On Diagnosabilities of Systems
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Hakimi and Amin [2] gave necessary and sufficient conditions for identification of all faulty units in a system
on the assumption that the tests are complete. We extend those theories to the case where even fault-free units

may fail tests of faulty ones.

We define a system to be (¢, r)-diagnosable if all faulty units can be identified from test outcomes, provided
the number of faulty units and that of test failures do not exceed ¢ and r respectively. Similarly, we define total-
ly-t-diagnosability, where 7 represents the summation of them.

We first give the necessary and sufficient condition for a system, in which no two units test each other, to be
totally-7-diagnosable. Then, we extend the analysis to general case, and give the condition for a system, on
which no such restriction is placed, to be (¢, r)-diagnosable.

1. Introduction

Along with the progress of LSI technologies, com-
puter system configurations with distributed in-
telligence have become popular. In these systems, an ap-
proach for attaining high reliabilities is to adopt system
level diagnosis and consequently to make them self-
diagnosable.

Previous studies of system level diagnosis based on a
directed graph model have assumed complete tests [1],
[2], [3]. However, tests may be incomplete in cases and
they may or may not detect transient faults. Hence, the
extension of the previous theories of the system level
diagnosis to cases where the diagnosis can tolerate test
failures will increase their feasibility to realistic applica-
tions.

The purpose of this paper is to show conditions on
the testing graph for a system with incomplete tests to
be one-step diagnosable, that is all faulty units can be
identified from test outcomes. It is assumed here that
fault-free units may fail tests only for faulty ones, but
not for fault-free ones (unidirectional test failures).

We define two concepts: (¢, r)-diagnosability and
totally-r-diagnosability, where ¢ and r represent
numbers of faulty units and test failures, respectively,
and 7 is the summation of them. Then we give the
necessary and sufficient condition for a system, in which
no two units test each other, to be totally-z-diagnosable.
We also give the condition for a system, on which no
such restrictions are placed, to be (¢, r)-diagnosable. All
of our results are an extension of the theorems given by
Hakimi and Amin [2].

2. A Model and Definitions

A system under consideration consists of n units with
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testing capability. The test assignment of the system is
represented by a testing graph G=(V, E), where V is
the set of vertices and ECS VX V is the set of directed
edges. A vertex and an edge correspond to a unit and a
test connection, respectively. An edge (v, v;) belongs to
E if and only if v, tests v,.

Each unit can be in one of two states, fault-free or
faulty. Assume that ¢, tests v;. Then, the outcome of the
test is denoted by a,e{0, 1}, and its value is determined
according to the following rules.

1) If both of ¢; and v; are fault-free, a,=0.

2) If v;is faulty, the test outcome is unreliable, i.e.,

a;=0 or 1 (arbitrary).

3) If v;is fault-free and v; is faulty,

a;=1 provided the test was successful, and
a;=0 provided the test failure occurred.

Among some categories of system level diagnosabili-
ty, our consideration are concerned only with the one-
step diagnosabilities. Therefore, the word ‘one-step’
will be omitted in the sequel.

A system is defined to be (¢, r)-diagnosable if all faul-
ty units can be identified from a set of test outcomes
{a;}, provided the number of faulty units and that of
test failures (by fault-free units) do not exceed ¢ and r,
respectively. When r=0, i.e., tests are assumed to be
complete, the system is simply said as usual to be -
diagnosable.

Further, a system is defined to be totally-7-
diagnosable if all faulty units can be identified from a
set of test outcomes {a;}, provided the summation of
faulty units and test failures (by fault-free units) does
not exceed 1.

It should be noted that the totally-r-diagnosability is
a stronger condition than the (¢, r)-diagnosability for
some combination of ¢ and r with t+r=1. However, it
will be shown later that for systems, in which no two
units test each other, the condition for being (¢, r)-
diagnosable is the same as that for being totally-t-
diagnosable.
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3. Conditions for the Diagnosability

Most notations in this paper follow [2]. The car-
dinalities of set X is denoted by | X|. Given G=(V, E),
the number of edges incident to veV is denoted by
din(v). Then for XC V, veV with v¢X, define a set of
edges as follows:

E(X, v)={(x, v)eE|xeX].

