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This paper describes the architecture and the hardware configuration of an experimental LISP machine
developed with the primary emphasis on high-speed list processing. This machine consists of a processor EVAL
11, an I/0 processor and a common main memory; the EVAL II processes data of list structure, the 1/0O pro-
cessor executes LISP input/output functions and manages external memories, such as files, and the main
memory chiefly stores list cells. The EVAL II is a newly designed processor suitable for list processing. To
develop such a processor, no existing microprocessor is used. The EVAL Il has common address/dara buses
because it processes mainly address pointers. The unique hardware features of the EVAL II include CARCDR-
operation facility which executes list searching at high speed in parallel to ALU operations and/or branch opera-
tions, and the dispatch facility by which the program efficiently branches to a destination according to a list-cell
type or a function type. Parallel processing (branch operation and other operations) and pipeline processing are
also executed efficiently. The machine executes benchmark programs as fast as LISP systems on very large
general-purpose computers. The dynamic measurements show that this architecture is suitable for LISP
machines.

ed by the execution of list-altering functions such as
rplaca. Therefore, the machine automatically executes
parallel processing even if the program is written in the
grammar of LISP 1.5, which does not support parallel
processing.

The architecture of the EVAL II, which is a compo-
nent of the EVLIS machine and is devoted to evaluating
list data, is designed for list processing. As a result,
LISP machine consisting of a single EVAL II im-
plements higher performance than preceding LISP
machines.

This paper describes the architecture of the EVAL 11
and the hardware design of LISP machine constructed
with a single EVAL II.

1. Introduction

LISP[1] is a list-processing language which is used for
researching artificial intelligence, knowledge engineer-
ing, and other applications. Thus, it is at present one of
the principal computer languages. Various high-speed
LISP systems therefore have been developed for large
general-purpose computers as well as many others [2]-
[5]. The development of LISP machines [6]-[21] has
also been promoted by the spread of microcomputers or
processor IC’s and by the technological progress of
semi-conductor integrated circuits.

As a new approach to attain higher speed with LISP
systems, the EVLIS machine {22], [23] has been propos-
ed and constructed. It is a LISP machine of
multiprocessor configuration.

Special attention is payed to the fact that the first
argument of the function evlis in LISP interpreter [1]
consists of comparatively independent elements. Each
of these elements is defined as a processing unit called a
process. The EVLIS machine executes these processes
in parallel by multiple processors. Moreover, the
EVLIS machine takes care of all the problems related
with parallel execution, including the allocation of the
process to processors, the communication among pro-
cessors, and the correct propagation of side effects caus-

2. Designing Policy

The LISP machine is an experimental and smail-scal-
ed machine which can be developed with the budgets
and technology of one laboratory.
From the start of the designing, emphasis has been
put on providing processor EVAL II with a LISP-
oriented architecture. The characteristics are as follows:
(1) Most of the data in the memory are address
pointers. Therefore, no distinction between ad-
dress bus and data bus is made, and the connec-
tion between addresses and data is raised.
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facilitate the extraction of the appropriate field
from data; e.g., to extract the pointer from list
data.

(4) Since branch operations are heavily used, an
ALU operation and a branch operation are ex-
ecuted in parallel in one microinstruction.
Moreover, the dispatch operation implements
high-speed branches according to a function
type, a list-cell type and some other codes.

(5) The CARCDR-operation facility is adopted. It
implements parallel execution of a list-searching
operation and ALU operations and/or branch
operations.

(6) Pipeline processing is executed for fetching and
executing instructions, and for writing in
memory and other operations.

(7) A diagnostic facility for direct access to the inter-
nal status of the EVAL II is incorporated to
facilitate hardware and software debugging and
statistical data collection.

To implement such an architecture, a microprogram
control is adopted for the EVAL II because of high flex-
ibility of processing and easy construction of software.

The existing bit-sliced microprocessor families have
various problems for list processing; for example, the
program stack includes only a few words, the processor
architecture restricts bus configuration, and less impor-
tant operations on list data waste many bits of
microinstructions. Therefore, neither any existing
microprocessor, nor its peripheral LSI is used for the
EVAL I1. Schottky TTL IC’s are mainly used to con-
struct the EVAL II.

3. Machine Configuration

The general machine configuration is shown in Fig. 1.

The EVAL 1II is a list-evaluation processor. It
evaluates the list data which is given by way of a
mailbox in the main memory from the I/O processor,
and returns the value to a mailbox. The hardware of the
EVAL II is described in detail in the next section.

