An Alternative Scheme for Evaluating
Combinator Expressions

MASATO TAKEICHI™

Turner shows how combinators can be used for implementing applicative languages. In his method, a com-
binator expression is represented by a graph with the nodes comprising functions and their arguments. Applica-
tion of a function to an argument causes graph reduction which corresponds to the beta-reduction of lambda
calculus. Graph reduction is performed in a way such that the node representing a functional application is over-
written by its result. Another scheme for combinator expression evaluation is proposed by Jones and
Muchnick. Although their evaluator is a fixed-program and would have some advantages over Turner’s graph
reduction scheme, it seems unusual in dealing with higher order functions.

In this paper we describe an alternative scheme for evaluating combinator expressions. The evaluator is
almost a fixed-program and is easily extended to include new combinators. It deals with higher order functions
consistently as Turner’s evaluator does. That is, the proposed scheme shares both advantages of Turner’s graph
reduction and of a fixed-program. And it is most attractive in implementing the evaluator on conventional hard-

ware. An experimental evaluator is also presented.

1. Introduction

In [9] Turner describes an implementation technique
for applicative languages which is based on combinator
calculus [3]. Function definition in an applicative
language is translated into a lambda expression which is
then transformed into a combinator expression with no
bound variables. Function application in the form of
combinator expression is reduced to a simpler one by an
interpreter for combinator reduction. In his method,
the combinator expression is stored as a graph with the
nodes representing functional applications and the inter-
preter performs graph reduction on this structure. He
has used this technique to implement the applicative
language SASL [8]. A similar evaluator for combinator
expressions has been microprogrammed to gain in ex-
ecution speed of combinator reduction [2].

The method presented by Turner has become of
major interest in normal order evaluation of lambda
expressions [7]. In particular, it is most attractive for
dealing with higher order functions which convey
generalized forms of similar algorithms [1].

Another approach to evaluating combinator expres-
sions is presented in [6]. Unlike the graph reduction
scheme, the proposed fixed-program evaluator does not
change the code itself. Although the advantages of the
fixed-program over the graph reduction scheme are
stated there, it is not appropriate for dealing with

*Department of Computer Science, The University of Electro-
Communications.

Journal of Information Processing, Vol. 7, No. 4, 1984

higher order functions which are to be partially
evaluated with an insufficient number of arguments to
yield another functions.

The purpose of this paper is to show an alternative
scheme, called ‘‘Graph Copying Scheme’, for
evaluating combinator expressions. The new scheme
would be most appreciated for its simplicity in im-
plementing evaluators on conventional hardware.
Algorithms of translating lambda expressions into com-
binators are not of our concern. Combinators appeared
in combinator expressions may be freely chosen; we can
apply the scheme to super-combinators [4] as well as
standard combinators considered in [6, 9].

We consider the evaluation order of functions such as
normal and applicative ones as a mathematical issue,
and the parameter mechanism such as call-by-name and
call-by-value as language issue. When expressions are to
be evaluated is an implementation issue. Evaluation of
combinator expressions is usually implemented in a
lazy, actually fully lazy way (See Section 3), and so is
our evaluator. Such evaluation scheme realizes normal
order evaluation with call-by-name semantics. In order
to avoid confusion, we do not use the terms ‘‘normal
order evaluation’, and ‘‘call-by-name mechanism”’
when we discuss combinator expression evaluation.

2. Combinator Expression

It is well known in the theory of lambda calculus that
variables in lambda expressions are unnecessary if a few
functions called combinators which embody certain
common patterns of application are introduced. Com-
binators S and K defined as

An Alternative Scheme for Evaluating Combinator Expressions

S fg x=fx(g x).
Kxy=x

are adequate for eliminating variables from any lambda
expression. By convention we denote functional applica-
tion by juxtaposition and assume that it associates to
the left. Turner uses additional combinators for prac-
tical reasons [9]:

I x=x
Bfgx=f(gx)
Cfgx=fxg

Moreover, combinators for conditional expressions,
recursive applications, and arithmetic operations are
also introduced:

IF e t f =t if e is true, f otherwise

Y= (Yf)

+:xy=x+y, etc.,

=: x y = true if x equals y, false otherwise, etc.