Similarly, for X, YCV with XN Y=¢, define E(X, Y)
as

E(X, Y)={(x, y)eE|xeX, yeY}.

We first show a condition which is necessary for a
system to be (¢, r)-diagnosable. The condition, of
course, is also necessary for the system to be totally-7-
diagnosable with 7=¢+r.

Lemma 1: Let G=(V, E) be the testing graph of a
system. In order to make the system (¢, r)-diagnosable,
the following condition is necessary:

for any veV, d.(v)=t+r.

Proof: To see the necessity of the condition, assume
that it does not hold. Then there exists vV with
di(vo)<t+r—1, i.e., a unit v, is tested by at most
t+r—1 other units. We show that the same set of test
outcomes {a;} can be yielded regardless of whether v, is
fault-free or not. Consider a case in which r—1 units
testing v are faulty and the remaining r or less of them
are fault-free. If v, is fault-free, then all the test out-
comes for vy by the fault-free units are 0. On the other
hand, the same outcomes can be yielded even if v, is
faulty, provided all of these r or less fault-free units fail
in testing vo. Further, the other test outcomes by fault-
free units which do not test v, are, of course, the same
independently of the state of v,, and test outcomes by
faulty units may be assumed arbitrarily. Thus, the
whole set of test outcomes {a;} can be the same in-
dependently of the state of 7. Consequently, the iden-
tification of the state of v, is impossible, and the system
is not (¢, r)-diagnosable. Q.E.D.
The condition of Lemma 1 is not sufficient in general
cases. However, it can be shown that the condition is
sufficient for a system, in which no two units test each
other, to be not only (¢, r)-diagnosable but also totally-
r-diagnosable. Before proceeding to the theorems, we
show a lemma which characterizes the diagnosability of
systems with incomplete test.
Lemma 2: Let V;, V; CV be two distinct sets of ver-
tices corresponding to two distinct sets of faulty units
that yield the same set of test outcomes {a;} with no
more than r and r’ test failures, respectively. Then,
under the notations of

Va=VNV), Va=VNV},
Vi=V NV, V,=V,NV}, 1)

it holds that
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|E(V2, sz)'Sl' and |E(V2, V|)|SI”. (2)

Proof: Assuming |E(V,, Vy))| =r+1, we shall reach a
contradiction. First, consider a case in which all units
of V; are faulty and those of V; =V—V} are fault-free.
Since units of ¥, and V), are all fault-free, for any test
(i, v)EE(V3, Vi) the test outcome g is 0. Secondly, con-
sider another case in which all the units of V;are faulty
and those of Vy=V—V¥, are fault-free. Since the
number of test failures in this case does not exceed r,
there exists at least one test (v;, v;)eE (Va, Vy2) of which
outcome ay; is 1. This contradicts the hypothesis that V;
and V; yield the same set of test outcomes {a;}. Thus
we conclude | E(V>, Vy2)| <r. Another inequality | E(V>,
V)| =r' can be proved similarly. Q.E.D.
Theorem 1: Let G=(V, E) be the testing graph of a
system in which no two units test each other. The
system is totally-r-diagnosable, if and only if for any
veV, din(v)=T.

Proof: The necessity follows from Lemma 1.

The sufficiency is proved by showing that no two
distinct sets of faulty units can yield the same set of test
outcomes. Assuming such sets of faulty units, we shalil
reach a contradiction, under the hypothesis that the
total numbers of faulty units and test failures do not
exceed 7 and for any veV, d.(v)=1.

Let Vj, VicV, with |V =t=<1t, |V;|=t <1, be
two distinct sets of vertices. Assume that a set of test
outcomes {a;;} is consistent even if either set of units
corresponding to V; or V; is faulty, provided the
number of test failures associated with V,and V; do
not exceed r=t—¢ and r' =t—1', respectively. Let V,,
V>, V11, and V;, be the subsets of V as defined in Eq. (1).
Denote |Vi| and |{(v), v)eE|v,, v:€Vi}| by n; and e,
respectively, for i=1, 2, f1, f2.

We first show that there is no covering relationship
between Vyand V;. Assume, without loss of generality,
that V;D V}. Then, the set of vertices V is divided into
two subsets V, and V,. Consider a vertex
veVn=V,NV};. Since |V, =1, v is tested by at most
t—1 other units of V. According to Lemma 2, the
vertex v is also tested by at most r units of V,. Hence,

di ()= |E(V,—{v}, )| + | E(Vy, v)| <(t—D+r=1—1.

This contradicts the hypothesis. Thus, no covering rela-
tionship is concluded. Hence, we have

np=1 and n=1 3)

Now, the enumeration of the numbers of edges inci-
dent to vertices in V, and Vy,, respectively, gives

mT< Y, di(v)

rely

seit+ |E(Vy, V)| +n.n+ |EWV,, V), “)
npT= Z din(v)
reVpn

<en+ |E(V\, V)| +npnp+ |EVy, V)|, (5)
Then,
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(n1+nﬁ)rse|+e/2+nf1(n,+nfz)+ IE(sz, V1)|
+|EWVy, V)| +|E(Va, V)|
+|E(V2, V). (6)

Since no two units test each other, (v, v;)eE implies (v,
l),')éE. Therefore, e, < n,(nl— 1)/2, efzﬁn/z(ﬂfz_ 1)/2
and |E( sz, V|)I + 'E(Vl, sz)[ =nns. Further, IE(Vz,
Vr)| <rand |E(V,, V1)| <r' by Lemma 2. Substituting
these inequalities into Eq.(6), we have

2TSH1+2n/1+nj2—1+2(T+r')/(nl+n/2)' @]

Since ny+n,=2 by Eq.(3), 2(r+r')/(m+np)<r+r'.
Then,

2t=m+2n,+np—14+r+r'.
That is,
t+t' =(t—nr+@@—r)sm+2n,+np—1. ®

On the other hand, since
[Vil=nm+na=t,

t+l’=n1+2n/1+nﬂ. (9)

Vi|=nn+n,p=t and
|V s

This is a contradiction. Q.E.D.
Corollary 1 (Theorem 1 in [2]): A system in which no
two units test each other is -diagnosable, if and only if
each unit is tested by at least 7 other units.

An example of a totally-r-diagnosable system is the
D;, , design, which is proposed in [1]. The D; , design is
optimum in the sense that the minimum number of
units and the minimum number of test connections are
required.

Now, we present the necessary and sufficient condi-
tion for a system to be (¢, r)-diagnosable, even when the
system may have pairs of units that test each other.
Theorem 2: Let G=(V, E) be the testing graph of a
system of n units. The system is (¢, r)-diagnosable, if
and only if the following three conditions are satisfied:

1) n=2t+1;

2) for any veV, di,(v)=t+r;

3) for any integer p, 0<p<{, and any XC V with
| X|=n—2t+p, there exist no two disjoint
subsets of vertices Z,, Z,C X=V—X such that
|Z\|=12Z:| =t=p, |EX, Z)|<r, and |E(X,
Zz) I <r.

Proof: The necessity of condition 1) is already known
(Theorem 1 in [1]), and that of condition 2) is the direct
consequence of Lemma 1. In order to see the necessity
of condition 3), assume that it does not hold. Then, for
some integer p, 0<p<¢, and a set XCV with
| X| =n—2t+p>0, there exist two disjoint sets of ver-
tices Z;, Z,CX such that |Z,|=|2Z;|=t—p, |E(X,
Z)|=r, and |E(X, Z))| <r. Let Y=V—(XUZ,UZy),
Vi=YUZ, and V;=YUZ, Then |Y|=p and
| Vs|=|V} | =t. Therefore, two distinct sets of units,
which correspond to V;and V}, respectively, can yield
the same set of test outcomes with respective sets of test
failures on E(X, Z,) and E(X, Z,). Such test outcomes
are shown in Fig. 1. Hence, the system is not (¢, r)-
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Fig. 1 The set of test outcomes for which ¥, and V; cannot be
distinguished.

diagnosable. This means that condition 3) is necessary
for the system to be (¢, r)-diagnosable.

