Regularization of Solutions of Nonlinear Equations
with Singular Jacobian Matrices

NoORIO YAMAMOTO*

We consider a solution of a nonlinear equation with the singular Jacobian matrix at the solution. So far, to
such a solution, it has been difficult to get an approximation with high accuracy since the Jacobian matrix is
singular. We propose a method for overcoming the difficulty arising from the singularity of the Jacobian matrix.
We call this process the “regularization of solutions of nonlinear equations”. Since a system of nonlinear equa-
tions obtained from the regularization has a solution which makes the Jacobian matrix of the system non-singular
and contains the above-mentioned solution, we can get an approximation of the system solution as accurately as
we desire by the Newton method. Hence we can also obtain a desired approximation to the solution of the

original equation.

1. Introduction

We consider a real nonlinear equation
F(x)=0, (1.1

where xeR", F(x)eR", and F is a continuously differenti-
able mapping from some region Q in R" into R". Here
R” denotes the real n-dimensional Euclidean space.

When we compute a solution x=£eQ of the nonlinear
eq. (1.1), it is difficult to get a highly accurate approxima-
tion to the solution £ by applying the Newton method to
the eq. (1.1) in the case where the Jacobian matrix F (x)
of the function F(x) with respect to x is singular at x=2%.

However, introducing a parameter in the eq. (1.1) and
making use of the singularity of F,(%), we can regularize
the solution £ of the eq. (1.1) and we can get an approxi-
mation to £ as accurately as we desire by applying the
Newton method to a system of equations obtained from
the regularization, that is, (2.5) in Chapter 2. Such a
system is called an “augmented system”.

H. Weber and W. Werner [11] have proposed a
regularization method similar to ours. When dim
Ker (F,(£))=1 and Ker (F(£))nIm (F(£))={0}, they
have considered an augmented system similar to (2.5)
and they have obtained a result similar to Theorem 1 in
Chapter 2, where Ker (F,(£)) denotes the kernel of
F,(8) and Im (F,(£)) denotes the image of F (2). How-
ever, when the condition Ker (F (£))nIm (F (%)) = {0} is
not satisfied, they have considered a complicated aug-
mented system instead of the one similar to (2.5).

On the other hand, in our case, we consider only the
system (2.5), whether the condition Ker (F (2))n
Im (F,(£))={0} holds or not. Hence our method seems
to be more useful and convenient than their method.
For details, see Remark 4 in Chapter 2 and Example 1 in
Chapter 3.
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Further, when the Jacobian matrix has a high sin-
gularity at the solution, they did not describe anything.
On the other hand, we can consider the solution with the
Jacobian matrix which has such a high singularity and we
give a condition for classifying solutions with singular
Jacobian matrices.

In Chapter 3, in order to illustrate our theory and
method, we present some examples of solutions of non-
linear equations with singular Jacobian matrices.

2. The Method for the Regularization of Solutions of
Nonlinear Equations

We consider a solution x= £eQ of a real n-dimensional
nonlinear equation

F(x)=0 Q@1

such that the rank of the Jacobian matrix F,(x)isn—1 at
x=2%, where the function F(x) is defined in some region
Q(<=R") and F(x) is continuously differentiable with
respect to x in Q.

In order to simplify the following argument, we
assume that

rank F (£)=rank Fy(*)=n—1, 2.2)

where Fy(%) is the nx (n— 1) matrix obtained from F,(%)
by deleting the first column vector.

Then there exists a positive integer k(1 <k <n) such
that

rank (F,(8), e,)=rank (Fo(%), e,)=n, 2.3)
where ¢, is the k-th unit vector, that is,
ek=(0”"’0a l’ 0:"') O)T- (2‘4)

A
(k-th component of e,)

Here (- - -)T denotes the transposed vector of a vector
Now, making use of the singularity of the Jacobian
matrix F,(£), we consider an augmented system consist-
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ing of the eq. (2.1) and additional equations involving the
Jacobian matrix. That is, since the equation F,(£)h=0
has a nontrivial solution due to (2.2), we introduce a
parameter B in the eq. (2.1) and we consider the system

F(x)— Be,
G(x)= (F,,(x)h ) =0, 2.5)

hy—1

where x=(x, h, B)T, x=(x,,"-*, x,)7 and h=(h,, ",
h,)T. Then, by (2.2), the system (2.5) has a solution £=
(&, k, 0)T (where h is a solution of the equation F (£)h=
0, i, —1=0), and in particular, the x-component £ of £ is
the desired solution of (2.1). For the solution £ of (2.5),
we have the following theorem.
Theorem 1. Assume that the function F(x) is twice
continuously differentiable with respect to x in Q.