A combinator expression is simply an applicative ex-
pression, i.e., a constant or an applicative form of a
function and an argument, with the restriction that its
constituents must be applicative expressions. We
assume that globally defined functions and combinators
are treated as constants in an expression.

Although the above combinators are considered
standard, any closed function, i.e., function without
free variables can be taken as a combinator. Hughes [4]
proposes a new compilation algorithm for translating
any lambda expression into a combinator expression
which comprises constants and specifically chosen com-
binators called super-combinators for the original lamb-
da expression.

Example: Factorial function

Function definition

Jac n=if n=0 then 1 else nxfac (n-1)
Lambda expression
Sfac=An.IF (=:n0) 1 (x: n (fac (—: n 1)))

Combinator expression using the standard com-
binators

Jac=S(C(B IF (=: 0)1) (S*: (B fac (C —: 1)))

Combinator expression using a super-combinator
fac:1

Sac=fac:1
where
fac:1 n=IF (=: n0) 1 (»: n(fac (—: n 1)))

The last definition shows that super-combinator fac:1 is
identical to function fac to be defined because fac has
no free variables. The super-combinator is most useful

247

in compiling functions with many variables, which will
be demonstrated in Section 6.

3. Evaluation by Graph Reduction

Turner shows an implementation method for com-
binator expression evaluation based on graph reduc-
tion. As mentioned earlier, the combinator expression
is represented by a tree-like structure. The interpreter
uses the left ancestor stack (LAS) in order to keep the
pointers to nodes involved in combinator reduction.
The stack initially contains the pointer to the expression
to be evaluated, and the function field of the node
pointed to by the top of the stack is pushed down onto
the stack in turn until a combinator appears at the top
of the stack. Then the appropriate reduction rule for
the combinator is applied as shown in Fig. 1.

After the combinator reduction step is performed,
stacking operation is resumed. In graph reduction, the
graph is transformed according to the combinator
reduction rules. Any node representing an expression
might be shared by pointers from several nodes for
achieving fully lazy evaluation of the first expression.
Fully lazy evaluation means that every expression is
evaluated at most once [4]. For the sake of shared nodes
in the graph, the result of combinator reduction must
be left in the root node of the original expression.
Hence the node to which the reduction rule is applied is
necessarily overwritten with the result, and the indirec-
tion node is required when reducing such combinators
as K and arithmetic operators.

4. Evaluation by Graph Copying

The key to the new ‘‘graph copying’’ scheme relies on
the fact that the expression graph can be simplified by
copying its arcs and that the node pointed to from multi-
ple nodes in the graph should appear only at reduction
of specific combinators. For example, the reduction of

LAS

A% [, [x]
1

| 4—{, 19]
~N

B{ (B f]

Fig. 1 Reduction of combinators (Graph Reduction).
The box depicted by dotted lines show a newly generated
node, and the box marked o becomes an indirection node.

248

combinator S with f, g, and x yields a graph represent-
ing (fx (g x)) in which both occurrences of x refer to the
same expression. This corresponds to the shared node
described in the last section.

The evaluator by graph copying uses an argument
stack (ARGS) to keep the arguments themselves, not
the pointers to them, for combinator reduction. The
mechanism of pushing arguments onto the stack and
dispatching combinators for reduction follows that of
the graph reduction scheme. Since the argument stack
does not keep pointers to nodes, rewriting the node is
impossible. Instead of rewriting, we make a copy of the
expression graph according to the need. Fig. 2 shows
the case of reducing combinator B by graph copying.

