WEKO3
アイテム
Construction of Hexagonal Basis Functions Applied in the Galerkin-Type Finite Element Method
https://ipsj.ixsq.nii.ac.jp/records/59898
https://ipsj.ixsq.nii.ac.jp/records/598989ed8d371-06df-4411-8a70-f96ef94ce9c5
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 1984 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | JInfP(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 1984-07-31 | |||||||
タイトル | ||||||||
タイトル | Construction of Hexagonal Basis Functions Applied in the Galerkin-Type Finite Element Method | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | Construction of Hexagonal Basis Functions Applied in the Galerkin-Type Finite Element Method | |||||||
言語 | ||||||||
言語 | eng | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||
資源タイプ | journal article | |||||||
著者所属 | ||||||||
Computing Center Tokai Research Establishment Japan Atomic Energy Research Institute. | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Computing Center, Tokai Research Establishment, Japan Atomic Energy Research Institute. | ||||||||
著者名 |
Misako, Ishiguro
× Misako, Ishiguro
|
|||||||
著者名(英) |
Misako, Ishiguro
× Misako, Ishiguro
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | A hexagonal element scheme is formulated to treat the hexagonal lattice together with the Galerkin approximation in finite element method. Presented in this paper is a method of construction of the localized Galerkin functions (shape functions) for a regular hexagon. Here the shape functions must attain degree one approximation and provide the basis function with the property of inter-element continuity both of which are inherent in piecewise interpolation. The hexagonal shape functions are constructed as the products of planes on four triangles constituting the hexagon. The functions thus obtained are rational fraction-type and the numerators are the lowest order polynomials within the required conditions. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | A hexagonal element scheme is formulated to treat the hexagonal lattice together with the Galerkin approximation in finite element method. Presented in this paper is a method of construction of the localized Galerkin functions (shape functions) for a regular hexagon. Here, the shape functions must attain degree one approximation and provide the basis function with the property of inter-element continuity, both of which are inherent in piecewise interpolation. The hexagonal shape functions are constructed as the products of planes on four triangles constituting the hexagon. The functions thus obtained are rational fraction-type and the numerators are the lowest order polynomials within the required conditions. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AA00700121 | |||||||
書誌情報 |
Journal of Information Processing 巻 7, 号 2, p. 89-95, 発行日 1984-07-31 |
|||||||
ISSN | ||||||||
収録物識別子タイプ | ISSN | |||||||
収録物識別子 | 1882-6652 | |||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |