Invited Paper

Coverage Measure for Path Testing Based on the
Concept of Essential Branches *

TAKAESHI CHUSHO**

A new coverage rate based on essential branches (full coverage implies coverage of all branches) is proposed
for efficient and effective software testing. The conventional coverage measure for branch testing has defects
such as overestimation of software quality and redundant test data selection, because all branches are treated
equally. In order to solve these problems, concepts of essential branches and nonessential branches for path
testing are introduced. Essential branches and nonessential ones are called primitive and inheritor arcs, re-

spectively, in a control flow graph of a tested program.

A reduction alogorithm for transforming a control flow graph to a directed graph with only primitive arcs
is presented and its correctness is proved. Furthermore, it is experimentally and theoretically ascertained that
the coverage measure on this inheritor-reduced graph is nearly linear to the number of test cases and therefore

suitable for software quality assurance.

1. Introduction

Program testing constitutes about half of the software
development costs and is the key to improving software
productivity and reliability.

A lot of different software testing tools have already
been developed which support many aspects of software
testing [1], [2], and, in particular, great attention has
recently been paid to path testing [3]-[5]. Path testing is
intended to execute all paths reaching from an entry to
an exit on a control flow graph of a tested program.
Notably, branch testing of simplified path testing is more
practical because exact path testing often requires an
enormous amount of test data. A typical branch testing
tool measures the ratio of executed branches to all
branches in a program. This coverage measure is used to
estimate testing sufficiency and to select test data by
which unexecuted branches are executed. This technique
[6] is used in many tools such as RXVP [7], SADT [8],
ATA [9] for Fortran, CIP [10] and SMOTL [11] for
Cobol, HITS [12] for microcomputer software.

Conventional branch testing, however, has the follow-
ing two defects because all branches are treated equally:

(1) Redundant test data is apt to be selected when the
conventional branch testing is used for test data selection.

(2) Quality is overestimated when the conventional
branch testing is used for quality assurance.

These problems can be avoided by paying attention to
only essential branches for path testing. That is, if one
branch is executed whenever another particular branch
is executed, the former branch is nonessential for path

*This paper /is a translation from Japanese of Transactions of
IPSJ, Vol. 23, No. 5 (1982), which received an award as the 1982
winning paper of IPSJ.

**Systems Development Laboratory, Hitachi, Ltd., 1099 Ohzenji,
Asao-ku, Kawasaki 215, Japan.

Journal of Information Processing, Vol. 6, No. 4, 1983

testing. This is because a path covering the latter branch
also covers the former branch. Branches other than such
nonessential branches will be referred to as essential
branches.

First of all, this paper introduces a directed graph ob-
tained from a control flow graph of a tested program by
eliminating arcs, which correspond to nonessential
branches. Next, a new coverage measure based on the
number of essential branches which is executed at least
once by test runs of a program is proposed. Finally, it is
experimentally ascertained that this measure is more
suitable for quality assurance than a conventional meas-
ure based on all branches.

2. Conventional Method

2.1 Branch Testing

Software testing is generally performed by dynamic
testing in such a way that a program is executed with
various input data and then each result is confirmed. In
this method, however, it is impossible to test all possible
input data. Therefore, a finite test data set should be se-
lected so as to assure high quality of the tested program
under time and cost limitation.

Path testing is one technique for this purpose, and is
intended to execute as many feasible paths from an entry
to an exit on a control flow graph of a program as pos-
sible. The coverage measure based on this technique is as
follows:

the number of executed paths
the number of all feasible paths in a program”

Cpa th=

This measure, however, is not practical since the num-
ber of feasible paths is enormous in most programs be-

200

cause of iterations. Therefore, for practical purposes,
attention is paid to a path component instead of a path.
This component, called the dd path (decision to decision
path), is defined to be a partial path in a control flow
graph such that (a) its first constituent edge emanates
from either an entry node or a decision box, (b) its last
constituent edge terminates at either a decision box or an
exit node, and (c) there is no decision box on the path
except those at both ends, where a decision box is a node
with two or more exit arcs. The coverage measure based
on such dd paths is as follows:

_ the number of executed paths

"~ the number of all dd paths in a program’
This technique is called branch testing because this meas-
ure promotes execution of all branches. The following
are the uses of this measure:

(1) It is used to detect a lack of test data, and addi-
tional data are selected so as to reach unexecuted dd
paths.

