Software Design Process: Chrysalis Stage under the |
Control of Designers

KiyosHi ITon*, KoicHi TABATA** and YUTAKA OHNO***

In order to introduce a well-formed mechanism, controlled by software designers into the traditional design
stage, we have developed “Dual-View Integration Simulator (Duvis)” based on the *“Dual-View Designing
(DVD)” methodology for a demand-oriented software system such as an online software system or a database
inquiry system. DVD enables designers to construct an executable and evaluatable prototype of a software
system. DVD advances the design process by controlling the transformation of design from the users’ view to
the programmers’ view. In DVD, a prototype is constructed in top-down fashion from the flow-oriented view-
point (appropriate for users’ view) at its early design stage. A prototype from the process-oriented viewpoint is
obtained at the final stage. During the intermediate design stage, the stepwise substitution of flow-oriented com-
ponents for process-oriented components in a prototype is taking place under the control of software designers.
Duvis performs testing and evaluation of function and performance for an evolving prototype, gradually
introducing the actual running environment in parallel with the design process. Final prototypes with process-
oriented views are skeletons of programs to be implemented at the succeeding programming phase. Duvis has

been implemented on an IBM/370-compatible computer (MVS/TSO).

1. Introduction

Prototyping has been recognized as one of the effec-
tive development methods in the requirements analysis
phase. A prototype of a software system is operational
or executable under an actual or simulated execution
environment. Prototyping means that a prototype is
constructed in order to correct ambiguities and mis-
understandings as early as possible in the software life
cycle and to decrease production costs. The merits of
prototyping, for example, in [5), are: (1) to decrease the
communication gap between the system developer and
the user, by the user exercising the system as if it were
operating in his own environment, (2) to maximize the
user feedback as early as possible in the software life
cycle before the requirements analysis is finalized, and
(3) to obtain a vehicle for training users on how to use
the system before the system has been developed.

We propose a method for prototyping in the software
design phase. The feasibility of performance require-
ments are examined in the requirements analysis phase
on whether a software system’s performance require-
ments are realistic. Performance allocation for the
components of a software system, i.e., allocation of
CPU or resource utilization is determined for the first
time in the design phase and the allocation is evaluated
to be satisfactory with the performance requirements. A
prototype of a software system enables a software de-

*Laboratory of Systems Engineering, Faculty of Science and
Technology, Sophia University, Kioi-cho 7-1, Chiyoda-ku, Tokyo
102, Japan.

**University of Library and Information Science.
***Department of Information Science, Faculty of Engineering,
Kyoto University.

Journal of Information Processing, Vol. 7, No. 1, 1984

signer to design the structure of the software system with
consideration of its performance under an actual or
simulated execution environment. Moreover, the design
process substantially includes a change of system views,
i.e., the change from a users’ view to a programmers’
view. A prototype is effective in avoiding the mismatch
between these two views by its operation. Prototyping
in the software design process is necessary to accomplish
the following criteria: (a) to rapidly and precisely con-
struct a skeleton of a program which is to be developed
in the next implementation phase, (b) to adapt itself to
user’s requirements which were clarified in the require-
ments analysis phase, () to be operational or executable
at arbitrary stages of the refinement process in the design
phase, and (d) to be able to evaluate both function and
performance at arbitrary stages in the design phase.

2. Basic Concepts

2.1 Software Development with Prototyping

Fig. 1 shows software development with prototyping.
Software development is divided into a construction
phase and a testing phase. The former is divided into
requirements analysis, design and programming phases.
The latter is divided into module testing, inter-module
testing and installation testing phases. Fig. 1 shows that
user requirements specification, design specification and
program specification are examined at installation test-
ing, inter-module testing and module testing phases,
respectively. In order to decrease the production costs,
it is desirable that errors in any specification are detected
and corrected in earlier construction phases before the
development is advanced to the later construction phase
or testing phase.

prototype

requirements user
level —— — ——requirements
specification
design _ design
level ~ 7 specification
programming program
level -_— = specification

K. IToH, K. TABATA and Y. OHNO

products
corresponding

to user requirements
specification

products
corresponding
to design
specification

programs (products corresponding
to program specification)

]])
requirements | design lpro~ T
gramming

analysis

construction

] ! |
module! inter-{installation
testing module testing

testing
testin
9 4

"

Fig. 1 Software development with Prototyping.

 Larva | Chrysalis 1
!
Design
without Requirements . Design
Tool braimsork Specification
Biiign Flow-Oriented, Chrysalls Process-Oriented
Our Tool Description (gz:Eiglgzzcgiption) Description
Designer

Fig.2 Software design process.

Prototyping is one of the effective development
methods because it introduces an actual or simulated
environment. Prototyping in the requirements analysis
phase is useful because the users can observe the be-
havior of a software system by the operation of its
prototype under the desired environment. Prototyping
in the software design phase is useful because the
performance allocation of components of a software
system can be determined under the desired environ-
ment, and because a mismatch between the users’ view
and programmers’ view can be avoided.

