V, ty)}
and execute the following calculation for this selected
A, Vs tav,)-

(3) Preliminary evaluation of LFOLLOW B,’s: For all
productions of 4, make

211

A—’xolel v 'thh' : 'Bmxm<V15') Vh" Tty Vm>1

where
V,=FIRST(x,B,, " - - B,x)®V,, 1 <h<m.

(4) Evaluation of Q,y,:
(i) Evaluate

W,={x|xeFIRST(y,)®V,}, W=, W, 1<i<n,,
where y;=xyB;x," ' B,X,, n,=the number of A-
productions.

(ii) Making production sets g(W)):
(a) For all x,eW, let

g(x)={A-y(---Hall 4
—y,’s being x,eW;}.

(b) Let
W,={x,all x,’s with the same g(x,)}.
(c¢) For all (W, g(W)), let

Qv :={(W,, g(W))lfor all I’s},
where g(W))=q(x,), x,eW,.

(iii) Modification of LFOLLOW’s:

(@ If A-aBa,(-+, V" deq(W)) and B,eL
then let V,:=V,U(FIRST({a,)®V,) for all ¢
to be B,=B,L.

(b) If A*dlBha2<' s Vh") '>a A_’ﬁlBhB2<‘ T
Vi- ' >eq(W)), and a,B,=B,B;, then let
V:i=V,uV, V,:=V}:=V.

(5) Adding (B, V}, t,) to Q': For all pairs of B, and V,
evaluated by (3) and (4), do the following if B, B or
Vyg Vg for all B and V; being (B, Vi, Qpyy, tay,) €Q
and (B, Vy, Qpy,) € Q.

(i) If B,eL, then t,:=‘no’. (*L2%)
@) If
Ao By (- ooy Vo oo, A B XBC - deq(W),
ay=fy, B#1X,
and
(FIRST(B)® V)N (FIRST(XB,)DV)+ ¢,
then t,:=‘no’. (*L3%)

(ili) t,:="yes’ for t,’s other than cases (i) and (ii).
) Q:=QVU{(B, Vi)}

6) Q:=QuU{(4, V,, Qv tav)}

(7) Return to (2).

End of A1

In the process generating M, kernels of start states of
My are generated and entered into set ¥ together with
their contextual informations and the pairs of the start
state names and the corresponding goal symbols are
added in set I'.

An element U, of set ¥ is a set of triples, that is,

212

{([A—>ayeay, V), Wi, W)},
where
W, S FIRST (¢,0,)®V, and W, FIRST (¢,)®V,.

The input of algorithm A2 is Q generated by Al and
the outputs are M, ¥, I, and Qg, where Q is about
the same one as Q, and used as auxiliary information
for the generation of Mp.

A2. Generation Algorithm of Table M

(1) Initialization: ¥:=T":=Qg:=¢, r: =0, and execute
@) for A=S5.
(2) If Q=¢ then the end of A2, otherwise let
Q:=Q—{(4, V4, Quvo» tav)}
Qr:=Qpu{(4, V4, Quv)}
If t,y,='no’ for the selected (4, V4, Quv, tav,)
then repeat step (2). If it is not so, advance to (3).
(3) The evaluation of ¢;:
While Qv ,# ¢, do (i) to (iv).

() Qv :=Quv.—{(W,q(W))}

(ii) The case of |g(W)|=1. Execute the next (a) and
(b) for A>xoByx," - Byx), * *BpXpuVy, s Vi ooy
Vaeq(W).

(a) If B,¢L (h<m), then let
a=xoTgy, X" - Ts, v XmPasa=Dgse (*L1%)
(b) If Bi¢L (h<n—1) and B,eL (n<m), then let
@1=XoTp,p, X1+ " Xp—y U:’U,',
"' =|XoB1 Xy - By_y X, (*L2%)
using U, and U, evaluated by the next method.

Let ri=r+1 and

Ur:={([A_’x0Bl e 'Bn' ‘ 'Bmxnu VA],

Wb FIRST(B,.)@ Vn)}'

Let

U,=U, ¥=Yu{l,}
and if A¢N(B,) then
Us’= Ur, F=Fu{(U,, A)}

(*L2%)

else
ri=r+1, U,.=U,=¢, T =TU{(U,, A)}.
(iii) The case of |g(W))| > 2. For
A=V Vigye -, Vimdeq(W), 1<i<my, 1,22,
let ¢,=U,, using U, evaluated by the next method.
ri=r+1,

U':={([A_"7u, VA], er Wl)llS'Snl}s
¥:=Wu{U,), T:=Tu{(U, 4)}.