(2) Itis used as an index of testing sufficiency and it
is considered that the higher the measure, the higher the
quality of the tested program.

Caa

2.2 Problems of the Conventional Method

For a demonstration of the first problem, consider the
program in Fig. 1 and the following test cases:
Case 1: Both logical predicates L, and L, are true.

So
if L,
then if L»
then S,
else S,

else S; ;

S,

(a) (b)

Fig.1 A program example. (a) Source. (b) The control flow
graph.

Coverage rate 3
o}
L

N

The number of test data

Fig.2 Coverage rate curve of branch testing.

T. CHUsSHO

Case2: L, is true but L, is false.

Case 3: L, is false.

There are five dd paths, 4, b, ¢, d and e in the control flow
graph of this program as shown in Fig. 1(b). When
Case 1 is first executed, a, b and d are covered and Cy, is
3/5. After Case 2 and 3 are executed sequentially, Cyq
will become 4/5 and 5/5, respectively.

However, it is desirable that the coverage rate in-
creases by 1/3 per case when the essential measure C,,
is used, because there are three paths in this program.
The difference between Cyy and C,,, 4, in the increase trend
is caused by the fact that the degree each case contributes
to Cyq depends on the execution order, because the non-
essential dd paths for path coverage, a and b, and the
essential dd paths, ¢, d and e, are treated equally. Con-
sequently, when using Cyy instead of C,,,,, there is a
problem that the quality of the tested program is over-
estimated as shown in Fig. 2 in which the bold line is Cy,
and the broken line is a ratio of executed test data to all
test data. That is, when a coverage rate is less than 1009,
C,q is greater than a ratio of executed test data to all test
data.

3. The Primitive Arc Concept

3.1 Primitive and Inheritor Arcs

In this section, the concepts of primitive and in-
heritor arcs in a control flow graph are introduced to
discriminate between the essential and nonessential
branches described previously.

Definition 1: A program is so transformed to a di-
rected graph that a node corresponds to a basic block*
which is a sequence of statements to be executed se-
quentially and an arc corresponds to control transfer be-
tween basic blocks. Each entry and exit is transformed
into individual nodes.** This graph is called a control
flow graph and is denoted by G(N, 4), where N is a set
of nodes and A is a set of arcs.

In the remainder of this paper, nodes are represented
by lower case letters from the end of the alphabet such as
x, y or z, and arcs from x to y are represented by (x, y) or
lower case initial letters of the alphabet such as a, b or c.

Definition 2: For each node x, let IN(x) be the num-
ber of arcs entering x, and OUT(x) be the number of arcs
exiting from x. A node x with IN(x)=0 is called an
entry node and x with OUT(x)=0 is called an exit node.

Definition 3: For any path from an entry node to an
exit node, if the path including an arc a always includes
another arc b, b is called an inheritor of a, and a is called

*Although the correspondence between a basic block and
statements depends on the control statements of each individual
programming language, it is not detailed in this paper because
there is no relation with the subject of this paper.

**Since each entry or exit does not correspond to a node in the
definition of a control flow graph in [13], a program with no
branches and no loops is transformed into a single node. In this
paper, however, each entry or exit corresponds to one node be-
cause coverage of paths from an entry to an exit is discussed.

Coverage Measure for Path Testing Based on the Concept of Essential Branches 201

an ancestor of b. This is because b inherits information
about the execution of g, that is, b is executed whenever
a is executed.

Definition 4: An arc which is never an inheritor of
another arc is called a primitive arc.

Definition 5: A directed graph with no inheritors is
called an inheritor-reduced graph.

3.2 Elimination of Inheritors

This section introduces several reduction rules which
eliminate inheritors from a directed graph.

Definition 6: Arcs incident to the same node in a
path are called adjacent arcs.

Theorem 1: If there is an inheritance relation between
two arcs which are not adjacent, the inheritor has its
adjacent arc as another ancestor.

