Construction of Hexagonal Basis Functions Applied
in the Galerkin-Type Finite Element Method

MisAKO ISHIGURO*

A hexagonal element scheme is formulated to treat the hexagonal lattice together with the Galerkin approxima-
tion in finite element method. Presented in this paper is a method of construction of the localized Galerkin
functions (shape functions) for a regular hexagon. Here, the shape functions must attain degree one approximation
and provide the basis function with the property of inter-element continuity, both of which are inherent in
piecewise interpolation. The hexagonal shape functions are constructed as the products of planes on four triangles
constituting the hexagon. The functions thus obtained are rational fraction-type and the numerators are the

lowest order polynomials within the required conditions.

1. Introduction

Treatment of a hexagonal lattice domain is often
required in nuclear reactor calculations. Typical of such
an example is the case of a fast breeder reactor under
development for future use. Fig. 1 represents the
section of a hexagonal gas-cooled fast reactor (GCFR)(",
The section includes four fuel zones in the core, two
blankets (RB) and one lateral shield zone (REFLEC-
TOR), and control and safety rods (CRP and SRP).
All the subassemblies constituting the section are identi-
cal shape, representing a regular hexagon with 12.3 cm
per side.

Let n be the number of subassemblies of a section.
The number of node points would be, from Fig. 2:

Hexagonal element scheme (FEM6) 2n
Triangular element scheme (FEM7) 3n
Refined triangular element scheme (FEM19) 12n

It is seen that the hexagonal scheme (FEMG6) requires
a smaller number of nodes than conventional triangular
one (FEM?7) for a given configuration. Therefore, using
the FEM6 will bring a saving of computing time.

In the present paper, we particularly consider the
application of the Galerkin method(®+¢® which is mainly
used for solving the fluid flow problems. Typical of such
problems found in the nuclear reactor analyses is the
neutron diffusion calculation. The diffusion problem is
reduced to the solution of a self-adjoint elliptic second-
order partial differential equations.

The element schemes widely used in practical ap-
plications have been based on triangular or rectangular
ones and a hexagon has usually been treated as six
triangles. No detail study has appeared on the con-
struction of the element scheme directly based on the
hexagon. In the Galerkin method, trial functions, so
called as basis functions, are particularly used as the
weighting functions of a weighted residual method.
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Fig. 1 Configuration of GCFR.

Finite element
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FEM 6 FEM 7

FEM 19
Fig. 2 Two-dimensional node point representations.

Therefore, we construct the basis function over the
hexagonal lattice from a set of localized Galerkin func-
tions (shape functions) on regular hexagon using a piece-
wise Lagrange-like interpolation procedure. Here, the
shape functions are to be continuous across the
hexagonal boundaries.

Wachspress® shows a method for construction of
wedges which are rational fraction-type shape functions
on polygons. But the shape functions in his manner
violate an intuitive constraint: the sum of the shape func-
tions has to be 1 within an element, for the convex
polygons except for quadrilaterals.
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Another approach is possible if the domain is
restricted to hexagonal lattice. We use the idea of the
products of planes known as a technique applied to six
point scheme on a triangle. The shape functions thus
obtained are also rational fraction-type and the numera-
tors are the lowest order polynomial under consideration.

It is too sophisticated to evaluate the convergence
of finite element discrete solutions as compared with the
finite difference solution. Instead of this, we shall
represent the numerical results obtained from a com-
parison made between the above three schemes in the
case of a hexagonal prism geometry. The analytical
solution of similar size cylindrical geometry will be also
shown.

2. Galerkin Method

2.1 Basis Functions

Dividing the domain of interest into a number of
elements and numbering the node points interconnecting
the elements, we obtain a discretization of the problem.
The nodes are numbered on a x-y plane from 1 to N.
Specifically, if (Q,,Q,,- -, Q) represents a hexag-
onalization of the x-y plane, then each Q,, is an element
of regular hexagon constituted from the vertices 1, 2, - -,
6. For convenience, we denote vertices by the indices k
and /, and node points by i and j.