2.2 Daual System Views in the Software Design Process

The software design process is the ‘“‘chrysalis stage” in
the development of a software system. We can associate
the design process with a butterfly chrysalis as depicted
in Fig. 2. The butterfly chrysalis seems to lie dormant,
but a great number of changes are taking place. Most of
the organs and other tissues of a larva are replaced by
adult structures of an imago such as wings and legs. At
last, the adult is ready to leave the chrysalis case [3].
The design process of a software system may correspond

to abutterfly chrysalis because during the design process,
brainwork seems to lie dormant due to the invisibility
of its internal design efforts. It includes a drastic change
which is similar to that of a butterfly chrysalis. The
change in design process is that of system views for a
software system, i.e., the change from a customers’ (or
users’) view to an implementors’ (or programmers’)
view.

We studied the components of software systems in
[71 named to-be-processed demands and processing
entities. We will briefly describe such components below.

A software system being executed may have one or
more processing flows. There are two opposite types of
entities in each processing flow. They are a “processing
entity’”’ and an entity to be processed, named a “to-be-
processed demand”. The first processes the second
according to a program of a software system. Table 1
shows the correspondence between the two types of
entities. Differences in describing the behavior of the two
types of entities are shown in Fig. 3. Conceptually, each
processing entity is considered to be an autonomous
executable entity which can start to work under condi-

Software Design Process: Chrysalis Stage under the Control of Designers

Table 1 To-be-processed demand and processing entity.

to-be-processed demand processing entity

operand data oo ~ instruction
parameter data __________ routine, function,
procedure
message D + process, task
input da?a, online software system,
transaction, oo - :
database inquiry system
query

A process STOREs a message to a memory area.
A message ENTERs a memory area.

A process LOADs a message from a memory area.
A message LEAVEs a memory area.

A process SENDs a message to another process.
A process RECEIVEs a message from another process.
A message TRANSFERs from one process to another process.

:Statements in Roman characters represent the behavior
of processing entities.

:Statements in italic characters represent the behavior
of to-be-processed demands.

Fig. 3 Difference in describing two types of entities in software
systems.

tions for its execution, performing its own sequential
processing on its own variables and resources and, if
necessary, cooperating with other processing entities in
terms of shared variables and resources. Such an entity
is a functional unit which has been denoted as an
ACTOR introduced by Hewitt [6]. Cooperation between
processing entities involves transferring a to-be-processed
demand from one to another. In an actual environment,
one or more processing entities execute concurrently or
in parallel with each other and to-be-processed demands
coexist with each other in a software system.

We introduced the concept of dual system views for a
software system and originally applied it to the System
Description and Evaluation System (SDES) [9] [10]. New
application of these dual system views is a methodology
which advances the software design process smoothly
and effectively under the control of software designers.

The condition for the execution of a processing entity
means the arrival of all to-be-processed demands
necessary for starting its execution. A software system,
which is composed of one or more processing entities,
is said to be driven by such demands. In this paper, it is
called a “demand-oriented software system” and the
objective of this research is not a physical, lower level
(i-e., instruction level) software system but a higher level
software system, such as an online reservation system
and a database inquiry system, which consists of routines,
functions, procedures, processes, etc.

To-be-processed demands originate from the users of a
software system. In the requirements analysis phase,
analysts interview customers or users to understand
their requirements, determine the feasibility of the
requirements, enumerate as object units to-be-processed
demands, e.g., input data, messages, or transactions,

and determine the general flow of each of the to-be-
processed demands by describing what flow occurs in
the system. The system view adopted in the requirements
analysis phase is called “flow-oriented view” in this
paper. This view is considered in the requirements
analysis by RSL of SREM [1] for real-time software
systems.

Processing entities are used by the implementors to
construct a software system while considering its
modularity and performance. Modularity and per-
formance sometimes contradict each other. Modularity
is one of the measurements of development productivity,
system reliability or system maintainability. It represents
the clarity of the structure of a software system, i.e.,
that of logical interrelationships between processing
entities. It has the possibility of overhead during execu-
tion time or in memory space. Performance is one of the
measurements of effectiveness of execution time or
memory space of a software system with the aid of par-
allel or concurrent execution of two or more processing
entities, reentrant execution of processing entities, or
compactness of processing entities. The trade-offs
associated with modularity and performance are deter-
mined and estimated for the first time in the design
phase and then a software system can be implemented
according to such outline and estimation.

The system view adopted in the programming phase
is called “‘process-oriented view” in this paper. The view
is adopted in a way that processing entities, e.g., pro-
cesses, tasks, or modules, are enumerated and con-
structed one by one by describing how they treat and
transform to-be-processed demands such as transactions
or messages and by describing what processing steps
occur.