Proof: For two arcs a and b, let g be an inheritor of
b, but not adjacent to b. All paths including b are repre-
sented by either of the following two sequences of arcs
composing a path from an entry node to an exit node:
(1) e -ce,a,e i -e,b e, e
) e;---enbe i e,a,e, 6
First consider case (1). Since a and b are not adjacent,
€;,, exists. Then, assume that a is not an inheritor of
e;. ;. Because there must be at least one path including
;.. but excluding a, the partial path from an entry node
to e;,, of this path can be connected to another partial
path from e;,, to an exit node in (1). Since this con-
nected path includes b but excludes a, then a can not be
an inheritor of b. This result leads to the contradiction.
Consequently, @ must be an inheritor of e;, ,. The proof
of case (2) is the same as for case (1).[]

Definition 7: For a node x, an arc (x, x) is called a
self-loop.

Theorem 2: A self-loop is a primitive arc.

Proof: It is obvious that a self-loop does not become
an inheritor of the adjacent arc. Therefore, it is proved
from Theorem 1 that a self-loop is not an inheritor of
any arc.[]

Definition 8: A node y is called a dominator of a node
x if all paths from an entry node to x include y. A node
z is called an inverse dominator of x if all paths from x to
an exit node include z. Let DOM(x) and IDOM(x) be
sets of dominators and inverse dominators of x respec-
tively. An algorithm for obtaining DOM(x) is detailed in
[13). An algorithm for obtaining IDOM(x) is led from
the algorithm for obtaining DOM(x) by inverting arc
directions.

Following the above consideration, the condition for
an inheritor is discussed. From Theorems 1 and 2, it
suffices to consider whether an arc between different
nodes is an inheritor of its adjacent arc or not. The
general form of such an arc is shown in Fig. 3. The
condition for a being an inheritor of b, c, d or e in Fig. 3,
will be examined by considering the following four
cases:

Case 1: a is an inheritor of b:

A path passing through b necessarily passes through a

Fig. 3 General form of an arc and its two nodes.

or ¢ because x is not an exit node. Therefore, a path
passing through b necessarily passes through a, only if
the following condition holds:

(1) There is no ¢, or

(2) there are one or more ¢’s, and a path passing
through ¢ necessarily returns to x. That is, x is an in-
verse dominator of the drain node for c.

Case 2: ¢ is an inheritor of c:

The condition of this case is the same as the second
condition of Case 1.

Case 3: a is an inheritor of d:

A path passing through d passes through a or e be-
cause y is not an entry node. Therefore, a path passing
through d necessarily passes through a, only if the follow-
ing condition holds:

(1) There is no e, or

(2) there are one or more e’s, and a path passing
through e necessarily passes through y previously. That
is, y is a dominator of the source node for e.

Case 4: a is an inheritor of e:

The condition of this case is the same as the second
condition of Case 3.

The above four conditions give the following reduction
rules for the elimination of an inheritor:

Condition 1: For a directed graph G(N, A),

x, YN AX£y A(x, y)EA.
Reduction rule R1: Under Condition 1, if
IN(x)+0 AOUT(x)=1,

(x, y) is eliminated from A4, and x and y are merged into
one as shown in Fig. 4(a).

With respect to arrows of arcs in the figures, the bold
line is an eliminated arc, the fine line is another arc in

(a) (b)
Fig. 4 Applications of the reduction rules. (a) R1. (b) R2.

202

(a) (b)

Fig. 5 Applications of the reduction rules. (@) R3 (x is an
inverse dominator of w). (b) R4 (y is a dominator of w).

existence, and the broken lines are one or more arcs
which may exist.
Reduction rule R2: Under Condition 1, if

IN(»)=1AO0UT(»)+0,

{x, y) is eliminated from A, and x and y are merged into
one as shown in Fig. 4(b).
Reduction rule R3: Under Condition 1, if

OUT(x)>2 and
xeIDOM(w) for V we{w|(x, w)ed Aw+y},

(x, y) is eliminated from A4, and x and y are merged into
one as shown in Fig. 5(a).
Reduction rule R4: Under Condition 1, if

IN(»)>2 and
yeDOM(w) for V we{w|(w, y)ed Aw*x},

(x, y) is eliminated from 4, and x and y are merged into
one as shown in Fig. 5(b).