Galerkin method® is a numerical -procedure for
approximating the solution of a set of differential
equations of the form

Zw)-p=0, (x,y)eV 2.1
with boundary conditions
y(u) _q=0s (x, y) €S (2.2)

where V is a domain, S is the boundary surface, x, y
represent the spatial coordinates, and u is the exact
solution. The function u(x, y) is approximated by a set
of trial functions ¢,’s

. N

u(x, y)= i; u0(x, ). 2.3

Galkerkin method is a particular weighted residual
method in which the weighting functions are the same
as the trial functions. The residual

N
e=% (121 up ,) -p 2.4
is forced to be 0, in average sense:
<&, ¢>=0, 2.5

which can be rewritten as
f (LEup)—plgdV=0, i=1,2,---,N. (2.6)
|4

In above, u; represents the value of u at the i-th node
P(x, y), and the trial functions ¢,’s, each associated with
the node P,, are basis functions. The problem is to find
the nodal unknowns u;’s. :
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Fig. 3 Associated domain of a basis function g,.

Here, the basis ¢, is formed from a set of shape func-
tions localized to the hexagonal element, and used for
solving the interpolation problem®’:

1) e(PY=1.

(2) @(P;)=0 for j#i.

(3) o, vanishes outside all elements sharing a com-
mon vertex P; (see elements 4, B, C in Fig. 3).

In addition to above three properties, the basis has to
be continuous inside and between elements up to the
order n—1, where n is the highest order derivatives in
the functional®. The functional is a function of
functions and comes from the weak formulation of the
system of equations. For the harmonic equations (e.g.
v2u=0) this implies continuity of ¢;s and for the
biharmonic equations (e.g. v*u=0) it means continuity
of ¢’s and d¢,/On’s, where n is a normal to the bound-
ary. In particular, we concern the equations in the
harmonic-type steady state problem (e.g. second-order
partial differential equations) which often appears in
fluid flow problems. It follows that

(4) u(x, y) belongs to Sobolev space W§'). The space

contains all the functions whose first derivative
is square integrable. This implies that ¢,’s are
continuous across inter-element boundaries.

Furthermore, for most problems, it is natural to
assume that all points within a hexagonal element
have the same value of u as at the vertices when all six
have the same value. As a consequence, the shape func-
tions should be constructed on the constraint called a
degree one approximation in Wachspress’s meaning®:
the sum of the basis functions should be 1 for all points
within the element. It follows that

6 T o=l

2.2 Piecewise Interpoiation Function

Now we describe the interpolation function 4 to u
on a hexagonal lattice.

On each hexagonal element Q,,, we construct a function
#i(x, y) that interpolates u(x, y) at the vertices 1, 2,-- -, 6
of Q,.. The piecewise interpolate #(x, y) is defined by

8(x, Y)=up(x,y) if (x,y)eQ,. @7
The basis for computing the w,, is based on the set of
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shape functions @, @;," ', @¢ associated with the
vertices 1, 2,- - -, 6. It follows that
6
um(x’ J’) = kzl u(xh yk)(pk(x; J’), (2~8)

where the coordinate (x,, y,) corresponds to the vertex
k of Q,.

2.3 Galerkin Application

We will show an example in the case of extended
harmonic equation‘®. First deduced is a property of a
single element:
0/0x(h 0u/ox)+8/0y(h duldy)+Au=p (x,y)€Q,, (2.9)
with boundary conditions:

u=#on Sy, hdu/on=q on S,,
where u=u(x, y), n is unit normal vector, A is a constant,
h, p, u, q are prescribed functious of x, y, and S=S;+3S,
is the total boundary.