Then the matrix G’(£) is non-singular if and only if

rank (Fy(%), D=n, (2.6)

where G’(x) denotes the Jacobian matrix of G(x) with
respect to x and 1={F,_ (2)A}A. Here F,_.(x) denotes the
second derivative of F(x) with respect to x.

Proof. Since F(x) is twice continuously differentiable
with respect to x, the function G(x) defined by the
equality (2.5) is continuously differentiable with respect
to x and we have

F&x) 0 -e
G'(x)=|F,(x)h Fu(x) 0 .7
00---0 10---0 O
Then, for the solution £, we have
FB® 0 -—&
det G'(®)=|F. () F.2) 0
00.--0 10---0 O
0 Fo® 0 O —e
=1 F,&, k) 0 Fo() 0|, (2.8)
0 0--.0 10---0 O

where F,(%, h) is the nx (n—1) matrix obtained from
F,(®)h by deleting the first column vector.
From (2.8) it follows that

det G'(£)=0 is equivalent to (2.6). 2.9

This completes the proof. Q.E.D.
Remark 1. We propose another way of introducing a
parameter in the eq. (2.1). By Theorem 1, we may con-
sider the system

F(x)~ B{F,(x)h}h
) =0 (2.10)

G(x)=| F.(x)h
h—1

instead of the system (2.5) if the function F(x) is three
times continuously differentiable with respect to x in Q
and the condition (2.6) is satisfied. In this case, we must
compute the second derivative F,,(x), but we need not
look for the vector ¢, satisfying the condition (2.4). Then
the solution £ of (2.5) is also a solution of (2.10). For the
solution £, we have a result similar to Theorem 1.
When rank (Fy(%), )=n— 1, since the equation

F($)k+1=0,
{ AR+ .11)

k,=0

has a solution k=(k,, - -, k,)7, we introduce one more
parameter and we consider the system

F(x)—B, ¢
F(x)h,— By&,
F(x)hy+1, =0,
hl—1
h3
where x, =(x, hy, h,, By, BT, h;=(h!, k2, -, B)T(i=1,
2) and I, ={F, (x)h }h,.
Evidently, the system (2.12) has a solution £,=(%, f,,
h,,0,0)7, where h, is a solution of (2.11). For this
solution £,, we readily get the following theorem.
Theorem 2. Assume that the function F(x) is three times
continuously differentiable with respect to x in Q.

Then the matrix G;(£,) is non-singular if and only if

rank (Fy(%), 1,)=n, (2.13)

Gi(x)= (2.12)

where

G{(x4) denotes the Jacobian matrix of G,(x;) with
respect to x, ;

XO=F(x), XV=XxOh,, XO=XPh,+ XDk, and

,=X®@h 428Wf, where X(j=0,1) denote the

derivatives of X(j=0, 1) with respect to x, respectively,
and X(i=0, 1, 2) denote the values of X"(i=0, 1, 2) at
x=2, hy="h, and h,=h,, respectively.
Remark 2. If the function F(x) is four times continu-
ously differentiable with respect to x in Q and the condi-
tion (2.13) is satisfied, we may consider the system

F(x)—~Byl,
Fy(x)hy — Byl,

Gi(xy)= Ff(x)hz+{Fx,(X)h1}h1 =0 (2.19)
i

instead of the system (2.12), where [, = X®h, +2XVh,.
More generally, let us suppose that the function F(x) is
(d+2) times continuously differentiable with respect to
x in Q(d=2).
Put

i
XYt = kzo CXPh o (<i<d) (2.15)
and

i
=Y CGX%h, - (<i<d+1) (216)
k=1

where X{(j=0, 1, - -, d) are the derivatives of X")(j=
0, 1,---,d) with respect to x, respectively, and h(i=
1,2,- -+, d+1) are n-dimensional vectors.
If there exists a (d+ 1)n-dimensional vector $,=
(&, Ay, -+, hy)T such that the conditions
(i) ZRisasolution of (2.1) satisfying (2.2) and (2.3), (2.17)
(i) X©h,=0,hi-1=0and Xh,,,+1,=0, h},,=0
(.l= 1’23' ) d— l)! (2‘18)

