On Generating and Counting All the Longest
Increasing Subsequences

ICHIRO SEMBA*

Suppose that we are given a sequence of n distinct positive integers 1, 2, ...

, n. We consider problems gen-

erating and counting all the longest increasing subsequences in a given sequence 4,=a,a; . ..a, A generat-
ing algorithm is established by using a backtrack technique and requires the running time of max {O(n?),
O(I(A,)m(A,))}, where I(A4,) is the total number of the longest increasing subsequences in A, and m(A4,) is the
length of the longest increasing subsequence in A4,. A counting algorithm is established by using a dynamic
programming technique and requires the running time of O(n?).

1. Introduction

Suppose that we are given a sequence of n distinct
positive integers 1, 2, -+, n, denoted by 4,=a,a," " a,
(n>=1). We consider problems generating and counting
all the longest increasing subsequences in 4,=aa," - -a,.
These problems are interesting examples of the use of
computers in combinatorial mathematics.

A backtrack technique [1] can be used to generate all
the longest increasing subsequences in 4,. However, a
straightforward application will typically result in an
algorithm which is not practical.

In this paper, according to certain rules, decreasing
subsequences are constructed from A4, in advance. It
requires the running time of O(n log,m(A4,)), where m(4,)
is the length of the longest increasing subsequence in 4,
The number of decreasing subsequences is proved to be
equal to the length of the longest increasing subsequence
in A,. In Schensted {2], an algorithm determining the
length of the longest increasing subsequence in A, is
presented. It requires the running time that is O(n) at the
best case and O(n?) at the worst case. In Fredman [3], an
algorithm performing the same task and having a worst
case running time of O(n log,n) is described. This bound
is shown to be the best possible. Our algorithm for
constructing decreasing subsequences from A, is similar
to Fredman’s algorithm. Then, a tree representing all the
longest increasing subsequences in A4,, is constructed from
these decreasing subsequences. It requires the running
time of O(n?). Then, in order to generate all the longest
increasing subsequences, the backtrack technique is
applied to a tree. It requires the running time of O(/(4,)
m(A,)), where /(4,) is the total number of the longest
increasing subsequences in A4,. As a result, the running
time for generating all the longest increasing subse-
quences in 4, is shown to be max {O(n?), O(/(4,)m(4,))}.
A dynamic programming technique [4] is applied to these

*Department of Pure and Applied Sciences, College of General
Education, University of Tokyo, Komaba, Meguro-ku, Tokyo
153, Japan.

Journal of Information Processing, Vol. 7, Nol 1, 1984

decreasing subsequences, in order to count all the
longest increasing subsequences in 4,. The running time
required for counting all the longest increasing sub-
sequences in A4, is proved to be O(n) at the best case and
O(n?) at the worst case.

The longest decreasing subsequence in a,a, - - - a, is the
longest increasing subsequence in a, - *a,a,. Thus, simi-
lar results are obtained for problems generating and
counting all the longest decreasing subsequences.

2. Generating Algorithm

In this section, we will establish a generating algorithm
for all the longest increasing subsequences in A,. Our
generating algorithm consists of three procedures,
Procedure I, Procedure II and Procedure III.

First, we present Procedure I constructing m(4,)
decreasing subsequences S, S5, -, S, from 4, in
this order.

By Property 4, m(A,) will be proved to be equal to the
length of the longest increasing subsequences in A,.
Procedure I is written in PASCAL-like notation in Fig.
1. We write S;< — ¢ to mean that the subsequence S is
made empty. We write S; < —x to mean that the element
x is inserted at the end of the subsequence S;. If the sub-
sequence S; is empty, then x is put at the head. The last

1 begin
2 Sg ¢ 45 Sy <- 05 8, <= 65 Sy <= a3
3. i:=1;
4 for k:=2 to n do begin
{non-empty subsequences S‘,...,Si have been

constructed in this order}
5. if last(SI) < ay then begin
{construct a new subsequence}l

6. i:=i+1; si <- o; S‘x <= ap

7. end else begin

8. find index j such that last(sj\.,) < ay < last(sj);
9. S:.| <= ay

10. end

1. end

12. end.