The design phase of a software system is considered
to be the internal transformation process at the chrysalis
stage of a software system from a flow-oriented system
view, i.e., requirements or a larva of a software system
at an early or preliminary design stage, into a process-
oriented system view, i.e., design specification or an
imago of a software system at pre-implementation or
detailed design stage.

3. Dual-View Designing and Dual-View Integration
Simulation

3.1 Overview

In order to organize the software design process into
a well-structured framework, we propose a design
methodology and its associated computer-aided design
tool which enable software designers to manage and
control the internal transformation of a development
chrysalis stage effectively and smoothly. Our methodol-
ogy and tool are named ““Dual-View Designing (DVD)”
and “Dual-View Integration Simulator (Duvis)”, re-
spectively. The object software system to which DVD
and Duvis are applied is called a ‘“demand-oriented

software system” described in Section 2.2. The example
of a demand-oriented software system to which DVD
was applied is the online sales order entry software
system, handling one hundred to-be-processed demands
of seven types of transactions each minute by processing
entities of three modules.

DVD is a methodology by which a software designer
can construct a prototype of a software system based on
four criteria for prototyping described in Section 1. In
DVD, the flow-oriented view is applied in constructing
a prototype in early or preliminary design, the process-
oriented view is applied in final or detailed design, and
the hybrid of both views is applied in intermediate
design. Duvis is a computer-aided design tool which tests
and evaluates the evolving prototype of a software system
in the design phase. In parallel with the advancement of
the design process, the designer gradually introduces
the actual running environment of a software system to
be installed. Final prototypes by process-oriented view

K. IToH, K. TABATA and Y. OHNO

are skeletons of programs to be implemented at the
succeeding programming phase. Fig. 4 shows the
advancement of the design phase of a demand-oriented
software system by DVD under the support of Duvis.

Fig. 5 shows the contrast of the two views and the
gradual change of the relative proportion between flow-
oriented and process-oriented factors in keeping steps
with advancement of DVD process.

The DVD design phase is a transformation process
from a flow-oriented view passed by the requirements
analysis phase into a process-oriented view passing to
the programming phase. The former view is implementa-
tion-free view in which flow of each to-be-processed
demand may be considered from the viewpoint of cus-
tomers or users. On the other hand, the latter view is an
implementation-constrained view in which effectiveness
must be considered from the viewpoint of implementors
or programmers. The latter view advances the design
process in the way that flows of to-be-processed demands

Advancement of Development of Demand-Oriented Software System —»

REQUIREMENTS DESIGN by Dual-View Designing (DVD) Programming
ANALYSTS early or later or

preliminary pre-implementation

design design

User's or Customer's view

Implementer’'s or Programmer's view

Systems Design by advancement Design by Systems
Requirements Flow of of design Processing Programming
To-Be- process Steps of
Processed rhybrid view Processing
Demands :change in Entities
system view
applicable for
ide range of design
process
Dual-View Integration Simulator (Duvis)
Fig. 4 Design process by DVD and Duvis.
process-—
a1 oriented
ow- _ _ process-
oriented hybrid oriented
design flow- design
description oriented description

friendliness for

user

friendliness for
N I programmer

flow-based

execution

actual
[\1 execution

simulated

environment

actual
l\] environment

description of

completion of

testing of functio1j—"‘——-————____________‘____‘_¥| testing of function
and evaluation of

and evaluation of
performance

performance
L |
1 1
Al ———— 5] °
0 0
advancement of design process
A:B : relative proportion of A and B

Fig. 5 Variation of design factors with the advancement of design process.

Software Design Process: Chrysalis Stage under the Control of Designers

are decomposed into sub-demands, and such sub-de-
mands are grouped into shared ones, reusable ones or
independent ones, and then processing entities are
assigned in order to work upon such grouped sub-
demands.

Duvis is a computer-aided design support tool which
performs flow-based execution for flow-oriented proto-
types, actual execution for process-oriented prototypes,
and their combined or hybrid execution for hybrid
prototypes. Concurrent with the advancement of the
design process by DVD, prototypes are fully tested and
evaluated by initially providing a simulated environment
and gradually introducing an actual environment on
which a software system is to be installed. The environ-
ment description is included in the prototypes. Duvis can
test and evaluate a partially defined software system on a
simulated environment where its partially defined parts
are replaced by simply-defined stubs or time-advance-
ment descriptions representing estimated time. Duvis
provides testing results by hybrid execution of the
prototypes and evaluation results by collecting statistics
about execution time or resource utilization. While the
description of testing and evaluation is gradually de-
creased in parallel with the DVD design process, the
testing and evaluation design data is gradually ac-
cumulated.

3.2 Comments on Related Works on Software Develop-
ment

Jackson Structured Programming (JSP) [11] and
System ARchitecture Apprentice (SARA) [2] are re-
presentatives of well-structured methods of software
design.