3.3 Reduction Algorithm

Using these four reduction rules, the algorithm for
transforming a directed graph to an inheritor-reduced
graph is given as follows:

Algorithm 1: For a given directed graph G(N, A),
the following procedure is executed :

(1) Apply R1 for any arc which satisfies the condition of
RI.

(2) Step (1) is repeated until no further suitable arcs are
found.

(3) Apply R2 for any arc which satisfies the condition
of R2.

(4) Step (3) is repeated until no further suitable arcs are
found.

(5) Write an inheritor mark on any arc (x, y) which
satisfies the condition of R3, if there is at least one arc
without an inheritor mark among input arcs of x or
among arcs composing a path from output arcs of x to x
except (x, p) itself.

(6) Step (5) is repeated until no further suitable arcs are
found.

(7) Write an inheritor mark on any arc (x, y) which
satisfies the condition of R4, if there is at least one arc

T. CHUSHO

without an inheritor mark among the output arcs of y or
among arcs composing a path reaching inversely from
input arcs of y to y except (x, y) itself.

(8) Step (7) is repeated until no further suitable arcs are
found.

(9) Eliminate any arc with an inheritor mark and merge
the two nodes on both ends of this arc into one.

(10) Step (9) is repeated until no arcs with an inheritor
mark are found.

In the remainder of this section, it will be proved that
the directed graph reduced by this algorithm has the
following features:

(1) A set of paths covering all arcs in the reduced graph
covers all arcs in the original graph.

(2) The number of arcs in the reduced graph is mini-
mum among graphs with the feature of (1).

Several lemmas are introduced.

Lemma 1: By applying R1 or R2, a new path is never
created and an old path is never lost.

Proof: It is obvious from Fig. 4.

Lemma 2: By applying R3 or R4, an old path is never
lost.

Proof: It is obvious from Fig. 5.

Lemma 3: By applying R1, R2, R3 or R4, a new
inheritance relation is never created.

Proof: Let a and b be arcs which are not eliminated
by a reduction rule, and suppose that a is not an inheritor
of b in the original graph. Then there is at least one path
passing through b but not through a. Lemmas 1 and 2
assure that this path is never lost after reduction. Con-
sequently, a does not become an inheritor of .[]

Lemma 4: For any two arcs a and b (not necessary
adjacent), if a is an inheritor of b, a can be eliminated by
one of four rules.

Proof: It is obvious from Theorem 1.

Lemma 5: Any two arcs in a directed graph obtained
by Algorithm 1, do not have an inheritance relation in the
original graph.

Proof: Consider Algorithm 1. After step (1), there is
no x satisfying the following condition:

IN(x)#0 A OUT(x)=1.

Next, consider whether the merged node z satisfies the
condition of R1 after step (3). Since the condition of R2 is

IN(»)=1A0UT(»)+0,
the following conditions on z are obtained:
IN(z) =IN(x)+(IN(y)—1)=IN(x), and
OUT(z)=(0OUT(x)— 1)+ OUT(») = OUT(x).

Therefore, in order that z satisfies the condition of R1,
the following condition should be necessary:

IN(x)40 A OUT(x)=1.

The existence of such an x contradicts the termination
condition of step (2) described previously. Consequently,
because step (3) never creates a node which satisfies the

Coverage Measure for Path Testing Based on the Concept of Essential Branches 203

condition of R1, there are no nodes satisfying the condi-
tion of R1 or R2 after step (4).

By Lemma 4, an inheritor which exists after step (4)
and not eliminated at step(10), is only such a one that all
ancestors are appended inheritor marks at step (5) or (7).
Then, after these ancestors are eliminated at step (10),
this inheritance relation is removed. Consequently, all
inheritance relations existing at step (1) do not remain
after step (10).(]

Lemma 6: A directed graph obtained by Algorithm 1
is an inheritor-reduced graph.

Proof: It is obvious from Lemmas 3 and 5.

Lemma 7: For any three arcs a, b and ¢ in a directed
graph, if a is an inheritor of b and b is an inheritor of c,
then g is also an inheritor of ¢. (Transitive Law)

Proof: It is obvious by the definition of an inheritor.

Lemma 8: Among ancestors of an inheritor elimi-
nated by Algorithm 1, at least one still remains in the re-
duced graph.

Proof: It is obvious from Lemma 7.