Fig. 1 Procedure I constructing subsequences Sy,- -, Su(As)
(m(4,)>1) from A,=a,a;" * a,.

e i F ok S S S S S
N T
4 - 2
6 2 0o 3 6
4 3
s 2
T 0 3 o4
4 4
T 6 30 3 e 9
4 5
e
s 0 31 64 9
4 3
8 2 o
9 0 31 642 9
4 - 7
g 3
) 0 31 642 95
4 8
6 4 0 31 642 95 8
4 9
8 4
9 0 31 642 95 87

Fig. 2 The process of Procedure I for 4,=364912587.

element of the subsequence S; is denoted by last (S)).
We will assume that the subsequence S, has the element
0. As an example, for 4,=364912587, the process of
Procedure I is shown in Fig. 2. Four decreasing sub-
sequences S,=31, §,=642, S;=95 and S,=87 are
constructed.
Now we will give properties related to Procedure I.
The following two properties are obvious.
Property 1 Subsequence S(1<i<m(A4,)) is a decreas-
ing subsequence.
Property 2 Let no subsequences Sy,---, S; be empty.
Subsequences S,, Sy, " *, S; satisfy that, at line 4 of
Procedure I,

last (Sy) <last (S;) < - - - <last (S;).

Property 3 The set of the subsequences s;:* Sy,
such that s,€S)," * *, Sp(4,)ESm(4,) CONtains an increasing
subsequence of length m(4,) in A,.

Proof. Suppose that we are given the element x of a
subsequence S,(2<i<m(A,)). By the process of Proce-
dure I, we can find the element y which is contained in
S;— and less than x and appears at the left of x in 4,,.

I. SeMBA

Namely, we can construct an increasing subsequence of
length m(A,) in A,,.

Property 4 The quantity m(A4,) is the length of the
longest increasing subsequence of A4,

Proof. Since subsequences Sy, - *, Sj,4,) are decreasing
subsequences, each of the subsequences S;," -, S,4.)
can contain at most one element of any increasing sub-
sequence of A,. Thus, it follows that the length of any
increasing subsequence in 4, is less than or equal to
m(A,).

On the other hand, by Property 3, we can construct an
increasing subsequence of length m(A4,). Therefore,
m(A,) is the length of the longest increasing subsequence
of A,.

Secondly, we will present Procedure II constructing a
tree which represents all the longest increasing subse-
quences in 4,. The following property is fundamental to
Procedure II.

Property 5 For 1<i<m(A,), the ith element of the
longest increasing subsequence in A, is contained in the
subsequence S; and not contained in the subsequences
Sy(j#9).

Proof. Since each of the decreasing subsequences
81, *5 Sma,) €an contain at most one element of any
longest increasing subsequence in A, the ith element of
the longest increasing subsequence have to be contained
in S;.

Therefore, the elements of S,(1<i<m(A4,)) constitute
candidates for the ith element of the longest increasing
subsequence in A,. Suppose that the element x is con-
tained in S,(1 <k<m(4,)). In order to construct a tree
representing all the longest increasing subsequences in
A, it is sufficient to determine the set whose elements are
contained in S;_, and appear at the left of x in 4,. We
denote this set by Son (x) (1 <x<n). If x is the element of
S, then Son (x) is empty. The element O means the root
of a tree. Son (0) is defined to be the elements in S,
We write Son (x)< —¢ to mean that Son (x) is made
empty. We write Son (x) < —y to mean that y is inserted
in Son (x). We use the following functions in Procedure
1L

len(S,): The length of S;(1 <k<m(4,)).

mid (S}, {): The ith element of S,(1 <i<len (S})).

1. begin

2. for i:=0 to n do Son(i) <- ¢;

3. for i:=1 to len(Sm(An,) do Son(0) «<- mid(smun),i);
4 for k:=m(An) downto 2 do begin

5. for j:=1 to len(S,) do begin

6. iz=1;

7 uhile(pos(sk_.l,i)<pos(sk,j))and(i:lenlsk_1)J do begin
8. if mid(Sk_1,i)<mid(Sk,j) then

9. Son(mid(Sk,jH <- mid(sk‘],i);

10. ir=is

1. end

12. end

13. end

14. end.

Fig. 3 Procedure II generating a tree which represents all the
longest increasing subsequences in A,.

On Generating and Counting All the Longest Increasing Subsequences
pos (S}, /): The position of the element mid (S}, i) in

As an example, for 4,=2364912587, we have shown
four decreasing subsequences S, =31, S,=642, S;=95
and S, =87, by Procedure I. Thus, we have len (S,)=3,
mid (S,, 3)=2 and pos (S;, 3)=6.