In JSP, software design is advanced in the way that the
program structure is clarified by the process of studying
the correspondence between input data structure and
output data structure. The program created by JSP is
one that can be used serially and exclusively by input
data. JSP designs the intra-program structure rather than
the inter-program structure.

SARA provides a hierarchical description mechanism
for concurrent software systems in a precise and under-
standable fashion after preliminary or early design is
almost completed.

DVD differs from JSP and SARA by considering the
whole of the software design process. DVD begins with
analyzing the flow of to-be-processed demands and
determines the inter-module structures of concurrent
processing entities from the viewpoint of the trade-off
between modularity and performance.

Structured Analysis [12] provides a method for re-
quirements specification by which the function of soft-
ware systems is hierarchically defined with the aid of the
decomposition of “data flow” in software systems. The
flow-oriented view in DVD resembles the data flow view
in the Structured Analysis because the data flow means
the flow of users’ messages or transactions in the soft-
ware systems. DVD is a method for software design by

nature, which introduces not only flow-oriented view
but also process-oriented view and performance estima-
tion in order to effectively produce skeletons of software
systems.

3.3 Constructs in Flow-Oriented Design

Flow-oriented design work in DVD is performed in
top-down fashion. A flow-oriented prototype has the
modularity of a hierarchical structure. This tree structure
is easily understood. Such a flow-oriented top-down
technique was originally introduced in (8]. It was
motivated by the structured programming techniques
[4] and the top-down programming techniques [13] for
implementing ordinary programs. Design components
for constructing a flow-oriented prototype are a transac-
tion, an activity, an “actentity”’, a ‘“‘comact’, a stub, a
facility, a storage, a time-advancement, a queue, a
semaphore, a private variable and a common variable.

A transaction acts on other components. It represents
a unit of traffic moving through a software system and
corresponds to a to-be-processed demand. It enters the
system, acts on other components and exits. A private
variable represents one of its attributes inaccessible by
others. A common variable represents a state of a soft-
ware system accessible by others. A facility and a storage
represent time-shared equipment and space-shared
equipment, respectively. The number of transactions
which can simultaneously use the equipment is called the
capacity. A queue represents an ordered set of transac-
tions that are waiting for a facility or storage. A sema-
phore represents binary-state equipment for the syn-
chronization of traffic between two or more transactions.
These design components are called elementary entities.

A time-advancement component is a transaction that
stays in the present place without being affected by other
components for a time specified by this component. It is
used for the submission of more detailed specifications
to the later design stages and the estimated time which it
takes in execution of an already specified and yet-to-be-
specified part of a prototype. It is one of the key factors
enabling the execution and evaluation of a not-fully-
specified prototype.

The word “‘actentity” is derived from “activity entity”.
It is an abstract entity representing a portion of a
software system. Its action—what it does—must be fully
defined, but it is not always necessary to know how to
construct it. The action will be constructed in the defini-
tion of the activity in the next lower level in top-down
structure. Actentity and its corresponding activity have
an identical name. The word “‘comact” is derived from
“common actentity”. It is a special actentity which allows
more than one activity to share it. Its action is also
specified in the definition of an activity like an ordinary
actentity.

A prototype in an arbitrary stage in a top-down
process can be easily checked for its syntax and structure
by Duvis. Moreover, Duvis executes it for test by provid-
ing it with stubs by a designer. A stub simulates the

10

presence of a yet-to-be-specified actentity and is defined
like an activity in simple or even sophisticated fashion.

Elementary entities, except for a transaction, can have
an array structure, i.e., a collection of entities with
identical properties such as types and capacities. A
subscripted elementary entity is used for referring to a
component of the array.

3.4 Procedure in Flow-Oriented Design

Behavior of a system can be represented in one or more
flows of transactions through parallel components of the
system. DVD allows the user to build a hierarchical struc-
ture with one activity or several parallel activities each
of which may be developed in top-down fashion.

The following procedure shows this top-down process.

(0) Designers enumerate types of transactions for
the system and components of the system.

(1) When considering the flow of each type of
transaction, the function of the component may be
determined by dividing it into several parts. These parts
correspond to actentities and other entities. If a part
may be shared by two or more components, it may be a
comact.

(2) The control for transaction flow may be de-
scribed as an activity which affects design components.
In the case that two activities which represent the control
for flow of different types of transactions are identical,
they are arranged into a single activity.

(3) Estimation of time may be given to the arbitrary
parts.

(4) If necessary, Duvis may perform flow-based
execution for the prototype obtained by (3).

(5) Substitute “actentity”’ for “component” in steps
from (1) to (3), and iterate the procedure in all
steps until all of the actentities are finally represented by
elementary entities.