Theorem 4: The directed graph reduced by Algo-
rithm 1 has the following features:

(1) A set of paths covering all arcs in the reduced graph
also covers all arcs in the original graph.

(2) The number of arcs in the reduced graph is mini-
mum among graphs with the feature of (1).

Proof: Item (1) is obvious from Lemma 8. Item (2) is
obvious from Lemmas 5 and 3.[]

In Algorithm 1, R1 and R2 are applied sequentially
because of simplicity and convenience. R3 and R4,
however, are not applied sequentially and arcs to be
eliminated are marked instead because an inheritor rela-
tion is sometimes lost by a new path possibly created
after application of R3 or R4.

Although the application order of R1 and R2 is no
matter, the order of Algorithm 1 is such that R1 is prior
to R2. This has the following merits:

(1) Each arc in the reduced graph corresponds uniquely
to a paticular arc in the original graph.

(2) Furthermore, since the corresponding arc in the
original graph is a branch arc whose source node has two
or more exit arcs, each arc in the reduced graph also cor-
responds uniquely to a particular dd path in the original
graph. :

4. Application to Quality Assurance

4.1 New Coverage Measure

To avoid overestimation of quality assurance of pro-
grams as described in Chapter 2, a new coverage measure
C,., instead of C,y, is defined below on the inheritor-
reduced graph which is transformed from a tested pro-
gram by Algorithm 1:

C

pr
_ the number of executed arcs
the number of all arcs in the inheritor-reduced graph.

4.2 Features of C,,

The control flow graph of Fig. 3.2 in [13] as shown in
Fig. 6(a) is used as an example to experimentally observe
the difference between C,, and Cy4. This graph is trans-
formed into the inheritor-reduced graph of Fig. 6(b) by
Algorithm 1. Assume that the test data set of P,-P, as
shown in Table 1 is selected to cover all arcs in the control
flow graph and executed in this order. It is seen in Fig. 7
that C,, behaves more similarly to linear feature of C,,,,
than Cy,.

Table 1 also demonstrates the reduction rules applied
in Algorithm 1. However, arcs reduced by R1 are ex-
cluded since they are not branches and are not related to
either C,,, or Cy,.

Next, the difference between C,, and C,4 are theoreti-
cally analyzed, for a tested program, let # be the number
of test data required to cover all dd paths. In the control
flow graph, all arcs except arcs eliminated by R1 are
divided into two classes of arcs eliminated by R2, R3 and
R4, and other arcs. These arcs correspond to nonessential
branches and essential branches respectively. Let F and
G be the numbers of essential branches and nonessential
branches respectively. Let f; and g; be the numbers of
essential branches and nonessential branches executed
with the i-th test data. Overlap rates « and f are defined

as follows:
(8
(8)

The mean values of f;’s and g’s are defined by fand g as
follows:

[~
|

iM: i‘.M:

. (a) (b)

Fig. 6 An example for the comparison between C,, and Cyq.
(a) A control flow graph. (b) The inheritor-reduced
graph.

204 T. CHUSHO
Table 1 A set of paths for full coverage of all branches and the coverage rate with Cq4 and C,,.

Arc No. (n: Primitive arc) Csa Cu

1 3 4 5 6 7 8 1011 1213 14 15 16 17 19 20 21 22 24 25 (% (%

P1 X X X X X X X x 48 27

P2 X X X X X X X 62 36

P3 X X X X X X X X n 45

Paths P4 X X X X X X X X 81 64

PS5 X X X X X x X 90 82

P6 X X X X X X X X 95 91

P7 X X X X X X X X X x 100 100

Reduction R4 — R3 R2 — — — — R4 — R2 R4 — R3 — R2 — — R4 — R3
rule
C,/Caq is nearly equal to the experimental value of 1.75
160 in Fig. 7.
% A
/
/ 5. Conclusions
/

Caq // A new coverage measure for branch testing was pro-
3 it posed for more effective and efficient software testing.
Z 804 // This measure is defined by coverage by only essential
g * c,. branches, whereas the conventional measure is defined by
g g coverage of all branches. The essential branches are de-
3 7 fined so that full coverage of all essential branches may
3 P imply full coverage of all branches. These are called prim-
7 itive arcs in the control flow graph of a program. On the
[/ other hand, nonessential branches are called inheritor
i 2 3 4 & e 7 arcs because they inherit information about path cover-