By virtue of the descriptions given in Ref. (3), the
global equilibrium equation for the hexagonalization
Q;, Q,,- -+, Q,) is rewritten as an assemblage of
elements-wise matrices:

Ly
—Pl
=|22|, where L,=K,—iM, (2.10)

PN

where K,,, M,, and P,, are element matrices defined by
K,= J WPID, +01®,)dQ, M,= j Q7D dQ,
Qm m
P,,,=—j‘ p® dQ+j. q® ds .11)
Q, S

and

O=(¢1, P25" " "> Pn)-
Note that X,, and M,, are symmetric matrices.

3. Hexagonal Shape Functions

3.1 Construction of Hexagonal Shape Functions

The shape functions usually used for this type of prob-
lems were planes on a triangle and bilinear Lagrange
polynomials on a rectangle. Fig. 4 are the graphs of
them.

We now construct the shape functions for a regular
hexagon using the idea of “products of planes” which
is applied for a technique to obtain the shape functions
for a six-point scheme on a triangular element!®). We
also denote the shape functions by ¢4, @,,"**, @s.

4

{a) Triangular element

2

(b) Rectangular element

Fig. 4 Triangular and rectangular shape functions.

1-2/3y |=0
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1+2-1//3y=0 1-2—1//3y=0
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1+2/3y| =0

O Vertex index

Fig. 5 Six side-line equations and partition into four triangles.

Let Q, be the regular hexagon of side length 1. Com-
putation of the ¢,’s is achieved as products of planes
on four triangles (see Fig. 5). On the triangle Q@®), we
construct the unique plane Q, interpolating 1, 0 and 0
at vertices @, @, and @), respectively, and on the
triangle Q@@, the unique plane Q, interpolating 1, 0
and 0 at vertices @, @ and @, respectively. The planes
Q; and Q, on the triangles @@®® and OB®, are
similarly formed. It is evident that

@1(x, »)=01(x, 1Q(x, NAs(x, y)Qulx, y) (.1)
solves the interpolation problem
01(x3, i)=0y; fork=1,2,---,6.
In the above, Q’s are given by
Q1(x, Y)={x3¥3—X32+X(y,—y3) + ¥(x3—X,)}
H{x1(y2—=3)+x2(y3—y1) + x3(y1 — y2)}
=1-2//3y.
Similarly,
0:(x, ) =(1+x—1//3)/2,
0s(x, )=(1+x+1//3y)/2,
Qu(x, )=1+2//3y. 3.2
As a consequence, we obtain
@10%, ) =(1=2//3p)(1+x—1//3p)(1 +x+1/,/3y)
x (1+2//3y)/4,

and similarly
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@2(%, ) =1+ x=1//3p)(A +x+1//3p)1+2//3y)
x(1-x+1//3y)/4,

@3(x, ) =1+x+1//3)0+2//3)A —x+1//3p)
x(1—x—1//3p)/4,

04(x, ) =(1+2//3y)(1 = x+1//3p)(1 - x—1//3p)
x (1-2/\/3y)/4,

@s(x, ) =(1=x+1//3p)(1 = x—1/\/3)(1~2/,/3y)
x(1+x~1//3p)/4,

@6(x, Y)=(1—x=1//3p)1 =2//3p)(1 +x—-1//3y)
x (1+x+1//3p)/4. 3.3)

Note that ¢, is symmetrical to x-axis. The shape of
@,’s is the same, since @,, @3, @4, @5, P can be obtained
from ¢, by subsequent rotations of 60°. Next, let Q and
Q, be the hexagons of side length “A” and 1, respec-
tively. Clearly we have

wk(x’ }’)=h2‘/’k(x/h, y/h) fOr k= 19 2;' ) 6’ (3'4)
where ¢, and ¥, denote the shape functions on Q, and
Q, respectively.

The functions thus obtained have to attain the degree

one approximation: k%‘, @u(x, y)=1, specified in Sec-
=1

tion 2.1. Whereas the sum of the functions given by Eq.

(3.3) is bread shaped as pictured in Fig. 6.