A problem arises along with the reduction of S.
Although a straightforward application of the above
method could implement the copy rule of call-by-name
parameters, each occurrence of the same expression
must be evaluated independently in the evaluator. As
described above, for fully lazy evaluation two occur-
rences of the expression x should be identical after the
reduction in that if either one of these happens to be
evaluated to yield a (possibly functional) value, the
other should become the value. In the practical point of
view, the property of full laziness is most important.
Full laziness in graph copying evaluation can be im-
plemented using a special combinator THUNK after the
analogy of an established technique for compiling call-
by-name parameters in procedural languages [5]. Fig. 3
shows the effect of reducing S in the graph reduction
and the graph copying schemes. Note that the node with
THUNK as its function field is shared by two pointers.

The reduction rule for THUNK is:

THUNK (*eval e)=e¢'
with rewriting the node to yield
(THUNK (*deliver e')) where e’
is the result of evaluating e.
THUNK (*deliver e)=e
where *eval and *deliver are distinguished constants.

ARGS ARGS
/s W ne

X —

9| [I8] < [+ 0I5 ..+
B — {83
B | [BIf] [(BT1]

’_

ARGS ;\RGS

A [

1 =

1 [=]1]

Fig. 2 Reduction of combinators (Graph Copying).
The box depicted by dotted lines shows a newly generated
node. Three nodes of the original graph become useless,
because f, g, and x are copied onto the stack and the
created node.

M. TAKEICHI

LAS LAS

Y/ \‘\-\\ Z{ /

KREN
S f
Graph Reduction
(before) (after)
Graph Copying ARGS

ARGS
Y/

W

9 [Te] b=l -
f Ar P I
3 st P s
yoval X @
| S— ——d

Fig. 3 The reduction of combinator S.
The dotted lines show the state after the reduction.

The effect of applying the reduction rule for THUNK is
shown in Fig. 4. A similar mechanism is suggested in [6]
with reference to call-by-need evaluation.

The extension of the above method to other com-
binators presents no major problems. Assume that the
reduction rule for combinator Q is given as

Qx1x2...xn=>F(xl, x2, ..., xn),

where F(x1, x2, . . ., xn) is an applicative expression
comprising variables x1, x2, . . ., xn, and constants.
Recall that we take free variables, functions and com-
binators as constants. When reducing Q, THUNKSs are
necessary only for arguments which correspond to
variables with multiple occurrences in F.

In general, graph copying reduction for combinator
Q proceeds as follows:

Let Xt be the set of variables which appear more than
once in F.
1) Make thunks with *eval indicator each for x in X7.
2) Fill the thunks for xi in X7 with /-th argument on
the stack.

ARGS ARGS

THUNK oal

VI el)] il
THUNK \‘l&m«[eJ =

before after

Fig. 4 The reduction of combinator THUNK.
e’ is the result obtained by evaluation of e.

An Alternative Scheme for Evaluating Combinator Expressions

3) Construct a graph representing applicative form
for F comprising function and argument parts, with
replacing xj not Xt by j-th argument on the stack and xi
in Xt by corresponding thunk.

Now that we have had the algorithm for combinator
reduction, the evaluation algorithm should be specified:

[Graph Copying Evaluator}
1:
while (top of ARGS points to a cell of application)
do
Discard the top of ARGS;
Push argument and function parts of the cell in
this order;
od;
if (top of ARGS is a combinator) then
if(number of arguments on ARGS are sufficient to
reduce the combinator) then
Reduce it using as many arguments on ARGS;
Put the result on ARGS in place of them;
goto 1;
else
Construct a graph representing the applicative
form for partially evaluated function;
return the result as value of the expression;
fi;
fi;
if (top of ARGS is data) then return it fi;
if (top of ARGS is THUNK) then
if (it has *eval indicator) then
Evaluate the expression in the THUNK;
Rewrite the THUNK with *deliver indicator and
the result;
Put the result on ARGS in place of the THUNK;
goto 1;
else
Get the value from the THUNK;
Put it on ARGS in place of the THUNK;
goto 1;
fi;
fi;
It should be noted that the evaluator is called recur-
sively in evaluating THUNKSs and special combinators
such as IF, +:, etc.
We make a few remarks on different evaluation
schemes proposed so far before going into the actual
implementation of the graph copying scheme.