(iii) rank(Fy(8),})=n—1 (2.19)
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are satisfied, then we introduce (d+ 1) parameters B,
B,,---, B;,, and we consider the system

F(x)—B,e,
X(O)hl - Bzek
XOp, 4 XV, — Bye,

_|d-1 ’
Gz = Z a-1CXOhy_;— By, e
=0

d
Y dCiXOhyyy

i=o
Va(xs)
F(x)— B,e,
X(o)hl —Bzeg
X(o)hz +ll —Baek

: =0, (2.20)
Xyl — By 6
XOh,,  +1,
Va(xs)

where x;=(x, by, hy,* ", by 1, By, Bay'**, Baw )Ty =
(i, B, c BDTG=1, 2,--, d+1),  Yux)=(hi—1,
h;a' ) "hdl+l)rl and X(j)(j=o’ ls' Ty d)and 7i(i= 1’21' Ty
d) denote the values of X)(j=0, 1, --,d) and I(i=1,
2, -, dyat x=2%, hy=h,,- - -, hy=h,, respectively. Then,
by (2.17), (2.18) and (2.19), the system (2.20) has a solu-
tion £,=(Pus has 1, 0)7 (where h,, , is a solution of the
equation £®h,, , +1,=0, 4} ,,=0 and 0 is the (d+1)-
dimensional zero vector) and for this solution £,, we have
the following theorem.

Theorem 3. The matrix Gy(£,) is non-singular if and
only if

rank (Fo(£), lg4 ) =n, .21

where Gj(x,) denotes the Jacobian matrix of G,(x,) with
respect to x, and 1, ; denotes the values of /., at x=2%,
hl‘—‘ﬁl,' gy =hyyy

Proof. Since F(x) is (d+2) times continuously differen-
tiable with respect to x in Q, the function G,(x,;) defined
by the equality (2.20) is continuously differentiable with
respect to x;. Then we have

0CoX @ 0 0
1C0X“) 1C1X(o) O
ZCO'X(Z) 2C1‘XU) ZCZ‘X(O)

Gi(x )= dCOX(d) dCIX(d_ D dCZX(‘-z)
4 d+1C0X(d+1) d+1C1X(d) d+1C2X(‘—l)"'
10---0 00---0
O 00---0 10---0
From (2.22) it follows that
det G(£,)#0 is equivalent to (2.21). (2.23)
This completes the proof. Q.E.D.

Thus, if the condition (2.21) is satisfied, then we can
get an approximation to the solution £, of (2.20) as
accurately as we desire by the Newton method. Since the
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x-component £ of £, is a solution of (2.1), we can also
obtain a desired approximation to £.
Remark 3. If the function F(x) is (d+ 3) times continu-
ously differentiable with respect to x in Q and the condi-
tion (2.21) is satisfied, we may consider the system

F(x)—Byly.y

XOn, = Bylysy
XOn,+1,— Byly .4
Gu(xn)= : =0 (2.24)
XOhy+ly_ 3~ By ilysy
XOh,,  +1,
Ya(xa)

instead of the system (2.20).
Remark 4. When dim Ker (F,(£))=1 and Ker (F,(£))n
Im (F(8))={0}, H. Weber and W. Werner [11] have
considered the system

F(x)+ Bh
) =0 (2.25)

W(x)=| F.(x)h
hTh—1
instead of the system (2.5), where x=(x, h, B)T, x=
1 %)T, h=(hy, -+, h,)T and B is a parameter.
Evidently, the system (2.25) has a solution £=(%, A, 0)7
(where h is a solution of the equation F (£)h=0, hTh—
1=0) and for this solution £, they have obtained a result
similar to Theorem 1, that is, they have given a sufficient
condition for guaranteeing that the Jacobian matrix
W'(x) of W(x) with respect to x is non-singular at the
solution £.
But, when the condition Ker (F (£))nIm (F,(£))= {0}
is not satisfied, the Jacobian matrix W’(x) is singular at
£. Then they have considered the system

F(x)TF(x)+ Bh

W(x)= | F(x)h

(h'h—-l )

instead of the system (2.25), where F,(x)7 denotes the
transposed matrix of F,(x).