If mid (S;-,)(2<k<m(4,)) is contained in
Son (mid (S,, /)), then mid (Sy_,,) must satisfy the
following conditions.

(1) mid (Sy_, I)<mid (S, /)

(2) pos (Sk—1,)<pos (S,))

According to these conditions, Procedure II is written
in PASCAL-like notation and shown in Fig. 3.

Thirdly, we will present Procedure III generating all
the longest increasing subsequences in A4,. Since a tree
representing all the longest increasing subsequences in
A, is constructed by Procedure 11, it is sufficient to trav-
erse a tree. This tree traversal can be done by using a
backtrack technique. Since this technique is well known,
Procedure III is omitted.

3 6 9
Ee
4 9
5<5
7
8
7

9

5 8
:7

8

7

6§9
8

7

4 9
S8

A

3

/

rootf—9
1 5 8
<3
8
7
5-<B
7
8
7
5 8
S N
~g
7
5~—8
~~7

Fig.4 A tree corresponding to a straightforward backtrack
for Ay=364912587.

Son(x)
8,171}

1}

O(root)
}
}

[ro——y

{
(
{
{
{
{
{
{
(
{

C®IANB LN =O X
Anvwaw

Fig.5 A tree corresponding to our generating algorithm
for A;=2364912587. Son (x) (0<x<9) are constructed
by Procedure II.

As a result, we have the following theorem.

Theorem 1 Combining Procedure I, Procedure II, and
Procedure III, all the longest increasing subsequences
in A,=a,a," - -a,(n>1) are generated.

In order to understand a difference between a straight-
forward backtrack and our generating algorithm, it is
helpful to picture them by using a tree. For Ag=
364912587, the corresponding trees are shown in Figs. 4
and 5. The solutions are indicated by the bold lines. The
length of the longest increasing subsequence is 4. There
are 4 longest increasing subsequences 3458, 3457, 1258
and 1257.

In a straightforward backtrack, all the increasing sub-
sequences are searched. The length of the longest increas-
ing subsequence can be determined after exhaustive
search.

In our generating algorithm, the length of the longest
increasing subsequence is determined before search. Can-
didates for the longest increasing subsequences in 4, are
examined and other increasing subsequences are not
examined.

3. Analysis of Generating Algorithm

In this section, we will make an analysis of a generating
algorithm.

In Procedure I, the number of comparisons is a
reasonable measure of the work. Let F(A,) be the num-
ber of comparisons required to construct m(A4,) decreas-
ing subsequences from A,.

Property 6 For any A,(n>1),

F(4,)<(n~1)+(n—m(4,))[log;m(4)]+1) (1)

Proof. Since line 5 is executed n—1 times, the number
of comparisons in line 5 is n—1. By Property 2, binary
search can be applied to determining the index j in line 8.
The number of comparisons required to determine the
index j is bounded by [log,m(4,)] + 1. Since line 8 is ex-
ecuted n—m(A,) times, the number of comparisons in
line 8 is (n—m(A4,))([log,m(4,)]+1). Comparisons are
done in lines 5 and 8. Thus, we obtain (1).

In Procedure 11, the number of elements examined to
generate a tree is a reasonable measure of the work.
Let G(4,) be the number of elements examined to gener-
ate a tree representing all the longest increasing sub-
sequences in A4,.

Property 7 For any A4,(n>1),

G(4,)<n?. @3]

Proof. If m(A4,)=1, then G(4,)=n. If m(A4,)=2, then
G(4) < (n+1)*/4.
If m(A,)> 2, then it follows that
G(4,) <len (S,,))+len (S;) len (S,)+ - - -
+len (Spay-1) len (Spa,)-

By the theorem of the arithmetic and geometric means
and the fact that len (S;) + - - - +len (S,4,))=n, we have

Jlen (S)) len (S,)+- .-
+/0en (Spgy—)+ 1) len(Spy,)
<len (S,)/2+len (Sy))+---
+1en (Spa,y-1) Flen (Spea,y)/2+1/2
=n+1/2—(len (S;) +len (Sp4,)))/2
<n.

Squaring both sides of the above formula, we have (2).
In Procedure III, the number of nodes examined to
traverse a tree is a reasonable measure of the work. Let
H(A,) be the number of nodes examined to traverse a
tree.
Property 8 For some constant ¢>0,

H(A,)<cl(4,)m(4,) 3

Proof. Since the height of the tree is m(4,) and the
number of all the longest increasing subsequences in 4,, is
I(A4,), the total number of nodes examined by the back-
track technique is bounded by a constant times /(4,)
m(A,). Thus, we obtain (3).