5. Discussion

Rewriting the node to which the reduction rule is ap-
plied ensures the property of full laziness in the graph
reduction scheme. If we consider combinators as
machine instructions, and super-combinators as
microprogrammed instructions, graph reduction evalua-
tion looks like self-reorganizing execution of machine-
coded programs. From a methodological point of view,
such programs should be avoided at least on conven-

249

tional hardware. This holds also for a similar scheme
used in SKIM [2], where the technique of reversing
pointers is applied in place of the left ancestor stack.
The fixed-program scheme presented in [6] relies on
compiling combinator expressions to yield stack
machine code, and an algorithm should be required for
extending this method to dealing with super-com-
binators. Although generated code remains as it is in
this evaluator, the stack used in executing the code con-
tains both atomic values and locations in the code. This
would not be convenient for saving partially evaluated
functions for later use. Such treatment of the code turns
out to be an obstacle in using higher order functions.
Higher order functions, especially in their curried form,
are used to describe abstract algorithms which can be in-
stantiated to obtain concrete ones by supplying some of
their arguments. Famous ‘map’ function exemplifies
such a usage of higher order functions:
map f x: yields a list obtained by applying f to

the components of list x.
If we have function ‘square’, we can make a function
(map square) which yields a list of squares of the list
given as the argument. Such instantiation can be possi-
ble even for functions over non-integers. The method in
[6] does not keep (map square) as the same form as
‘map’, and special treatment will be required for using
it as a function.

The graph copying scheme and the graph reduction
scheme share a desirable property for higher order func-
tions that the result of evaluation is either an atomic
value or a graph representing a combinator expression.
Although both schemes are similar at first sight, the
graph copying scheme has a practical advantage over
the graph reduction in that it can be implemented effi-
ciently on conventional hardware.

As to storage allocation strategies in graph copying,
there is much room for choice. We might use chunks,
i.e., contiguous memory words, of arbitrary sizes for
storing applicative form with many arguments in place
of pairs of function and argument fields (Fig. 5).

ARGS ARGS IF

fac:l —
n o>

Fig. 5 Possible storage allocation for the graph copying scheme.
ARGS grows upward.

250

It should be noted, of course, that the size of the chunk
is kept either in itself or with the pointer to it. An infor-
mal algorithm for the evaluator using chunks follows:

[Graph Copying Evaluator Using Chunks]
1:
while (top of ARGS points to a chunk of applica-
tion) do
Discard the top of ARGS;
(*) Move the chunk for the applicative form onto
ARGS;
od;
if (top of ARGS is a combinator) then
if (number of arguments on ARGS are sufficient
to reduce the combinator) then
(*) Reduce it using as many arguments on ARGS;
Put the result on ARGS in place of them;
goto 1;
else
(*) Dump the arguments on ARGS as a chunk of
applicative form representing a function;
return the result as the value of the expression;
fi;
fi;
--- following cases are the same as in Section 4.

The lines marked (*) offer the advantage of using data
transfer instructions such as ‘/oad multiple words into
registers’, ‘store registers into multiple words’, or
‘move multiple words from memory to memory’. It is
impossible in the graph reduction scheme. The second
of these, i. e., the reduction step, would require explana-
tion. As shown in Fig. §, the result of reduction can be
represented by chunks allocated in contiguous memory
words; in the case of Fig. 5, 6 chunks are allocated in 17
contiguous words. In this way, we can allocate as many
words as required for reduction all at once, and then
copy the template of the resulting graph into these
words just allocated using data transfer instructions.
After copying, we have only to adjust pointers to the
chunks of the graph being created, and fill argument
positions with arguments on the stack.