On the other hand, in our case, we consider only the

system (2.5) whether the condition Ker (F,(£))nIm (F,

=0 (2.26)

0 0 —e 0.-- 0
0 0 0 —¢.--- O
0 0 0 0--- 0

..dC,,,'Y(o) - 0 d":_ék

ae1C XM 1 1Cyp ) X9 0 0..- O (2.22)

9 0 -

1050 00---0 g

10.--0

00---0

(£))={0} holds or not. Hence our method seems to be
simpler than their method. In particular, comparing the
system (2.26) with the system (2.5), it seems that our
method is more useful and convenient. Of course, we may
adopt the condition 4, —1=0 instead of the condition
hTh—1=0 in the systems (2.25) and (2.26) when rank F,
(R)=rank Fy(£)=n—1.
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Remark 5. When the condition (2.2) is satisfied, we have

det F,(2)=0.
Under the condition (2.3), we may consider the system
F (x)—Bek)
H(x)= =0 2.27
@=("5 @a7)

instead of the system (2.5), where x=(x, B)T and g(x)=
det F,(x). Then £=(%, 0)7 is certainly a solution of (2.27)
and for this solution £, under the same assumption as in
Theorem 1, we have

{the matrix H'(£) is non-singular if and only if (2.28)

the condition (2.6) is satisfied,

where H'(x) denotes the Jacobian matrix of H(x) with
respect to x.

The proof of (2.28) is as follows: By the definition of
the function H(x), we have

Fx(x) _el
H'(x)=|dg(x) ol (2.29)
0x

where dg(x)/0x=(0g(x)/0x,," -+, dg(x)/0x,). Then, for
the solution £=(%, 0)T of (2.27), we have

F(2) —el |0 Fo(2) —€
det H'(£)=|0g(%) = dg g ,
= o| |n i 0
(2.30)

where fi=[det (1, Fo(*))]/h,. Here h=(h,, - -, h,)7 is the
h-component of the solution (%, &, 0)T of (2.5). By (2.30)
we easily get

det H'(£)+0 is equivalent to f+0.
Thus (2.28) follows from (2.31).

Next, we consider the case where rank F (R)=n—d
(1<d<n). For the sake of simplicity, we assume that

n—d=rank F (R)=rank F,(%), (2.32)

where F (%) is the n x (n—d) matrix obtained from F,(8)
by deleting the first column vector through the d-th
column vector.

Then there exist d positive integers k,, kj, -, kg
(1<k,, ky," -+, ky<n) such that

(2.31)

rank (Fd(g)’ ekp ek;y "ty ekd)=ns

where ¢, =(0,--+,0, 1,0, -+, 0)7(i=1, 2,-- -, d).
A
(k;~th component of ¢, )

(2.33)

Then we introduce 4 parameters B,, B,," - -, B, in the
eq. (2.1) and we consider the system

F(x)- Biey,— Byey,— - - - — Byey,
F (x)h
G(x)= Z; o —0, (2.34)
';d a’d

where x=(x, h, By, B,," -+, B)T, x=(x;," -, x,)T, h=
(hy, -+, h,)T and a=(a,," * -, a,)7 is a d-dimensional non-
zero constant vector. The condition (2.32) implies that
the system (2.34) has a solution £=(%, /, 0,0, -, 0)T.
For this solution £, we have the following theorem.
Theorem 4. Assume that the function F(x) is twice con-
tinuously differentiable with respect to x in Q.

Then the matrix G’(£) is non-singular if and only if

rank (Fy(R), My, Mg, - -, Mg)=n, (2.35)
where
G'(x) denotes the Jacobian matrix of G(x) with respect
to x; = {F (A1 <i<d), where hP(1 <i<d) are
solutions of the equations

F, ()P =0

=0,

1;§“= | (1<i<d) (2.36)
A =0

respectively. Here A0 =(h{", h{Y,- - -, K\ (1 <i<d).
We must choose a d-dimensional vector a (#0) so that
the condition (2.35) is satisfied.
But, if there is no d-dimensional vector satisfying
(2.35), that is,

rank (FA8), My, My, - -, M) <n .37

for any d-dimensional vector a (40), then we regard the
system G(x)=0 as the original equation F(x)=0 and we
repeat the above-mentioned process for the system G(x) =
0.

3. Examples

In this section, in order to illustrate our theory and
method mentioned in Chapter 2, we present some ex-
amples of solutions of nonlinear equations with singular
Jacobian matrices.