K. INouE and F. Funwara

(iv) Entries on row Ty, of M: Let M(T,y,, X)=q,
using g, evaluated by (i) to (iii) for all xeW,.

4@ M(T,y,, x)=error for all x¢u, W, and return to
).

End of A2

In the next, algorithm A3 for the generation of table
My, is described.

Among elements of action, there are three kinds shift,
error, and (i, v) generated using Q.

In U,e¥, only the kernel of item sets is included. By a
restricted closuring operation for this kernel, sets K; and
K, are evaluated, where K, is the set of item sets uni-
quely decided using lookahead strings. This operation
expands U, to K, UK.

When ([4A—a,-a,, V,], W), W)el, operation

Ji=J={([A>as-ay, V,], W), W)}
means

Ji=(J—{([A—ay ay V., Wi, W)})
{([d—a oy, V], W), W,— W)}

Similarly,
J:=JU{([A—‘)¢I'“2’ VA]’ Wh W)}

is used in the place of

Ji=(J—{([A>as a3, V4, W), W)})
V{([A—>ay -0y, V], W, W,uW)L
The inputs of A3 are ¥, T, r (the maximum number of

elements of ¥), and Q, and the output is My.

A3. Generation Algorithm of Table My

(1) Initialization: s:=0.
(2) If s=r then go to (6), otherwise s:=s+1 and go to
the next.
(3) For UgY, execute the next operation:
(i) H:=U, K;:=K,:=¢.
(ii) If H=¢ then go to (4), otherwise for

(A~ ang 2, Vi Js Waps Wa,)eH
and N, W, ;=W+#¢ where 1<h<n and n>1
(W ai=W,, ;=W when n=1), let

H:=H—{([Ay> oy %2, Va,), Wa W1 <h<n}
and
J:={([Ay—> s thzs Vs Wap» W1 <h<n}.

(i) If |7 =|{{4—>as a3, V,], W, W)} =1 and Pa,¢L
then

K :=K,uJ

and return to (ii).

On LLC(k) Parsing Method of LR(k) Grammars

(iv) If (A-a,-Cay, V,], Wy, W,)e and CeL, let

Ji=(J—{([d—0y+Cay, V), Wa, Wad})
U{([C“")'p Vel, Wer, WaunWen},

Ky : =K, {([A—ay - Cay, Vi, Wa, Wy}
using triple ([C—-y;, Vcl, Wei, W), where

([C_"')’jy VC]) WCD WAih WCI)
#([A—-ayCay, V], W, Wai),

which is decided as follows:

@) (W, q(W4))EQ 4y, is uniquely decided using
W4, from (4, V,, Q4 ,)eQr uniquely decided
using 4 and V.

(b) Next (C, V¢, Qcy)y is uniquely decided
from A-a,Co{- ", V¢,*--)> uniquely de-
cided using A—a,Ca, and the above (W,
a(W 1))

(c) Finally all triples ({C—+v;, V), We,, We)) are
decided from all pairs (W¢,, C—y,e9(Wep)
using V¢ and all (W¢y, ¢(Wep)eQcy .-

v) If

(An~>any* Xootna, Vs W Wa, €/,

1<h<n,n=2,

and

W= W#¢,

then execute

Ji=(~{([Ay— oy Xy005, Vs W 415 W)1<h<n})
V{X~ 1 Vi)s Wiy WO Wy, D},
Ky =K, u{([As= oy » Xyonzs Vals W W)l
1<h<n}

in the following order, and with [X,—+v,;, Vx,] and
Wy,; decided by (iv, a—<) when X,eN(X, and Wy,;
in the places of C and W, respectively) or [X,~
*Ij» Vx,]=¢ when X,eZ.
(a) First for all X,¢N,(X,), 1<h, K.
(b) Secondly for all X,=X,, 1<h, i, with [X,—
*¥aj» Vil =¢ when X,eX.
(vi) Let K,:=K,uJ for the remaining elements of J
and return to (ii).
(4) The generation of row U, of table My from K, and
K,:
(i) Action-elements.
(@) For ([A—a,-ay, V], W, W,)eK,. Pick up

A_’ala2<V1" t Vm') Vm>Eq(WAl)’

using (W, q(W4))eQ v, decided from (4,
Vi Quy)Qg and W,,. When o,=x,B,-"-
B, ,x,_, and a,=y,_,B, :'B,x, generate
action-elements for U; and xeW,; in the next
method.