Theorem 2 The running time required for generating
all the longest increasing subsequences in A4, is bounded
by

max {O(n?), O(/(4,)m(4,))}.
Proof. By Property 6, 7 and 8, it is easily shown.

4. Counting Algorithm

In this section, we will establish a counting algorithm
for all the longest increasing subsequences in A,. Our
algorithm consists of two procedures, Procedure I and
Procedure IV. Since Procedure I has been described, we
present Procedure IV counting all the longest increasing
subsequences in A4, from m(4,) decreasing subsequences.
By Property 5, we can establish Procedure IV by using a
dynamic programming technique. Procedure IV is writ-
ten in PASCAL-like notation and shown in Fig. 6. The
integer array c[k, j] denotes the number of increasing sub-
sequences of length k in A4,. whose ith element is con-
tained in Sy(1<i<k—1) and kth element is the jth
element of S;.

Thus, the number of all the longest increasing subse-
quences in A, is c[m(4,), 1]+ - - - +c[m(4,), len (S, 4,51

1. begin
2 for j:=1 t_olen(s1) do c[1,3):=1;

3 for k:=2 to m(A)) do begin

4 for j:=1 to len(S,) do begin

5. clk,jl:=0; i:=1;

6 while(pos(S, ,,i)¢<pos(S,,j))and(iclen(S, ,)) do begin

7 if mid(s,_;,1)mid(S,,3) then clk,jli=clk,Ileclk-1,1];
8. i:=i41

9. end

10. end

1. end

12. record c[m(An),l]+...+c[m(An),1en(Sm(An))] as a solution
13. end.

Fig. 6 Procedure IV counting the number of all the longest
increasing subsequences in A,.

I. SEMBA

Table 1 The values of clk,jl (1<k<4,1<j<len(Sy)) for
Ag=364912587.

L 1 2 3

BW N -
[S
NN b

We obtain the following theorem.
Theorem 3 Combining Procedure I and Procedure 1V,
the number of all the longest increasing subsequences in
A, is obtained.

As an example, for 4,=364912587, we show the values
of ck, jl(1 <k<4, 1<j<len(S,)) in Table 1.

5. Analysis of Counting Algorithm

In this section, we will make an analysis of the count-
ing algorithm.

In Procedure IV, the number of elements examined to
be counted is a reasonable measure of the work. Let
I(A,) be the number of elements examined to count all the
longest increasing subsequences in A,,.

Property 9 For any 4,(n>1),

I(4,)<n*. o))
Proof. By Procedure IV, it follows that 7(4,) <len (S,)
len (Sp)+ - +len (Sp4,)-1) len (Sp4,y). Thus, in a
similar way as Property 7, we obtain (4).
Theorem 4 The running time required for counting all
the longest increasing subsequences in 4, is bounded by
on?).
Proof. By Property 6 and 9, it is easily shown.

6. Remarks

For a sequence of n distinct positive integers B,=
b,b,- - b, similar results are derived. Let c;c, - 'c,bea
sequence whose element c,(1 <i<n) is the order of b, in
b,b, - -b,. We note that c¢,c, - -c, is a sequence on
{1, 2,---, n}. A sequence c,¢," - - ¢, can be determined in
O(n log,n) by sorting a sequence b,b,- - -b,. Thus, we
may consider a sequence c¢,c, " * ¢, instead of a sequence
bib, b,

By Procedure I, m(B,) decreasing subsequences are
obtained. If these decreasing subsequences are merged,
then a sequence B, is sorted in O(n log,m(B,)). This
means that an efficient sorting algorithm may be estab-
lished for a sequence B, whose m(B,) is small.

References

1. Bitner, J. R. and Reingold, E. M. Backtrack programming
techniques, Comm. ACM, 18 (1975), 651-656.

2. Schensted, C. Longest increasing and decreasing subsequences,
Canad. Journal of Math., 13 (1961), 179-191.

3. Fredman, M. L. On computing the length of longest increasing
subsequences, Discrete Mathematics, 11 (1975), 29-35.

4. Bellman, R. Dynamic programming, Princeton University
Press, Princeton, N.J., 1957.

(Received March 31, 1982: revised September 7, 1983)