First, we consider the case where rank F,(8)=n—1.
Example 1([11]). We consider the equation

1 2
x}—-2x +3x3+3

3 3
F(x)= 1 -0, @31
X3 —xx,—2x, + §x§+§

where x=(x,, x,)7. The eq. (3.1) has a solution £=
(%1, 22)T=(1, DT and for this solution £, we have

01
rank F (£)=rank (0 0) =1.

Since rank (F,(%), e,)=2, we introduce a parameter B in
(3.1) and we consider the system

F(x)— Be,
G(x)=| F(x)h

h —1
where x=(x, h, B)T, x=(x,, x,)T, h=(hy, h,)" and e,=
(0, ). The system (3.2) has a solution £=(%, A, 0)T
(where £=(1, )T and A=(1, 0)7) and for this solution £,

=0 3.2
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we have
det G'(®)+0

since
0 100 O
0 000 -1

G®)={2 001 0}.

6 -100 O
0 010 O

H. Weber and W. Werner [11] also considered this
example. As is seen from Remark 4 in Chapter 2, their
method for introducing a parameter in (3.1) is different
from our method. In fact, in this example, they con-
sidered the system

F(x)TF(x)+ Bh
) =0, 3.3)

W(x)=| F,(x)h
hTh—1
where x=(x, h, B, x=(x;, x,)", h=(h;, b)) and
F(x)T denotes the transposed matrix of F,(x) and B is a
parameter. Comparing the system (3.3) with the system
(3.2), our method seems to be more useful and con-
venient. Of course, we may take the condition 4, —1=0
instead of the condition ATh—1=0 in the system (3.3).
Example 2([8]). Let us consider the equation
(X xx)\
F(x)—(x2 +x2 =0, (3.4
where x=(x,, x,)7. The eq. (3.4) has a solution £=
(R4, £2)7=(0, 0)T and for this solution £, we have

rank F,(8)=rank (g ?) =1.

In this case, since 1={F, (£)A}h=(0, 0)7, we have
rank (F(8), ) =rank (Fy(8), D=1,

where Fy(£)=(0, 1)T and h=(1, 0)7.
Therefore we introduce two parameters B;, B, and we
consider the system
F(x)— B,e,
Fy(x)hy — Bye,
Gi(xy)=| F(x)hy+{F(x)h;}hy | =0, (3.5
hli—1
h;
where x,=(x, hy, hy, B,, B)", x=(xy, x,)T, h=(h},
h)T(i=1, 2) and e, =(1, 0)7. The system (3.5) has a solu-
tion £, =(%, Ay, h,, 0, 0)T (where £=(0, 0)7, h,=(1,0)T
and f,=(0, 0)) and for this solution £,, we have

det G{(#,)+0
since
000000 -1 O
010000 0 O
010000 O -1
, 000100 O O
Gl(g‘)_600200 0 oy
000001 O O
001000 0 O
000010 0 O

N. Yamamoro

Secondly, we consider the case where rank F (£)=
n—2.
Example 3([4]). We consider the equation

_ Si(xyg, x3) _
F "‘)‘(fz(xl, x;))“” 36

where x=(x,, x,)7 and

Si(xys x3)
=x} —10x3x2 4 5x, x5 — 3x} + 18x3x} — 3x5 — 2x3
+6xyx3+3x2x, — x3+12x3 — 12x3 — 10x, x,
—8x, +8x,,
Sfa(x15 x3)
=5x%x, — 10x2x3 + x5 — 12x3x, + 12x,x3 — x3 + 3x, x3
—6x2x,+2x3 +5x2 — 5x3 + 24x,x, — 8x, —8x, +4.
The eq. (3.6) has a solution £=(%,, £,)"=(2, 0)T and for
this solution £, we have

00
rank F,(£)=rank (0 0) =0.

Hence we introduce two parameters B,, B, in (3.6) and
we consider the system

F(x)—Be,— Bye,
G(x)= f;‘(lehl =0, 3.7

hy—a,
where x=(x, &, B,, B,)T, x=(x,, x,)T, h=(hy, h,)7, e, =
(1,07 and e,=(0, 1)". In this example, we take a, =1
and a,=0 in (3.7). Evidently, £=(%, k, 0, 0)" (where
£=2, 07 and fi=(1, 0)7) is a solution of (3.7) and for
this solution £, we have

det G'(£)+0
since

0 000-1 O
0 000 0-1
vev_| 16 200 0 O
G'®)= —-21600 0 O
0 010 0O
0 001 0O
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