3.5 Constructs and Procedure in Process-Oriented
Design

Process-oriented design work is performed in stepwise
refinement fashion so that activities obtained in flow-
oriented design work are incrementally replaced by a new
design construct, named an actor. It corresponds to a
processing entity which is described in a programming
language.

A time-advancement design component may remain
or be improved by giving to a refined part of a prototype
a more precise estimated time, according to refinement
level, until the end of process-oriented design work.
Design components such as a facility, a storage and a
queue may also remain for collecting performance in-
formation. These enable the designer to get improved
performance evaluation results by Duvis.

The following procedure shows this stepwise process.

(0) An activity in flow-oriented design may be
arbitrarily selected.

(1) The selected activity is rewritten as an actor
in a programming language, not in the way that a

K. IToH, K. TABATA and Y. OHNO

transaction uses any other components but in the way
that a processing entity receives a transaction and works
upon it. Such work may be performed on either the
whole or a part of the selected activity.

(2) An improved estimation of time may be given
to the rewritten part according to refinement level (e.g.,
execution time in proportion to the number of state-
ments).

(3) If necessary, Duvis performs hybrid execution
for the prototype obtained by (2).

(4) Incrementally rewriting the process iterates
the procedure in all steps until the whole of a flow-
oriented description becomes a process-oriented descrip-
tion.

3.6 DVD Language

A prototype description language in DVD is named
“DVD Language (DVD/L)” in which the behavior of
to-be-processed demands and the processing steps of
processing entities are described. In DVD/L, language
components for the two main types of entities are
named a transaction and an actor as mentioned above.
A transaction description and an actor description are
flow-oriented and process-oriented forms, respectively.

We have designed a transaction-type language as a
flow-oriented language. It is a GPSS[14]-like language
enhanced by structured programming and top-down
methods [8] [10] with a transaction identifier in order to
distinguish variour types of to-be-processed demands and
describe their flow in a well-structured form. We adopt
PL/I, with multi-task option, as a language for process-
ing entities because it enables the designer to test and
evaluate a currently-designed software system under a
PL/I-written actual installation environment, and be-
cause final prototypes in detailed design are skeletons of
programs in the programming phase.

Both entities for flow-oriented design and PL/I
variables for process-oriented design have their own
scope of references. Their scope consists of the activity
and actors in which they are declared and all encom-

Table 2 Statements of DVD/L.

Structure Statement

statement structure

TF,CASE, X

CONDITION selection

REPEAT, DO repetition

Non~Structure Statements

statement entity

ENTER, LEAVE storage

USE, PREEMPT,

SEIZE,RELEASE | t2¢111tY

HOLD time-advancement

SET,RESET,

WAIT UNTIL semaphore

assignment private/common
variable

ACT, USE ACT | activity

GENERATE

TERMINATE transaction

compound statements enclose
by BEGIN and END

Software Design Process: Chrysalis Stage under the Control of Designers

passed activities and actors without another declaration
of the same identifiers. Once entities are declared in the
definition of an activity, they may be used in any
activity and actor included in the subtree whose root is
the activity with their declaration. The entities, which
are used in an activity of a comact and are not local ones
to the activity, have to be declared in the root activity
of any one subtree which includes all the activities
invoking the comact.

Statements of a transaction language are grouped into
structure and non-structure statements. Non-structure
statements are simple and compound statements. Table
2 shows these statements.

3.7 Testing and Evaluation Functions of Duvis

Dynamic testing of function is carried out by flow-
based, actual or hybrid execution of a prototype. Table
3 shows items for testing and evaluation of function and
performance.

3.8 Script for Interaction between Designers and Duvis

Prototypes may be executed in step (4) of the procedure
in Section 3.4 and step (3) of the procedure in Section
3.5. Designers can interact with Duvis according to the

Duvis's Output

invalid flow/status

[* /entity status

Table 3 Items for testing and evaluation.

Items for Testing

invalid flow

invalid flow of transaction
(violating user specified
assertion)

invalid status

invalid status of entity
(violating user specified
assertion)

dead lock

suspention of transaction
flow (automatic)

abnormal access

improper access for storage/
facility (automatic)

Items for Evaluation of Facility/Storage

total entries

the total number of transactions
already entered

average contents

the rate of contents per
elapsed time

average utilization

the rate of average contents
per capacity

Items for Evaluation of Queue: the above statistics
except for average utilization

Items for Evaluation of Transaction

generation count

the total number of transactionms
already generated

termination count

the total number of transactions
already terminated

average duration

the mean of intervals from
generation to termination

Designer's Action on

Function

v
correct transaction flow

abnormal access for

storages/facilities

Designer's Action on Performance

v
correct pairs of ENTER and

- LEAVE statements or pairs

of SEIZE and RELEASE statements

detected dead lock

excessive average utiliza-
tion of facilities

excessive average contents
of storages

N
insert LEAVE/RELEASE statements
correctly

e— correct utilization time

insert RELEASE statements
correctly

adopt facilities with more
rapid processing time

increase the number of

r'facilities

excessive average length

le—correct utilization quantityd

insert LEAVE statements
correctly

increase the capacities of
storages

of queues

excessive average duration
time of transaction

examine the causes of excessive average length of queues,

M—e.g., excessive average utilization of facilities, excessive

average contents of storages, etc.

examine the utilization for storages or facilities on flow
paths of transactions

Fig. 6 Script for interaction between designers and Duvis.