The case of B,,"* -, Bu¢L,

action(Uy, x)=(la], yp—1Tp,v," - -
TBmeympA—bu1¢;¢A)' (*Rl*)

213

The case of B,, -, B, ¢L and B,eL,
action(Us, x)=(loy}, Yo 1 To,p, - Ya-1(UD),
(*R1*%)
g=las yy-1By - Yp-1l

where U, is decided as follows.
Let

U={([A—1Vn-1B, - - Ya-1°By - - Buym Vdl,
W, W},
Wu=FIRST(B,---B,y,)®V,.

If ¥ includes U, equal to this U, use the U,
otherwise let

s'i=r:=r+1, U,:=U, ¥:=Yu{U,},

and use this U, as U;.
(b) For (A—ay-any, V], W, WeK,.

action(U,, x)=shift, xeW,;, Vx=a. (*R2¥)
(ii) Goto-elements.
Let
goto(U,, X)=U,, (*R2%)

for ([dy—onys Xoya, Vi ks Wapy Wa,0eK,, where Ug
is decided as follows.
Let

U={(4s—>ap X0, VA,.]’ Wats WA..j)I
all possible 4},
where

W= {xlall xe(FIRST(,2)® V.0,)}.

If ¥ includes U; equal to this U, then use the U,
otherwise

si=ri=r+1, U,:=U, ¥:=Yu{U,},

and use this U, as U..
(5) Return to (2).
(6) For all U, being (U,, A)eT, let

goto(U,, A)=return. (*R3*)
(7) Let error all action- and goto-elements not de-
cided in the above method.

End of A3

Next a parsing algorithm which uses table M and M,
generated by Al, A2, and A3 is represented in a form of
program using a description language not explained here
but easily understandable.

The head symbol of stack is placed in X and the re-
maining string is in R, ¢ is an input text catenated with
$* at the right end and a right parse is generated on =.
The next procedures are defined.

pop = begin X:=WR;R:=""R end,

push(®) = R:=aR.

214

About an element of type (i, v), decided by (4.i.a) of
Algorithm A3, on line U, and column x of M, table,
the fields of i/ and v are subsequently referred to as
actionA(U,, x) and actionB(U,, x) respectively.

Ad4. LLC-Parsing Algorithm

begin
var
X: unionof I, Y, W, I, {¢’}, {*$’}, and N;
R: string of elements of , Y, P, I, {‘¢’}, {‘$’}, and
N;
t: string of ae(ZU{‘$’});
EZ: sequence of pel;
s: integer;
initialization: t:=text ‘$---$’; X:=Tg,; R:=e; E:=
e;
case X of
XeZ: if X=""¢ then begin pop; t:=V"t end
else fail;
XeY: if M(X, ®t)+error then
begin
push(M(X, ®1)); pop
end
else fail;

Xe¥: if action(X, ®t) =shift then
begin push(X); X: =goto(X, MVt); t: =M
end
else
if action(X, ®t) # error then
begin
s:=actionA(X, ®t); R:=C"V"R;
push(actionB(X, ®1)); pop
end
else fail;
Xel: begin Z:=ZX; pop end;
X="¢":begin pop; X:=goto(‘"R, X);
if X =return then
begin pop; pop end
else
if X'=error then fail
end;
X="%:if X=""¢ then accept and halt else fail;
end case

end A4 End of A4

When G is an SLL grammar, because it is possible to
use FOLLOW?’s instead of LFOLLOW's, the generation
method of parsing tables for SLL-grammars is simpler
than for LL-grammars. In the case of LLC-method too,
if G is an SLR(k) grammar or LALR(k), FOLLOW’s
are used in the place of LFOLLOW’s. As a result of this
replacement, table M is generated in the same algorithm
as one for SLL-grammars. Therefore, an lstate T, , of
AeN is A itself because one needs not consider the differ-
ence between contexts of A. Further, in these cases,
because it is possible to use for the generation of M,
techniques similar to SLR(k), LALR(k), and so on,

K. INoUE and F. FUIwARA

described in [11], the table generation algorithm becomes
very much easier for these grammars [12]. Although this
simplified algorithm is not explained here, it will be
referred to as AS hereafter.