In order to make comparison of two schemes, we
now return to our old representation of the graph for ex-
pressions.

It should be noted that the number of nodes required
seems to be approximately the same in graph reduction
and in graph copying. Table 1 shows the number of new
nodes required for reducing the standard combinators.
In fact, it turns out that the numbers of S reductions

Table 1 The number of new nodes requxred for reduction.

Graph Copying

Graph Reductlon

—_—0OoON

QW =~ xw»
O—= OO W

M. TAKEICHI

and C reductions taken in evaluating functions are ap-
proximately the same. In case of the factorial function
in Section 2, both reductions occur 2*n+1 times each
when evaluating (fac n).

Since the evaluation speed depends heavily on the
technique and on the hardware used in actual implemen-
tations, precise figures seem meaningless. Our ex-
periments using Lisp functions show that both
evaluators run at a comparable speed. The graph copy-
ing evaluator using chunks gains much in efficiency and
runs fast. However, we have no idea to compare it to
any implementation of the graph reduction evaluator.
We believe that it is difficult to compare implementation
techniques with the full use of specific strategies for
memory allocation and specific instructions.

To summarize, the graph copying scheme is most at-
tractive because of its simplicity and its versatility in im-
plementing the evaluator on conventional hardware.

6. Implementation

In order to save the trouble of machine dependency
in illustrating the graph copying evaluator, we show an
experimental evaluator written in Franz Lisp, a dialect
of Lisp on the VAX UNIX 4.1 bsd. Although various
optimization techniques could be applied to gain speed,
we show a simple version in Fig. 6. The evaluator com-
prises a few Lisp functions:

eval: dispatches a reducible expression

to the combinator reducer

make-thunk: makes a thunk

THUNK reduces THUNK combinator

IF implements the rule for IF
=:.. evaluates predicate=, .

+:. performs arithmetic operatlon +,

The key idea behind this implementation lies in usmg
the fexpr (or nlambda) Lisp function for passing the
argument stack ‘args:’ unevaluated. Since the argument
stack is realized by a list, new cells are required not only
for graph copying, but for stack elements. In this im-
plementation, for ease of treating graphs as Lisp expres-
sions the combinator expression is represented as an S-
expression which differs from the description in Section
4. For example, while an applicative form (B f g x) is so
far represented a (((B. f).g).x) in Lisp’s dot notation, it
is now represented by a list (B f g x) which is to be
treated as function application of B with arguments f,
g, and x by the Lisp evaluator. This leads to another
storage allocation strategy mentioned in Section 5.

Functions for reducing combinators such as S, K, I,
B, and C can be defined by a code generator ‘define-
combinator’ which translates reduction rules into Lisp
functions (Fig. 7).

Two compilers ‘sc-compile’ and ‘skibc-compile’ are
also provided in order to compile lambda expressions in-
to combinator expressions using super-combinators
and using the standard combinators, respectively. They
pass the reduction rule to ‘define-combinator’ for defin-

An Alternative Scheme for Evaluating Combinator Expressions

(def gceval
(nlambda (args:)
(eval: (car args:))))

(def eval:
(lambda
(prog

L

(args:)
(top-args:)
(sety top-args:

(car args:))

(cond ((numberp top-args:)
(return top-args:))
((hunkp top-args:) (return top-args:))
((atom top-args:)
(return (apply top-args: args:)))
(t (setq args:

(append top-args:

(cdr args:)))

(go L))))))

(def make-thunk:
(lambda (e)
(cond ((numberp e) e)
(t
(list 'THUNK

(cons '*eval e))))))

(def THUNK
(nlambda (arys:)

(let ((e (cadr args:)))

(cond ({(= (car e)

(rplacd e

‘*eval)
(eval: (ncons (cdr e))))

(rplaca e '*deliver)