12

script as shown in Fig. 6. There are both function and
performance aspects of the interaction. The function
aspect means the correction of functional errors of
prototypes. The performance aspect means the improve-
ment of performance of prototypes to satisfy the per-
formance requirements for software systems.

4. DVD Command System

DVD Command System controls the progress of de-
sign and evaluation work in a TSS environment. Four
modes are provided: design specification, design transla-
tion, design simulation and batch processing modes.
(See Fig. 7.)

In design specification mode, a prototype is built with
the use of a built-in, line-based editor whose functions
are appending, deleting, listing, etc. In design translation
mode, if there are some syntax errors, error messages are
outputted and the control must be returned to design
specification mode. A designer can get the arbitrary level
of translation output with/without a source list of a
prototype, a list of its internal form, a table of utilized
entities or error messages. Batch processing mode is
provided for the case in which a prototype requires
large CPU-time for its test and evaluation. A prototype
is submitted to the computer from a TSS terminal and
executed off-line. The simulation results can be obtained
at the terminal after its execution.

In design simulation mode, a designer can simulate,
test and evaluate his prototype with the use of interactive
simulation commands which specify the manner of
simulation and the format of statistics about entities.
The interactive simulation commands are grouped into
simulation control commands and simulation report
commands. Each simulation control command is
specified with its function as listed in Table 4. Simulation
execution is performed in an arbitrary sequence of the
simulation control commands. When it is suspended, a
designer may obtain the state of a system with the use

K. IToH, K. TABATA and Y. OHNO

to inquire into any statistics about transactions or
entities according to his choice. The report has decimal
representation of statistics described in Table 3.

5. Implementation of Duvis

The flow-based execution for a flow-oriented prototype
is implemented in terms of an interpreter for the descrip-
tion and a scheduler for transactions. The actual execu-
tion for process-oriented parts is implemented in the
ordinary cycle of program execution, i.e., a cycle of PL/I
compilation, linking and execution after such descrip-
tions, i.e., PL/I-written part, are extracted and assembled
into a group of PL/I procedures. The hybrid execution
for hybrid prototype is implemented in terms of the
interpreter for flow-based execution linked with the
compiled PL/I parts. A combined program of the sched-
uler and interpreter is called a Duvis flow-based
transaction simulator. The scheduler manages the event-
occurring time at which transactions start, pause, restart
or terminate. Such events may occur concurrently or in
parallel, so the simulator performs quasi-parallel control
of events by quasi-parallel execution of all of the

Table 4 Simulation control command and its function.

Command Function

Every time one statement is executed, the

Step-by-Step simulation run is suspended.

Every time the simulation clock time is

Clock-by-Clock updated, the simulation run is suspended.

At the simulation clock time specified by

Run designers, the simulation run is suspended.
When the number of terminated transactions
Condition becomes the number specified by designers,
the simulation run is suspended.
The simulation run is returned to the
Roll-Back previous simulation clock time specified by

of simulation report commands. These allow a designer designers.
O e D D)
g n
[] |) L
EDIT DUVISTR DUVISSIM SUBMIT
1 |
Design Design Batch
Specification| Translation| Processing
Mode Mode Mode
(Design
Input Output Format ~ Step-by-Step Translation
List with/without - Clock-by Clock and
Delete source list, = RUN Simulation)
Move internal form, - CONDition
etc. entity table, - ROLL-back
error message
- Report
- entity type
(ALL)
~ entity identifier
(ALL)
- statistics type

Fig. 7 DVD command system.

Software Design Process: Chrysalis Stage under the Control of Designers 13

Line-Based Editor

built in TSS of M-ZO(;I z

Hybrid Design Description

Duvis Translator
newly implemented

processed-oriented

A Group of PL/I Procedures

PL/I Compiler
built in M-200H

Object Form of PL/I Procedures

Object Form of
Duvis Flow-Based
Transaction
Simulator

newly implemented

— =

DVD Design
Process

Error
Messages

flow-oriented

Internal Form of
Transaction Description

Executable Form of Simulation
Duvis Flow-Based Results
Transaction

Simulator

Linker
built in M-200H

Fig. 8 Internal structure of Buvis.

task_j
main task_i mb enter; task_1
ma enter; ma,mb enter;
case m's type " 2 T s
ma use task i; -7 ma use task_k;|rs|.~ ma,mb use routine_p;
" .
™ ma use task_1;|ls ma,mb use file;
mb use task_d;| > il i R * file;

ma_leave;