For grammar G, it is proven by the comparison of the
behaviors of LLC- and LR-parsers for G that if an input
text ¢ is a sentence on G then the LLC-parser generates
the right parse of ¢, the same as one by LR-parser, with
the number of elementary steps proportional to |¢] and
if it is not a sentence the parser halts on the recognition
of the leftmost error-symbol [12].

5. Experiments, Discussions, and Conclusions

In this section, LLC-parsing tables for small-sized
grammars are examined, in comparison with their LR-
parsers. After this, a similar comparison is done for the
parsers of more practical languages, XPL, EULAR,
FORTRAN 7000, and ALGOL 60, generated using an
LLC-parser generator.

Example grammar 3.1, in Section 3, is really an
LALR(1) grammar. It is possible, for implementing its
parser, to use the simplified algorithm AS and the tables
generated by AS are shown in Table 5.1(a), which are the
same as ones in Table 3.1 except non-terminal names are
substituted for the corresponding /-state names in Tables
M and M. Table 5.1(b) shows LALR(1) parsing table
for the same grammar.

Because the occurrence of r-states is originated in the
deviation from LL-ness of the grammar, it is reasonable
to represent the complexity of the grammar by

(the number of r-states)/((the number of I- and r-states)

-1 (5.1)
In comparison with this formula,

1—(the number of I- and r-states)/(the number of

LR-states) (5.2)
represents state-reducibility of LLC-technique from LR-
one. These values for Table 5.1 are 0.75 and 0.26 respec-
tively, as shown in Table 5.4 together with the numbers
of terminals, non-terminals, productions, and the num-
bers of /-, r-, and LR-states.

In Table 5.4, the results of the following examples are
also represented, and their parsers are shown in table 5.2
and 5.3.

Example 5.1

G=({S, E, T, F}, {+, % (., i}, P,),

pe 0:S»E, 1. ESE+T,2: E-T,3: T>T+F,
=\4: T—F, 5: F»(E), 6: F>i

End of Example 5.1
Example 5.2
G=({S01 S’ A’ B}a {a’ b9 c, d}5 P9 SO),

P 0:Sy—S,1: S—»Aa,2: S—+dAb, 3: S—»Bb,
“)4: S—>dBa, 5: A—c, 6: B—c

End of Example 5.2

On LLC(k) Parsing M.

hod of LR(k) Gr

Table 5.1(a) LLC-parsing table for example 3.1,

S

FO
aAl

FO
bB2

FO

U,

U

FO
CcU,U,

Jel0

action

215

a

d

Us l,a4¢ F
U, 19¢B

2,8¢B

1,b3¢ F

1,7¢ 4

2,6¢ A

)

1,46 ¢ A
1,B8¢ B

0,d12¢ D

1,d11¢ D

Ull
2,5¢F
1,7¢4
1,9¢ B

U,

Ull)

U,

action

Table 5.1(b) LR-parsing table for example 3.1.

goto

a b

e F

A

B C D a b c

S, s K

W
o
@

10
11

sl.l

N

B WONQ =

0 o

Ss

SJ.l

Sll

So.1

Ss S, S, Sa S5
Ss
Sa1

Ss.1
S6.1

SlO.l

Si.2

sl‘l

s!.l

Example 5.1 is an SLR(1) grammar and Example 5.2,
taken from Example 7.27 of [11], is a non-LALR(1)
grammar, an action-conflict of which is resolved by split-
ting state 5 to states 5 and 9, based on Algorithm AS [12,
11}. Because the grammars of Example 5.1 and 5.2 have
special complexities and these all are small sized ones,
then it is natural to have rather low reducibilities as
shown in Table 5.4.

To see what tendency for the grammars of languages
for practical usage are shown, LLC(1) parsers of XPL
[4], EULER [3], FORTRAN 7000 [13], and ALGOL 60
[14] were generated using an LLC(1) parser generator

based on Algorithm AS. At the same time, LALR(1)
parsers for the above languages were generated using an
LALR(1) parser generator.

The figures based on the generated parsers are shown
Table 5.5. In comparison with Table 5.4, table reducib-
ility of LLC-parsing tables to LR-parsing ones (1—
size-ratio of both tables) is shown in Table 5.5.