The number of test data

Fig.7 Curves of C,, and Cqqa.

f= ('glf,)/nme/n.
‘7=(,:2, yx)/n=ﬂG/n-

When one average test data is first executed, Cyy and C,,,
become as follows:

C()= % ==,
Therefore,
Cuoir S(1),
Ce: F+G\a
Since a < f generally,
Cya>C,,-

This result accords with the previous experimental
result and confirms that the difference between C,, and
C,q is greater as the ratio of the number of nonessential
branches to that of essential branches increases. Apply-
ing this analysis to the example of Fig. 6, a=1.9, §=4.0,
F=11, G=10 and then C,;,/C,,=1.52. This value of

age from other arcs.

In this paper, four reduction rules for eliminating
inheritors from a directed graph were given. Then, the
algorithm for applying these rules to a directed graph was
introduced, and it was confirmed that this algorithm
transformed a directed graph to an inheritor-reduced
graph with no inheritors and that the number of arcs in
the transformed graph was minimum among inheritor-
reduced graphs transformed from a tested program.

It was demonstrated experimentally and theoretically

that the new measure based on coverage of arcs in this
inheritor-reduced graph had the following advantage in
comparison with the conventional measure:
(1) avoidance of software quality overestimation.
Furthermore, this measure has other advantages of:
(2) prevention of redundant test data selection, and
(3) decrease of the number of instrumentation codes
which should be embedded into a program for collection
of information about execution of branches by a tool for
coverage rate evaluation.

Further study is needed for application to test data
selection.

Acknowledgement

The author wishes to express his gratitude to Dr. Jun
Kawasaki for providing the opportunity to conduct this
study. He is also indebted to Tan Watanabe, Toru
Kurosaki and Toshihiro Hayashi for their invaluable
technical assistance.

Coverage Measure for Path Testing Based on the Concept of Essential Branche

References

1. Hoepen, W. E. A Survey of Dynamic Analysis Methods,
Tutorial: Software Testing & Validation Techniques, IEEE Catalog
No. EHO 138-8, New York, (1978), 184-206.

2. Myers, G. J. The Art of Software Testing, John Wiley & Sons,
New York, 1979,

3. HowpenN, W. E. Reliability of the Path Analysis Testing
Strategy, IEEE Trans. Softw. Eng., SE-2, 9 (1976), 208-214.

4. WEYUKER, E. J. and OSTRAND, T. J. Theories of Program
Testing and the Application of Revealing Subdomains, IEEE
Trans. Softw. Eng., SE-6, 5 (1980), 236-246.

S. WHITE, L. J. and CoHeN, E. I. A Domain Strategy for Com-
puter Program Testing, IEEE Trans. Softw. Eng., SE-6, 5 (1980),
247-257.

6. MILLER, E. F. Program Testing: Art Meets Theory, Computer,
10, 7 (1977), 42-51.

7. HuaNng, J. C. Error Detection Through Program Testing,

205

Current Trends in Programming Methodology, Vol. 11, (R. T. Yeh,
Ed.), Prentice-Hall, New Jersey, (1977), 16-43.
8. Voaes, U. et al. SADAT-an Automated Testing Tool, IEEE
Trans. Softw. Eng., SE-6, 5 (1980), 286-290.
9. HoLTHOUSE, M. L. and HaTtcH, M. J. Experience with Auto-
mated Testing Analysis, Computer, 12, 8 (1979), 33-36.
10. SorkowiTz, A. R. Certification testing: a Procedure to
Improve the Quality of Software Testing, Computer, 12, 8(1979),
20-24.
11. BICEVsSKIS, J. et al. SMOTL-a System to Construct Samples
for Data Processing Program Debugging, IEEE Trans. Softw.
Eng., SE-5, 1 (1979), 60-66.
12. CHusHO, T. et al. HITS: a Symbolic Testing and Debugging
System for Multilinguel Microcomputer Software, Proc. NCC’
83, (1983), 73-80.
13. HecHT, M. S. Flow Analysis of Computer Programs, North-
Holland, New York, 1978.

(Received September 14, 1983; revised November 4, 1983)

