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Part 1 of this paper (this journal, Vol. 6, No. 2, pp. 74-77 (1983)) discussed the generalization of the Floyd
model. In this sequel, Part 3, an attempt is made to remove the artificial restrictions inherent in the previously-
discussed Floyd model, thereby giving a nontrivial lower-bound to the number of page fetches in a more
realistic computational environment. The findings are that the Floyd-model lower bound is reduced by about
half, that an algorithm of transposition can in fact be constructed that can do with fewer page fetches than the
Floyd-model lower bound and that, hence, the Floyd model is merely an approximation to realistic situations.
The Floyd model, inexact as it is, is nevertheless a fairly good approximation of practical importance, because it
is easy to analyze and because it incurs only an admissible error of a factor of two at most. In the process of its
design, the algorithm of transposition has been found to possess an interesting property of recurrence, whereby
the process of transposition can be decomposed to a host of smaller transposition problems. By use of an
evidently superior transposition algorithm at the very lowest level, the overall performance of the total transposi-
tion algorithm can therefore be significantly improved with regard to the number of page fetches.

1. Introduction

Normally a computer is equipped with a fast main
memory and a large but slow auxiliary memory. In
cases where data transfers are required between the
memories, fast and slow, it is often mandatory that the
number of such data transfers be kept as small as possi-
ble to expedite the whole process of computation. To
date there have been scattered programming techniques
to achieve this goal, each being developed ad hoc for
the type of problem on hand. It may therefore be of
great interest if the lower bound for the number of the
above data transfers can in principle be computed for a
given problem and if this lower bound can actually be
realized by programming. The algorithm used in the
program will then be the best possible, since there are
no other algorithms that surpass the one found with
regard to the number of data transfers.

To pursue this vein of approach, the simple Floyd
model [1] has recently been generalized so that the
model can be applied to actual computational situa-
tions [2], [3], [4].*' We now review the generalized
Floyd model of [3] and expressly indicate the restric-

*IReference [2] is a preliminary quick announcement of reference
[3]. [2] contains some typographic errors, i.e., all the inequality signs
‘>’ in equations (22) and (23) should read ‘=’. All these corrections
are entered in [3).
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tions that there are in it. See Fig. 1. Data in memory
space are quantized to pages, each carrying p records
(or data). There are p’ pages in slow memory, while the
main memory can hold w pages (w=2). The computer
system under consideration in this paper may or may
not be provided with a virtual-memory mechanism; the
term ‘page’ is freely used, meaning the unit of data
transfers at a time between the fast and the slow
memories. Page transmissions are done as follows.

Step 1. Select w pages in slow memory, and
transmit them to main memory.
Step 2. Shuffle the contents of the resident w pages

(using a workspace), and then copy them

back to the previous w-page locations in

slow memory.
Steps 1 and 2 are repeated until the desired permutation
of records is established in slow memory. A cycle of
Step 1 followed by Step 2 is defined to be w ‘opera-
tions’, which is, in the Floyd model, equivalent to a w-
page transfer. Floyd discussed the case where w strictly
equals 2. After [2] and [3], let the initial and the final
distributions of records in slow memory be denoted by
A and B, respectively. The number of operations (or
page fetches in the case of the Floyd model) is bounded
from below by

[(V(B|B)—V(A|B)}/p 1
when w=p (see Corollary 1 of [3]) or
[(V(B|B)— V(A |B))/e(p) 2)
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Fig. 1 The generalized Floyd model.

when w> p (see Corollary 4.4 of [2]). Readers are refer-
red to [3] (and [2]) for the definitions and properties of
the V- and e-functions appearing in the above.

The purpose of this paper is to remove the artificial
restrictions imposed on the Floyd model. As pointed
out in Section 2 (p. 184) of [2], page transfers between
the two levels of memory take place in lots of w pages,
each w pages in slow memory being fetched to main
memory, shuffled, and then all pushed together
simultaneously to where they had previously been
located in slow memory. But rather, out of those w
pages fetched to main memory and shuffled at a time,
only one page could be pushed to slow memory in-
dividually and an entirely new page be fetched and
shuffled with the remaining (w—1) pages. By thus
overlapping the resident pages between consecutive
passes of shuffling, there will then be more economy in
the number of page fetches. Such a page-transfer con-
trol reflects the actual situations of what we call demand
paging. We are therefore interested in what changes
should result in the lower bounds (1) and (2), if such a
new model is considered.

2. The Paging Model

2.1 Definition of the Paging Model

The new model described in the preceding section is

more realistic in the actual computational environment
and will be called the paging model. The paging model
is defined more precisely as follows.

Step 1. (Initial loading) Fetch w pages in slow
memory to main memory.
Let the set of the original w pages in slow
memory, just duplicated in main memory,
be defined as set {4}. Permute records be-
tween the w pages of main memory.
Pick one page out of w pages in main
memory; then push it back to the location
of a page belonging to {A4}.
Fetch to main memory one page that is not
in {A}. Keep returning to Step 2 until the
objective permutation (i.e., the final

Step 2.

Step 3.

Step 4.

distribution of records) is established in

slow memory.
In the paging model, a fetch of one page to main
memory is considered the unit of data transfer between
the two levels of memory.
Remark. Members of set {A} vary in time. The
previously-defined V-functions of (1) and (2) are state
functions defined over the distribution of records in
slow-memory pages. Note, however, that the V-func-
tions for the present paging model are state functions
that depend on the record distribution in main-memory
pages, plus slow-memory pages from which those
belonging to set {A} are excluded.