The generated parsing tables are a list type with ex-
cluded error-clements, and contracted with several tech-
niques superposing elements with the same values. Of
course, these contraction techniques are equally applied
to both LLC- and LR-parsing tables. The size of a table

216 K. INOUE and F. FUIIWARA

Table 5.2(a) LLC-parsing table for example 5.1.

M
(i
S Ul Ul
F (UsUsg i6
My action goto)
+ « () i e S E T F
U, 0,(Us 0,i6¢ F r U, Us U,
U, 1,+ UsUs 1,0¢ S
Us 1,2¢ E 1,*F3¢ T 12¢E 12¢E
U, 1,4¢T 1,4¢T 14¢T 1,4¢T
Us 0,(Us 0,i6¢ F U, U, U,
Us r
U, 1,+ UsUs 2)5¢F
Us 0,(Us 0,i¢F Us U,
Us 3,1¢E 1,*F3¢ T 31¢E 3I¢E
Table 5.2(b) LR-parsing table for example 5.1.
action goto
+ * () i e s E T F + - () i
S 1 s 5 S 2 S 3 S‘ S s S 1.1
AYY s a Ss
S5 2 s 2 2 Saa
S, 4 4 4 4
Ss K} 5 S, Ss Ss Ss Sia
Si.1 6 6
S5 K] s Ss S7.1
Ss s s So S Ss Sia
3.1 s s Ss.2 Ss Si.a
So 1 s 1 1 S3a
S3.2 3 3 3 3
S7.4 5 5 5 S
Table 5.3(a) LLC-parsing tables for example 5.2. Table 5.3(b) LR-parsing table for example 5.2.
_A:I__ action goto
¢ d a b cde S A B a b c d
So S0 S0 Sy s s S; 83 S. Ss Ss
S U, 1 Uz 52 a
. S s S3.1
Mg action goto S s St
a b c d S A B ¢ d S's 56
U, s r Us U‘ Us SG s S7 ss s‘)
U, s r Us S !
Us lal¢s Sax 3 <
U, 1,63¢ S S, s 7.1
Us 1,5¢4 16¢B Ss s Ss.1
Us s U, Us Us S7.1 2
U, 2,62¢ S Se.1 4
Us 2a4¢8 So 6 5
U, 1,6¢B 1,5¢4
keeping the non-terminals of the left-hand sides and the
lengthes of the right-hand sides of each productions is Table 5.4 Complexity and comparison between LLC- and LR-
added in the size of LR-table. In the case of LLC-parser, parsers of example grammars 3.1, 5.1 and 5.2.
there is not such a table, because of including all informa- Grammars Example 3.1 Example 5.1 Example 5.2
tions of productions in M and My tables. Terminals 5 5 4
From Table 5.5, it is understood that the value of Non-terminals 1;’ ‘:; "6'
table-reducibility is about the same as one of state- }::’;‘;cm’m 5) 2
reducibility for each gram'mar anfj thesc?, values represent r-states 12 9 9
grammar-dependency. It is very intresting that the com- LR-states 23 12 13
plexity is remarkably low and both reducibilities are high Complexity 0.75 0.90 0.90

for EULER with a simple precedence grammar. State-reducibility 0.26 0.08 0.15

On LLC (k) Parsing Method of LR(k) Grammars

Table 5.5 Complexity and comparison between LLC- and LR~
parsers of XPL, EULER, FORTRAN 7000 and

ALGOL 60.
Grammars XPL EULER FORTRAN ALGOL 60
Terminals 47 74 63 66
Non-terminals 51(13) 45(12) 77(20) 99(22)
Productions 108 121 172 205
l-states 38 33 57 77
r-states 101 59 153 190
LR-states 180 193 322 337
LLC-table 1,476 1,288 2,426 3,154
(bytes)

LR-table 2,041 2,587 3,662 4,264
(bytes)

Complexity 0.73 0.65 0.73 0.7

State-reduci- 0.24 0.52 0.35 0.21
bility

Table-reduci- 0.28 0.50 0.34 0.26
bility

As a summary, the following should be said.

(1) The LLC parsing algorithm accepting sentences on
an LR grammar and the generation algorithm of the
parser which combined to LL-parsing the least
amount of LR-like parsing were described.