N | ma use task_m;|S5| T\

ma,mb use routine_q;
{ J ~
Nma,mb leave;

(@) Flow-oriented design description

sk task_1
) task i I mb enter; ask_.
main »|ma enter; ~|ma,mb enter;
T - r; - .
case m's type | _ <" |1y use task k;| 0| - |ma,mb use routine p;
ma use task_i;j| ma use task 1;|”’ update file(m);
b use task_j;| PN
mb use task_j; SO | ma use task mjl N |ma,mb use routine_g;
N)
Sma leave; Nma,mb_leave;

(b) A snapshot of hybrid design description

receive(m);

task_1

task_j
. task i
main o receive(m);
case m's type t

activate task_;(m);’

activate task_j (m);|,

return(m);

activate task_k(m) ;"
activate task_l(m);1

activate task_m(m);f®

receive(m);
| 4

/|activate routine_p(m);
fupdate file(m);

\ |activate routine q(m);

return(m);

(c) Process-oriented design description

left of (a)—sright of (a) :
(a)=—» (b)—»(c)
Fig. 9 Advancement of design process of DVD (to be continued).

Top-Down Process

Incremental Substitution Process

activities and actors.

We have developed Duvis on a HITAC M-200H, a
large-scale IBM/370-compatible computer, under VOS3
roughly equivalent to MVS/TSO, installed in University
of Tokyo. Fig. 8 shows the internal structure of Duvis.
A line editor, a PL/I compiler and a linker are built in a
computer and utilized without modification. A Duvis
translator and a Duvis flow-based transaction simulator
have newly been implemented in Fortran IV.

6. Example

Fig. 9 shows the advancement of DVD design proc-
ess, where the example software system is composed
of eight modules named main, task-i, task-j, task-k,
task-m, task-r, task-s and task-l and two types of to-be-
processed demands named ma and mb. In Fig. 9(a)—(c),
italic and Roman characters represent flow-oriented
and process-oriented descriptions, respectively. Fig. 9(a)

14

shows the top-down process by flow-oriented view where
the flow of ma is determined by the sequence of main,
task-i, task-k, task-i, task-l, task-i, task-m, task-i and
main and the flow of mb is determined by the sequence

DUVIS ONLINE(MAIN,OPENF:MA,MB,OPN) ;
FACILITY ROUTINE_P(1l) ,ROUTINE_Q(1);
FACILITY FILE(l),F_TASK_L(1);
FACILITY F_TASK_I(1),F_TASK_J(1);
PRIVATE SORT;

ACTIVITY MAIN;
ACTENTITY TASK_I,TASK_J;
COMACT TASK_L;
ENTRY;
CASE SORT OF 2;

Ml: <MA> USE F_TASK_I FOR TASK_I;
t2: <MB> USE F_TASK_J FOR TASK_J;
EXIT;
END MAIN;

DECLARE I FIXED DEC(9,0) STATIC;
DECLARE WKFILE FILE RECORD KEYED DIRECT
ENV(REGIONAL (1) F RECSIZE(5) BLKSIZE(S));
ACTOR OPENF:0;
I=1;
OPEN FILE(WKFILE) UPDATE;
END OPENF;
ACTIVITY TASK_I;
FACILITY F_TASK_K(1),F_TASK_M(1);
ENTRY;
<MA> USE F_TASK_K FOR _EXPO(10);
<MA> USE F_TASK_L FORTASK. L:
<MA> USE F_TASK_M FOR EXPO(15):
EXIT; ===
END TASK_I;
ACTIVITY TASK_J;
FACILITY F_TASK_R(1),F_TASK_S(1);
ENTRY;
<MB> USE F_TASK_R FOR _Exp%[%‘_s)_;
<MB> USE F_TASK_L FOR TMABK L
<MB> USE F_TASK_S FOR EXPO{10);
exit; 0 =====
END TASK_J;
ACTOR TASK_L:0;
CUA MBS USE ROUTINGP FOR EXPO(20); Actor Written
REWRITE FILE(WKFILE) KEY(PRM{I)] FROM(I);
I=I+1;
<MA MB> USE ROUTINE_Q FOR EXPO(15);
END TASK_L; N T

GENERATE (200,EXPO(200) ,200) ;
SORT=1;

EXEC HAIN;

TERMINATE;

STOP(200,30000) ;
GENERATE (200 ,EXPO(200) ,200);

SORT=2; transaction
EXEC MAIN; generation
TERMINATE; part

STOP(200,30000) ;
GENERATE (1,EXPO(1),1);
EXEC OPENF;

TERMINATE;
STOP(200,30000) ;
END ONLINE;

Fig.9 (d) Description in DVD/L of (b).