(rplaca (cdr args:)
(cdr args:)))

(eval:
(t (rplaca
(eval:

(def IF
(nlambda (args:)

(cdr e))

(cdr args:) (cdr e))

(cdr args:)))))))

{cond ((< (length args:) 4) args:)

((eval:
(eval:
(t (eval:

(def =:
(nlambda (args:)

(ncons (cadr args:)))
(cons (caddr args:)
(cdddr args:))))))

(cddddr args:))))

(cond ((< (length args:) 3) args:)
(t

(= (eval:
(eval:

(def +:
(nlambda (args:)

(ncons (cadr args:)))
(ncons (caddr args:))))))))

(cond ((< (length args:) 3) args:)

(t
(+ (eval:
(eval:

(ncons (cadr args:)))
(ncons (caddr args:))))))))

Fig. 6 An experimental evaluator (Graph Copying Scheme).

ing Lisp functions which perform combinator reduc-
tion. Generated Lisp functions can be compiled by the
Lisp compiler /iszt to yield faster combinator reducers.

Fig. 8 shows how the higher order function is dealt
with by this evaluator. Although the higher order func-
tion would be most useful in generating functions for
handling structured data such as lists, there is no space
here to discuss it.

The effect of THUNK is demonstrated in Fig. 9,
where the trace function of Franz Lisp is used.

We now turn to discuss about execution time for
evaluation. Although comparison between the super-
combinator and the standard combinators is not our
main concern, we show the time required for evaluating

(fac 10) in Table 2. This agrees with the result by
Hughes [4].
The usefulness of the thunk can be realized by
evaluating a highly recursive function:
fxyz=
if z>y then
SUFyze-1D)) (fzx (y-1) (fxy(z-1)

else y

Fig. 10 shows the result of translating f given as a lamb-
da expression into a combinator expression with super-
combinators f, f:1, f:2, and f:3 generated. Lisp func-

252

-> (define-combinator (S f g x) (f x (g x)))
S

-> (pp S) ;prints combinator reducer S
(def s

(nlambda (args:)
(cond ((< (length args:) 4) args:)
(t

;defines 8

(let ((f (cadr args:))
(g (caddr args:))
(x (make-thunk: (cadddr arys:)))
(args:: (cddddr args:)))

(eval:
(cons f
(cons x
(cons (cons g (ncons x))
args::)))))))))
-> (define-combinator (K x y) x) ;defines K
K
=> (PP K)
(def K

(nlambda (args:)
(cond ((< (length args:) 3) args:)
(t

(let ((x (cadr args:)) (args:: (cdddr args:)))
(eval: (cons x args::)))))))

Fig. 7 Definition of combinators.

-> (define-combinator (W £ x) (f x x))
W

-> (pp W) ;prints combinator reducer W

;jdefine w

(def w
(nlambda (args:)
(cond ((< (length args:) 3) args:)

t
(let ((f (cadr args:))
(x (make-thunk: (caddr args:)))
(args:: (cdddr args:)))
(eval:

(cons £ (cons x (cons x args::)))))))))

-> (define square: (W *:))
(square: = (W *:))
-> (pp square:)

;defines square function

(def syuare:
(nlambda (args:)
(let ((args:: (cdr args:)))
(eval:
(cons 'W (cons '*: args::))))))

Fig. 8 An example of higher order function.

-> (trace W *: THUNK) ;traces how THUNK works
(W *: THUNK)

-> (gceval (square: (+: 3 4)))
1 <Enter> W (W *: (+: 3 4))
|1 <Enter> *: (*: (THUNK (*eval +: 3 4)) (THUNK (*eval +: 3 4)))
| 1 <Enter> THUNK (THUNK (*eval +: 3 4))

| 1 <EXIT> THUNK 7

| 1 <Enter> THUNK (THUNK (*deliver . 7))

| 1 <EXIT> THUNK 7

|1 <EXIT> *: 49

1 <EXIT> W 49

49

;evaluates square of (3+4)

Fig. 9 The effect of the thunk.