Finally, after normalizing the functions (3.3) so as to
force the sum to 1, we arrive at rational fraction-type
functions:

@10x, »)=(1=2/\/3p)1 +x=1//3p)(1 +x+1//3y)
x (1+2/\/3p)/v,

@2(x, Y)=(1+x—=1//3p)0 +x+1//3)(1 +2/,/3y)
x (1 =x+1//3p)v,

@3(x, ¥)=(1+x+1//3)1+2//3p)1 - x+1/,/3y)
x(1=x=1//3)/o,

?4(x, )=(1+2/\/3)(1 —x+1//3p)(1 —x—1//3y)
x (1=2/3/3p)/o,

@s(x, )=(1—x+1//3y)(1 - x=1//39)(1 -2/\/3y)
x(1+x—1//3y)/v,

@6(x, Y)=(1—x—1//3p)(1 -2//3p)(1 +x—1//3y)

x (1+x+1//3p)/v,
where

6
v=4 ¥ 0ux»)=23-5"-»". G-9)

The function ¢, presents the shape shown in Fig. 7,
where the numbers @ ~® denote the vertices.

After all, the basis function ¢,(x, y) associated with
the node P, is composed of at most three shape functions
whose domain elements share a common vertex P; (see
Fig. 3 again), and ¢;=0 outside such elements. The basis
thus obtained satisfies the properties (1), (2), and (3) in
Section 2.1.

To validate the continuity property, we invoke the
symmetry of shape function itself and the rotational
symmetry between the functions. In Fig. 3, we see

M. ISHIGURO

Fig. 7 Normalized hexagonal shape function @,.

A B
‘Pi(n(x’ }’)443 =@ye)(%s Y)G_‘ L (3.6)

where, for example, 4:3 denotes the side from 4 to 3
on the element A and i(k) is the i-th node corresponding
to the k-th vertex of a hexagon. The Eq. (3.6) implies
that the basis ¢, is continuous across the boundary of
A and B.

In addition, from the method of construction of the
shape functions given in Eq. (3.3), it is seen that the
basis function ¢, vanishes along the sides opposite node
i. Indeed, this feature is indispensable for the con-
tinuity property, since basis should vanish outside the
associated domain and be continuous across the side
lines. Obviously, the basis obtained in this manner is
the lowest order polynomial under consideration in the
unnormalized form.

3.2 Calculation of Integrals between Shape Functions
Now, let us consider the values related to the integral
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Table 1 Value of integrals § ¢,@,d22 and f ¢,p:d2 for hexagonal shape functions.

Index RE;%E:; g;esgr:gion Shﬁ%“i)gégzby
k1 By (xh?) Qu By (x /32407 Qu (x2/v/3)
(1,1), (2,2), 3,3), (4,4), (5,5), (6,6) 0.1584735 0.7606447 9587/33600 10819/13440
(1,2), (2,3), (3.4), (4,5), (5,6), (1,6) 0.08657701 —0.1619850 7527/44800 —951/8960
(1,3), (2,9), (3,5), (4,6), (1,5), (2,6) 0.03675672 —0.1693089 10651/134400 —4477/26880
(1,4, (2,5), 3,6) 0.02787179 —~0.09805682 2077/33600 —1389/13440

of shape functions over Q. The typical ones are § ¢, dQ,
J0:dQ, § 00,dQ, §@01dQ. As was seen in the
expressions (2.10)~(2.11), these values are key for
solving the partial differential equations by Galerkin
method.

Particularly, we consider the integrals | ¢,¢; dQ and
§ @rp; dQ which appeared in the formula for the solu-
tion of neutron diffusion equations and integrals over
the hexagon of side length 1. Then we denote

B..=L 01 dD, Q.;=L 010} dQ
fork,I1=1,2,---,6. (3.7)

The above integrals are easily calculated for the
triangular and rectangular schemes by a simple hand
calculation®. But for the application of more complex
shapes, the integration becomes a troublesome problems.
For the polynomial-type shapes in the unnormalized
form, a means for obtaining the analytical integration
is to wuse the symbolic manipulation software
REDUCE2® developed by the university of Utah.
But for the rational fraction-type ones, it is impossible.
Then, we attempt the Romberg’s numerical integration
with sufficient accuracy.