STATISTICS **

IDENTIFIER CAPACITY AVERAGE

K. IToH, K. TABATA and Y. OHNO

of main, task-j, task-r, task-j, task-l, task-j, task-s, task-j
and main. Fig. 9(b) shows a snapshot of an incremental
substitution process where an actual environment such
as a file structure is introduced in task-1. Fig. 9(c) shows
the end of such process where all of the descriptions are
process-oriented, i.e., eight modules (processing entities)
handle the to-be-processed demands concurrently. Fig.
9(d) shows a description in DVD/L for Fig. 9(b). The
PL/I-written part is processed-oriented as an actor;
parts underlined with dashed lines represent estimated
time for execution of the parts; and a transaction genera-
tion part represents that two types of to-be-processed
demands generate with exponential distribution and a
mean of two hundred units of time. Fig. 9(e) shows the
simulation results for Fig. 9(d).

7. Concluding Remarks

We have proposed a method named DVD for proto-
typing in software design based upon the study of basic
concepts, flow-oriented design view by to-be-processed
demands and process-oriented design view by processing
entities. Prototypes of software systems such as online
software systems and database inquiry systems are de-
signed in top-down fashion from the flow-oriented view
at its early design stage and then they are designed in
stepwise substitution fashion from the process-oriented
view at its later stage. Duvis is a computer-aided design
support tool for DVD which performs testing and evalua-
tion of function and performance for evolving proto-
types, while gradually introducing an actual running
environment in parallel with the design process. Final
prototypes are skeletons of programs to be implemented.
We expect the to assess the applicability of DVD and
Duvis with additional software engineering environ-
ments.

Acknowledgements
This research was supported in part by the Founda-

tion of Hattori-Hohkoh-Kai of Japan under Grant
KOHGAGU SHOHREI 55 and 56 and also supported

AVERAGE NUMBER AVERAGE
CONTENTS UTILIZATION ENTRIES TIME/TRANS

ROUTINE_P 1 0.18 0.18 229 18.72
ROUTINE_Q 1 0.13 0.13 228 12.95
F_TASK_L 1 0.87 0.87 229 88.97
F_TASK_I 1 0.86 0.86 115 175.5¢
F_TASK_J 1 0.86 0.86 115 175.13
F_TASK_K 1 0.05 0.05 115 <
F_TASK_M 1 0.08 0.08 114 1655
F_TASK_R 1 0.06 0.06 115 12.95
F_TASK_S 1 0.04 0.04 114 8.82
x%% MEAN FLOW TIME ***
GENERATION GENERATION TERMINATION MEAN FLOW STANDARD MAX FLOW
LIST COUNT COUNT TIME DEVIATION TIME

1 146 143 682.203 593.661 2644

2 146 143 627.490 487.193 2465

Fig.9 (e) Simulation results.

Software Design Process: Chrysalis Stage under the Control of Designers

in part by the Ministry of Education, Science and Culture
of Japan under Grant SHOHREI 56790034,

References

1. BeLL, T. et al. An Extendable Approach to Computer-Aided
Software Requirements Engineering, IEEE Trans. Softw. Eng. 3, 1,
(Jan. 1977), 49-60.

2. Cawmpos, I. M. et al. Concurrent Software System Design
Supported by SARA at the Age of One, Proc. 3rd ICSE, (May
1978), 230-242.

3. Compton’s Encyclopedia, F. E. Compton Company, 1972.

4. DaHL, O. J. et al. Structured programming, Academic Press,
1972.

5. GoMaa, H. et al. Prototyping as a Tool in the Specification of
User Requirements, Proc. 5th ICSE, (Mar. 1981), 333-339.

6. HEewrrT, C. Viewing Control Structure as Patterns of Passing
Messages, Artif. Intell. 323-364, North-Holland Publishing
Company, 1977.

7. Itomn, K. et al. An Evaluation System for Concurrent Processes
by the Traversing Method, Proc. 3rd USA-Japan Computer

15

Conference, (Oct. 1978), 41-45.

8. ItoH, K. et al. Interactive Modeling and Simulation System,
Proc. 1978 International Conference on Cybernetics and Society,
(Nov. 1978), 1247-1252.

9. Iton, K. et al. System Description and Evaluation System:
SDES, Trans. IPSJ 20, 4 (July 1979), 352-362.

10. IToH, K. A Study on Systems for Functional Verification and
Performance Evaluation in Software Design, Doctoral Thesis,
Dept. of Information Science, Kyoto Univ., 1980.

11. JacksoN, M. A. Principles of Program Design, Academic
Press, 1975.

12. DeMARrco, T. Structured Analysis and System Specification,
Prentice Hall, 1978.

13. Mits, H. Top-Down Programming in Large Systems,
Debugging Technique in Large Systems, Prentice-Hall, 41-55,
1971,

14. General Purpose Systems Simulator (GPSS) User’s Manual,
IBM.

(Received April 26, 1982: revised August 26, 1983)