(2) For transitions between /- and r-states in LLC-
parsing, it is not necessary to have any additional
context information, because LFOLLOW’s cor-
rectly give information for both /- and r-states
(FOLLOW’s when the SLL and SLR combination).

(3) If SLL grammars are used as the basis of LLC
technique, LALR-like techniques resolving action-
conflicts for LR grammar should also be usable.

(4) LLC-parsing correctly generates the right parse for
an input text, with the number of steps propor-
tional to its length, when the text is a sentence on
the grammar G on which the parser is generated,
and the parser recognizes the leftmost error and
halts at the error position when the text is not a
sentence on G [12).

(5) The parsing speed of LLC technique might be
thought to be slower than a LR parser for the same
sentence because of expansion (case of XeY in A4)
processes occurring at J-states of the former.
However, because the final state of an expansion
sequence is known at the time of table generation,
it is easy to generate a table replacing by one step-
action an expansion sequence.

(6) About the languages for practical usages, XPL,
EULER, FORTRAN 7000, and ALGOL 60, the

217

reduction of table size from LR-parsing table (SLR
or LALR) is about 35 percents in average, although
the reduction value is language-dependent and is the
largest for EULER with a simple precedence gram-
mar.

(7) An objective measure was given to represent the
complexity being deviation from LL-ness of
grammars.

References
1. KnNuTtH, D. E. On the Translation of Languages from Left to
Right, Information and Control 8, 6 (1965), 607-639.
2. Lewis, P. M. II and Stearns, R. E. Syntax Directed Trans-
duction, J. ACM 15, 3 (1968), 464-488.
3. WmrTtH, N. and WeBER, H. EULER—a Generalization of
ALGOL and Its Formal Definition, Part I and Part II, C. ACM 9,
1, 13-23 and 2 (1966), 89-99.
4. MCcKEeeMAN, W. M., HORNING, J. J. and WoRrTMAN, D. B. A
Compiler Generator, Prentice-Hall Inc., Englewood Cliffs, N.J.
(1970).
S. IcHBIAH, J. D. and MoRsE, S. P. A Technique for Generating
Almost Optimal Floyd-Evans Productions for Precedence Gram-
mars, C. ACM 13, 8 (1970), 501-508.
6. INoOUE, K. Right Precedence Grammars (in Japanese), Johoshori
11, 8 (1970), 449-456: INouUE, K. Right Precedence Grammars,
Information Processing in Japan 11, (1971), 24-29.
7. KRraL, J. Almost Top-Down Analysis for Generalized LR(k)
Grammars, Lecture Notes in Computer Sciences 47, (1977), 149—
172.
8. ROSENKRANTZ, D. J. and Lewis,. II, P. M. Deterministic Left
Corner Parsing, IEEE Conf. Record 11th Annual Symposium on
Switching and Automata Theory, (1970), 139-152.
9. DEMERs, A. J. Generalized Left Corner Parsing, Conf. Record
of the Fourth Annual ACM Symposium on Principles of Program-
ming Languages, (1977), 170-181.
10. FunwaRra, F. and INOUE, K. An Extension of LL(k) Parsing
Method by LR(k)-like Method (in Japanese), Proc. of ECSJ, (1977),
1304: Funwara, F. and INoUE, K. A Mixed Approach of Parsing
Method for SLR(k) Grammars, Proc. of IPSJ 18, (1977), 599-600:
FUNWwARA, F. A Flexible-Top-Down Analysis for LR(k) Grammars,
Master Thesis, Dept. of Information Sciences, Tokyo Institite of
Technology (1978).
11. AHO, A. V. and ULLMAN, J. D. The Theory of Parsing, Trans-
lation, and Compiling I and II, Prentice-Hall, Inc., Englewood
Cliffs, N.J. (1972).
12. Inoug, K. and Funwara, F. On LLC(k)-parsing Method of
LR(k) Grammars, Research Reports on Information Sciences,
Series C, C-37, Tokyo Institute of Technology (1981).
13. KoimMa, T., KaTo, M. and NAKATA, 1. An LR(k)-Parser Gen-
eration System and Its Application to FORTRAN-Compiler (in
Japanese), Johoshori 15, 2 (1974), 93-100.
14. NAUR, P. et al. Report on the Algorithmic Language ALGOL
60, C. ACM 3, 1 (1963), 1-17.

(Received May 6, 1982; revised July 25, 1983)