M. TAKEICHI

An Alternative Scheme for Evaluating Combinator Expressions

Table 2 Comparison of the super-combinator and SKIBC com-
binators (unit is 1/60 sec).

253

Table 3 The effect of the thunk in evaluating a highly recursive func-
tion (unit is 1/60 sec).

[Super—combinators SKIBC combinators Using compiled code | Using Lisp interpreter
Using [Graph . Graph .
compiled reducer | 8 15 Copying Lisp Copying | Lisp
Using '; (f024) 8 1 76 3
Lisp interpreter | 49 93 (f036) | 29 14 179 | 36
L — (f0458) 59 i 249 338 676
(f0510) 86 - 526 -
(f0612) 123 - - -
sc-source:
(f
(lambda (x y z)
(IF (>: z vy)
(fE (£y 2z (-: x 1))
(fzx (- y 1)
(Exy (-2 2 1))
y))
)
level:3
reduction-rule:
((f£:3 pooOA7 poBOG6 pPOGO10 pOPPO8 poPaOaS peAOO4 z)
=>
(IF (>: z pRgoo4)
(f (p0@@@oOS z poAAR6)
(f z poooO7 poOOOS)
(p00o2168 (-: z 1)))
poeoo4))
level:2
reduction-rule:
((f:2 po@oll pPORRY y) => (peoll (p@eed9d y) (-: y 1) (f y) y))

level:l
reduction-rule:
((£:1 x) => (f:2 (£:3 x (-:

level:g
reduction~-rule:
((£) => f:1)

x 1))

(f x)))

Fig. 10 Translating a lambda expression into a combinator expression.

tions f, f:1, f:2, and f:3, can be compiled by the Lisp
compiler.
Table 3 summarizes execution time required to evaluate

(f 0 n 2xn) for several values of n

by our graph copying evaluator using super-com-
binators and by a Lisp function which is a straight
translation of the above definition. We conclude from
this experiment that it would be intolerable without
thunk.

7. Conclusion

It has been shown that the graph copying scheme for
evaluating combinator expressions is superior to others
as described in Section 5. If we apply this scheme to ap-
plicative languages with user-definable data structures
such as record with arbitrary number of fields, a new
strategy for storage allocation using chunks for ap-
plicative forms as well as data structures deserves atten-

tion. We must leave a detailed discussion about this for
a future study.

References

1. BURGE, W. H. Recursive Programming Techniques, Addison-

Wesley, 1975.

2. CLARKE, T. J. W., GLADSTONE, P. J. S., MACLEAN, C. D. and

NORMAN. A. C. SKIM—The S, K, 1 Reduction Machine, Conf. Rec.

of the 1980 LISP Conf., 128-135.

3. HINDLEY, J. R., LERCHER, B. and SELDIN, J. P. Introduction to

Combinatory Logic, Cambridge Univ. Press, 1972.

4. HucHes, R. J. M. Super-combinators, Conf. Rec. of the 1982

ACM Symp. on LISP and Functional Programming, 1-10.

5. INGERMAN, P. Z. Thunks, Comm. ACM 4 (1961), 55-58.

6. Jones, NeiL D. and MUCHNICK, STEVEN S. A. Fixed-Program

Machine for Combinator Expression Evaluation, Conf. Rec. of the

1982 ACM Symp. on LISP and Functional Programming, 11-20.

7. PEYTON JONES, S. L. An Investigation of the Relative Efficiencies

of Combinators and Lambda Expressions, ibid., 150-158.

8. TURNER, D. A. SASL Language Manual, Univ. of St. Andrews,

1976.

9. TurNER, D. A. A New Implementation Technique for Ap-

plicative Languages, Softw. Pract. Exper. 9 (1979), 39-49.
(Received November 17, 1983; revised May 7, 1984)