Let B,;, and Q;, denote the integrals on the hexagon
with the side length *““4”. Clearly we have

By =h*B,,, Qu=0 fork,I=1,2,--.,6. (3.8)

Since the values Bj; and Q4 can be easily calculated
from the values By, and Q,;, then these values are
available for other similar problems based on a regular
hexagon. Therefore, we provide the concrete values by
Table 1 for both the normalized shapes in Eq. (3.5) and
the unnormalized shapes in Eq. (3.3).

4. Other Methods and Discussions

As was mentioned, we first derived a set of piecewise
hexagonal basis functions which were the lowest order
polynomials under inter-element continuity. To make
the trivial case expressible:

u(x, y)=constant where (x, ) e Q, 4.1)

the polynomial shape functions were normalized. As
a result, rational fraction-type shape functions were
obtained. This constraint, however, complicates the form
taken by the shape functions. Note that no linear

combination of such shapes gives the interpolate u in the
linear form which has been widely used in the past:

u(x, yy=ax+by+c where (x,y)e Q. 4.2)

If the continuity property is dropped, the usual method
to compute the hexagonal shape functions is to seek
the quadratic surface

@u(x, Y)=ax?+bxy+cy*+dx+ey+f
for a vertex k (4.3)
which solves the interpolation problem on each hexagon
(pk(xb yl)=6kl I= 1’ 21' ) 6. (4‘4)

More concretely, the unknowns a, b, ¢, d, e, f are to
be determined from the values at the vertices 1, 2,- - -, 6.
Especially let us consider the shape function at vertex
1, we have to solve

x% X101 J’f xy ¥ 1
X2 X2¥2 yg X3 ya 1
;’:3 X3)3 )’g x3 y3 1 4.5
4 XaVa Vi X4 Y4 1

X5 Xs¥s Y5 Xs ys 1

X§ XeVs V& X Vs 1

coo0o0 o —
[
N

w0 R0 >R

This equation, however, is not solvable, because the
resulting coefficient matrix is singular. This singularity
is because the vertices are symmetrically with respect to
x-axis (see Fig. 5).

Another lower-order polynomials without continuity
constraint are symmetrical ones. That is, if the function
¢, is symmetric with respect to the x-axis, then it can
be written in the form

@1(x, )=ax+by*+cxy*+d for a vertex k. (4.6)

After solving the interpolation problem at the vertices
®, ®, @ and @, we express it as

@1(x, 1) = +x)(1-2//3p)(1 +2//3)/2

(unnormalized form). (4.7)

The function ¢,, in the normalized form, is shown in
Fig. 8. We see that ¢, does not vanish on the sides
@-® and @-6.

Wachspress® attempted to generalize the construc-
tion of the shape functions on polygons in a form of
rational-fraction. In his approach, the shape functions
are called wedges and formed such that the wedge as-
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g.s0 0.0
&X-VALUE ®

Fig. 8 Hexagonal shape function ¢, without continuity property.

sociated with vertex k is linear on sides adjacent to k.
This linearity is achieved by putting the external diagonal
equations of the polygon into the denominator of the

wedges, and provides the inter-clement continuity of
the basis functions. But unfortunately, a degree one

approximation can not be attained for the convex
polygons except for quadrilaterals. For the case of
regular hexagon, the wedge associated with the vertex
1is:
@1 =(1-2//3p)A+x~-1/,/3p)
x(1+x+1//3p)(1+2//3p)
{901 —1/3x—1//3»(1 - 1/3x+1//3y)}. 4.8)
In the above, linearity on the adjacent sides ©-® and

®-® can be easily certified. But the function is not a
degree one approximation.

5. Numerical Results and Conclusions

It is known® that the approximation computed from
degree one basis functions differs from the true value
by the second order of h (side length) in diffusion
equations. The approximation gives the same order of
h as the finite difference one. But, it is too sophisticated
to evaluate the generic constant for such a tricky scheme
as FEM6. Accordingly, we validate the scheme by a
comparison with the more refined schemes and also with
the analytical solutions of similar geometry. Here we
used a set of piecewise rational fraction-type basis
functions formed from the shapes (3.5) for FEM6
scheme.

A model problem presented here is the neutron diffu-
sion equation:

—~DViu(X)+o u(X)=A(vep)u(X) XeV (5.1)
where D, o,, op, and v are diffusion coefficient, macro-
scopic absorption, fission cross section, and the number
of neutrons produced by fission, respectively. The equa-

tion is solved for neutron flux u(X) for a spatial variable
X and the effective multiplication factor A. The global

M. ISHIGURO

12 9

( 60°— rotation )

Fig. 9 Critical reactor section of hexagonal geometry (60°-
rotational symmetry).

equilibrium equations are treated as an eigenvalue
problem and solved by inner and outer double loop
iteration method.

The problem taken up here is the case of a one-energy
group, homogeneous-region critical reactor of hexagonal
prism geometry. The x-y section is shown in Fig. 9 and
z-direction is partitioned into the 10 identical size meshes.
Here,

H (height)=100, h=11.55,

D=3.0, vap=0.021, 6,=0.015, 6,=0.1.

We now consider the cylindrical geometry with
similar size. From the consideration of the jagged bound-
ary in Fig. 9, we assume that

R (radius)=75.075.

The analytical solution is known(”’ as

u(r, 2)=Jo(jo,1/R) cos (nz/H)
A=va(DB%+0c,)
where
B?=(jo /R +(n/H). (5.2)

In the above, J; is a Bessel function and j, ;(=2.405) is
the smallest positive root of the Bessel function J,.

The numerical calculations were made on the three
different schemes given in Fig. 2. The results are sum-
marized in Table 2. Here the neutron fluxes are nor-
malized by power® and the radial fluxes at midplane are
shown. The analytical solution in the above sense is
shown together. It is seen that the solutions obtained
by the three schemes agree with each other and have
good accuracy. The difference found between the
numerical solutions and the analytical one resulted
mostly from the difference of the boundary geometries.

The real scale neutron diffusion problem for the
configuration given in Fig. 1 was also calculated. The
results obtained from a comparison made between
FEM?7 and finite difference methods were discussed in
Ref. (8). The scheme FEMG6 led to a reasonable solution
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Table 2 Computed results for three different schemes.

Power normalized flux

Analytical
FEM6  FEM7 FEMIS o0 solution
0 — 25576  2.4467 1.0 1.0
@, 24489 24552 23627  0.96567  0.96607
@s 21989 22015  2.1258  0.86884  0.86771
@s 13323 13172 12995 053112 0.52296
s 08156 07979 08010 032736 0.31090
015 0.0 0.0 0.0 0.0 0.0
A 099360 099193 0.99847 099847  1.04028
CPU
time on 1.11sec. 2.32sec. 7.26sec.
M380

*normalized by the central flux

with the merit of saving time, where the computing
time was reduced to half as compared with the finite
difference of triangular meshes. But, the resulting
multiplication factor (eigenvalue) differed by 19 and
flux (eigenvector) by 9%,. Moreover, if the unnormalized
shapes in Eq. (3.3) was applied, the eigenvector did not
converged within a reasonable time. The use of Egq.
(4.7) type shapes resulted in a little more time consuming
calculation. The eigenvalue and the eigenvector, how-
ever, agree with those by Eq. (3.5) within a tolerable
error.

Though the FEM6 scheme does not present decisive
advantages for the real scale problem taken up in Fig. 1,
the scheme is worth attempting for other problems.

The construction method for shape functions

presented here can be applicable for other similar
problems based on the hexagon, including irregular
ones, as long as identical hexagons are used. If different
ones are applied, however, certification of the required
order of continuity of basis functions is crucial.
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