In contrast, let us assume a system to satisfy all condi-
tions of the theorem. If the system is not (£, r)-
diagnosable, there exist in G=(¥, E) such two distinct
sets V;, V; CV with | V|, |V} | <t that yield the same
set of test outcomes {a;} with no more than r test
failures. Let ¥y, V2, V;1, and V), be subsets of V as defin-
ed in Eq.(1).

First, we show that n—¢> | V3| =n—2t. Since | V| =
IVis|+ | V| <tand |V} | = |Va|+ | Vi| <t, | V2] =n—
IVil= | Val—| V2| =zn—=2t+|Vu| =n—2t. To see
another inequality | V2| <n—¢, assume that it does not
hold. Then, |Vi|=zn—t and |V,|=<t, where
V,=V—V,. Therefore, for any ve v,

|E(Vz, v)| 2dn(@)—(— D)= r+1

According to Lemma 2, however, this contradicts that
the two distinct sets of faulty units, corresponding to ¥V,
and V}, respectively, yield the same set of test out-
comes. Hence, we conclude that | V,| <n—t.

Thus there exists an integer p, 0<p<t, such that
| V2 =n—2t+p. Since | V| =n—(|V |+ |V} D+ |Vn|
on the other hand, |V +|V}|—|Vu|=2t—p.
Therefore, applying relations | V|, | V;|<t, we have
[Vel=|Vi=|Vnlzt=p and |Vi|=|V;|—=|Vn|2
t—p. Then, let Z, and Z, be any subsets of Vy, and V),
respectively, such that |Z,| =|Z,| =¢—p. Further, let
V2 be denoted also by X. Since |E(V2, V,)| <r and
| E(V2, V1)| =r by Lemma 2, we have the following ine-
qualities.

|E(X, Z))|<r and |E(X, Z,)|=<r.

These inequalities contradict condition 3). Q.E.D.
Corollary 2 (Theorem 2 in [2]): A system of n units is
t-diagnosable, if and only if: 1) n=2¢+1; 2) di(v)=1¢,
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for all veV; and 3) for any integer p, 0<p<t, and any
XCV with |X|=n—2t+p, |IX|>p, where TX
= {veX|'xeX, (x, V)EE}.

Proof: Since no test failure is allowed here, r=0. If
there exist no two disjoint subsets Z,, Z,C X such that
|Z\|=|2Z,| =t—p and |EX, Z))| = |E(X, Z»)| =0,

ITX|>n—|X|—|Zi|—|Z|
=n—(n—2t+p)—2(t—p)=p

Contrarily, if there exist such Z, and Z,, |TX|<p.
Q.E.D.

As an example, we show in Fig. 2, a (1,1)-diagnosable

Fig. 2 An example of a (1, 1)-diagnosable system.
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system with the minimum number of units and the
minimum number of connections. This example shows
that condition 3) of Theorem 2 imposes more severe
restriction both on the number of units and on the
number of test connections than that by conditions 1)
and 2).

A problem of deciding whether a given system is
(¢, -diagnosable or not is a complicated one, because it
needs extensive computations.

4, Conclusion

We have given the necessary and sufficient conditions
for a system to be totally-r-diagnosable and (¢, r)-
diagnosable, assuming that even fault-free units may
fail in testing faulty ones. An algorithm similar to that
proposed by Kameda et al. [3] could be used for finding
a set of faulty units. However, more computation time
will be required due to additional backtrackings
resulting from test failures.

Sequential and/or probabilistic method of diagnosis
should also be investigated by taking not only unidirec-
tional test failures but also bidirectional ones into con-
sideration.
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