The maximum capacity of the main memory is 32 K
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Fig. 1 LISP machine configuration
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40-bit words; the read-access time and the write-access
time are 350 nsec and 200nsec, respectively. The
memory consists of up to eight memory banks (1
bank=4 K words), a common bus and a bus controller.
Up to two main memories can be mounted. The two
main memories can operate in parallel. Accessing
between the processors and memory banks is
multiplexed by time division (50 nsec) of the bus. The
conflicts among banks for the bus are resolved by the
priority sequence which changes every 50 nsec. An ac-
cess is allowed to the bank of a higher priority level. The
conflicts among processors for a bank are resolved by
the fixed priority level of each processor in each bank.
The main memory is used for storing list cells (car part,
cdr part; 20 bits each) and as mailboxes for communica-
tion between processors.

The I/O processor has a Z80A CPU with a 4 MHz
clock and a 64 K-byte local memory. This processor
operates as a service processor of the machine; it
manages files, supports programming by the
microassembler, activates and stops the EVAL II, and
executes LISP input/output functions. It also loads
microprograms to the WCS by way of the bus between
the I/O processor and the EVAL II, monitors the inter-
nal status of the EVAL II, supports debugging, and col-
lects statistical data.

The numbers of circuit boards and IC’s used for con-
structing the machine are as follows: 10 circuit boards
with 620 IC’s in the EVAL II; 4 circuit boards with 270
IC’s in the I/O processor; 12 circuit boards with 690
IC’s in the main memory.

4. Hardware of the EVAL Il

The hardware configuration of the EVAL II and the
microinstruction format are shown in Figs. 2 and 3,
respectively.

4.1 Internal Buses and ALU

The internal buses consist of an A-source bus (ASB),
a B-source bus (BSB) and a destination bus (DSB); each
is 20 bits wide.

The ALU manipulates the three-address instructions
and can execute logical AND, logical OR, exclusive
OR, fixed-point addition/subtraction and right shift in-
structions. The two input operands are given by the
ASB and the BSB, and the result is send to the DSB. All
the registers and memories necessary for ALU opera-
tions are connected to the ASB and the DSB. On the
other hand, eight frequently used general-purpose
registers (R0O-R7) and five specialized registers (holding
NIL, *T=x, all 1's, etc.) are connected to the BSB in
order to simplify the hardware. The B-source field of
the microinstruction format is therefore shortened.

The inputs of an ALU operation can be masked by
the 20-bit pattern which is specified in the K-field of the
microinstruction. A mask for the upper 4 bits and one
for the lower 16 bits of input data are frequently used
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for extracting the tag part and the pointer part of a list
cell. Therefore, two bits of the K-field are assigned for
these mask specifications and the other bits are used for
branch condition and branch address, etc. (See 4.4 and
Fig. 4.) Any constant for input to the ALU can be con-
structed by specifying a mask from a specialized register
containing of all 1’s.

Status flags (zero, negative and carry) are set or reset
according to the result of an ALU operation. Carry can
be the third input of ALU operations.

4.2 Scratch-pad Memory

As a multipurpose storage in addition to the eight
general-purpose registers, the EVAL II has a scratch-
pad memory (SM) of 4 K 21-bit words capacity; one bit
of each word is used for even parity. Static memory
with 35-nsec access time is used for the scratch-pad
memory. The SM is used to store 1) a stack which tem-
porarily holds the return addresses of microprograms
and the intermediate data, 2) dispatch tables used for
multidirection-branch instructions, and 3) tables of
destination addresses for interrupt caused by com-

munications from other processors, a parity error, etc.
A location address in the SM is specified by a Stack
Pointer Register (SPR), an Address Register for the SM
(SAR), a K-field of a microinstruction, the dispatch
address of a multidirection-branch instruction, or the in-
terrupt vector.

The SPR indicates the address of the topmost filled
location of the stack. The value of the SPR is
automatically incremented or decremented at the time
of an accesss to the top of the stack; however it is possi-
ble to access the stack without changing the value of the
SPR. A stack overflow or underflow is detected by com-
paring the boundary registers (TOP and BOTTOM)
with the SPR and causes an interrupt.

The SAR and the K-field are used for accessing any
location in the SM.

Pipeline processing is executed for data writing to the
SM and an ALU operation; parity generation and
preparation for data writing are performed in the first
half of the next instruction cycle, and then data are writ-
ten in the latter half of that cycle. When an instruction
to read the SM is to be executed immediately after an in-
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struction to write to the SM, the two access addresses
are compared. If they are the same, the correct data is
read by passing around the SM.

A DMA feature is provided between the SM and the
main memory for efficiently saving a part of the con-
tents of the stack at the time of a stack overflow and for
efficiently storing the status of the EVAL 1I, though
DMA controller is not provided at present. The unit of
transfer is two words, and the SM is accessed by cycle
stealing. An independent path connected to the time
sharing bus is used for transfer between the SM and the
main memory.

4.3 Main Memory Access and CARCDR-operation
Facility

The main memory is accessed at the address specified
by the register MAR. The contents of registers WCAR
and/or WCDR are written to the main memory. The
data from the main memory are loaded into the first
two or all of the registers RCAR, RCDR, PCAR and
PCDR. Accessing can be activated by an instruction
which loads the result of an ALU operation into MAR,
WCAR, or WCDR. The EVAL II is able to execute
other operations during access to the main memory.

The CARCDR-operation facility is provided to raise
the efficiency of list-searching operation; the content of
the main memory can be directly read at the address
specified by PCAR or PCDR independent of MAR. Ac-
cessing is activated by specifying the CARCDR-field of
a microinstruction. It enables accessing to the main
memory in parallel and simultaneously with other opera-
tions.

4.4 Microinstruction and Sequence Control

The writable control storage (WCS) which stores
microinstructions has the capacity of 8 K 48-bit words;
one bit of each word is an odd parity. Static memory
with access time of 35 nsec is used for the WCS. The
basic cycle time of an instruction is 100 nsec, but is ex-
tended by 50 nsec when the ALU operation is addition/
subtraction, and when the data of the SM is to be read
out. Accessing for the main memory is executed by
pipeline processing. The cycle time of an instruction,
however, will be extended if the main memory is busy at
the time of accessing.

The instruction sequence branches to the location
specified by the Branch-field and the K-field of a
microinstruction. Fig. 4 shows the functions of these
fields. In the case of three types of branch operations
(Jump, Call and Return) given in Fig. 4(a), branching is
determined by one of five conditions (positive, zero,
negative, carry and no-carry) in the K-field for the
status flags of the ALU. Since fetching and executing of
instructions are overlaid by pipeline processing, the y
bit in the Branch-field specifies whether to execute the
next instruction already fetched or to suppress its execu-
tion when a branch occurs.

Fig. 4(b) shows the case of multidirection-branch
operation (dispatch operation) in 16 or 256 directions.
The destination address is generated in one instruction
cycle as shown in Fig. 5.

4.5 Diagnostic Interface

The diagnostic interface enables the 1/O processor to
directly access the internal status of the EVAL II. This
facilitates hardware and software debugging,
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maintenance and statistical data collection. To imple-
ment the diagnostic interface with less wire, shift
registers are buried in the EVAL II to transfer informa-
tion (Fig. 6). The diagnosis counter of a 16-bit register
is connected directly to the diagnostic interface. This
counter can be set to an appropriate value. It is in-
cremented whenever a microinstruction whose debug
bit is 1 is executed. The counter overflow causes the
clock of the EVAL II to stop. The break points of the
program can be set and dynamic characteristics can be
measured by combining this counter with debug bits.

The scratch-pad memory and the registers not con-
nected directly to the diagnostic interface are accessed
by executing the instructions on the WCS (activated by
the 1/0 processor). The data are read out through the
diagnostic interface by taking them out to the ASB or
BSB. The data to be set are written by using the K-field
of a microinstruction.

The information accessed directly or indirectly can be
monitored by a CRT terminal. This facilitated the
check of machine status for hardware adjustments and
reduced the debugging time. Moreover, the interpreter

was produced and debugged only with the CRT ter-
minal and a printer.

5. Conclusion

The developed LISP machine can execute list process-
ing at high speed. High efficiency has been attained with
parallel processing such as the CARCDR-operation,
simultaneous execution of branch operation and some
other operations, and pipeline processing. The EVAL
II, a list-evaluation processor, is constructed mainly
with logical IC’s to implement the LISP-oriented ar-
chitecture and high-speed operations.

It is proved that the interpreter of this machine pro-
cesses benchmark programs as fast as LISP interpreter
systems implemented on very large computers such as
ACOS-1000 and M200-H. Thus, the initial design re-
quirements are met almost completely. The adequacy of
this architecture for a LISP machine is confirmed by the
measurements of dynamic characteristics. These are
discussed in detail in a related paper [24].
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