2.2 Lower Bounds Based on the Paging Model

Now we will evaluate the lower bounds using the pag-
ing model. The lower bound theory of the Floyd model
is applied, but, in the following, the e-function (entropy
function; e is for entropy.) is defined in a different way,
namely,

e(0)=0. (3

The e-function thus defined is a continuous function
and assumes the same values as the previously defined e-
function at those points where x equals a power of w.
Recall that the piecewise linear e-function previously
defined (see (2) of [3]) is given by

e(x)=xlog., x,

e(W'+1)=kw+ (k+—w—)1,
w—1

where
k=0,1,2,---,
O<i<(w—Dw*
and
e0)20.

The e-function of (3) satisfies the basic relation
()
=1

where the equality holds only when

= zw; {e(X)+X.}, C))

=1
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(see (11) of [3]). Another important property we have
seen in (22) of [3], revised for the present case, is given
by
e(X)>e(X—1)+e(l)
>e(X—2)+e(2)>---
ce>e([X/2])+e( [ X/2])), &)

where a strictly descending order in magnitude excludes
the equality signs. Note that (2) of [3] gives, for w=2,

e(4)+e(7)=e(5)+e(6)=28, 6)
whereas (3) gives
e(4)+e(7) > e(5) +e(6). )

The definition of e-function (3) therefore not only
renders the function everywhere differentiable, but it
removes some ambiguity associated with the process of
permuting data between pages. The V-function, giving
the total entropy, in (1) and (2) is defined in the same
way as in [3]; namely,

V(A|B)= ; ;: e(X(, j)), ®

where X(i, j) is the number of records that are transmit-
ted from the i page of the initial distribution of
records, A, to the j™ page of the final distribution of
records, B(i, j=1, 2,- -+, p'). Let Ay denote the max-
imum increment of V-function per page fetch, then the
lower bound of total page fetches can be computed by

V(B|B)—V(A|B)

Amax (9)
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2.2.1 The Case of Page Boundaries Ignored in Main
Memory

Fig. 2 shows the configurations before and after
permuting records in main memory where page bound-
aries are considered. N indicates the one page newly
fetched (see Step 4 of the paging model in Section 2.1)
whose records are to be permuted with those of (w—1)
old pages, designated by O, that have been kept resident
by the immediately preceding paging. A horizontally
stretched rectangle represents a page. Notation {i} in
each page, where i is an integer either of page numbers
1, 2,---, p’, stands for the set of those records which
should be in page /, the destination page, in the final
distribution.

First consider the simple case where the page bound-
aries of those record pages in main memory are ig-
nored. This simplification is tantamount to the assump-
tion that the cost of permuting data in main memory is
negligible. The section that follows treats the case where
no such assumption is introduced.

If the page boundaries are ignored in Fig. 2, then the

situation will be that shown in Fig. 3. In this case, then,
the following relation holds.
Theorem 1. If page boundaries of resident pages are
ignored, then the maximum increment of V-function,
or the total entropy, per page fetch in the paging model
is given by

Ama=p{w—e(w—1)}. (10)

Proof. See Fig. 3. Let the number of records (i.e.,
size) of set {i} of O be denoted by o, and that of N by n,.
As stated in the proof of Theorem 1 in [3], to increase
the entropy maximally it suffices to have those records
with a common destination page get together in the
same page while forming a new set of pages. In the pres-

{1} |

{k} |

(b) After permutation

Fig. 2 Configuration of main-memory pages before and after a permutation of records (page boundaries considered).
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Fig. 3 Configuration of main-memory pages before and after a permutation of records (page boundaries ignored).

ent case, therefore, set {i} will have size (0;+n)(=p),
so that the increment of the relevant e-function is given
by

e(oi+n)—e(o)—e(n;).

If there are m distinct ’s (i € {1, 2,---, p' }; 2=m=p'),
then

3

Amu=2Max|: {e(oi+n.~)~e(of)~e(n.-)5:', an
= i=1

m<p'

H

where there are constraints such that

2 0=(w—1p, (12)

2 m=p, (13)
of+nj§pl .

0=o, 0§n,-.} (Isj=m) (14)

(11) is a problem of conditional maxima. By solving
this, one finds that

Amax=piw—e(w—1)}. (15)
See Appendix 1 for the derivation. O

2.2.2 The Case of Page Boundaries Considered in
Main Memory

In contrast to the assumption made in the preceding
section, most computers move data between the two
levels of memory by pages, each page retaining its identi-
ty before and after transfer. It is therefore necessary to
examine the case where page boundaries are considered
in main memory. The following holds.

Theorem 2. If page boundaries of resident pages are
considered as is usually the case, then the maximum in-
crement of V-function per page fetch in the paging
model is given by

(for w=2),

=2
Amax{ P 16)
=ple(w—1)—e(w—2)}+p (for w=3).

Proof. (i) Notations. In Fig. 4, N indicates the page
newly fetched by a paging, while O shows the set of
those pages that have remained in main memory. Nota-
tions are used such that

O«1): the set of those records of page #m(€{l,
2,-:+,p'}; i=1,2,---, w—1) that remain
in the same page after the current permuta-
tion;
the set of those records of page #n;, which
move to N after the current permutation;
the set of those records of N which move to
O after the current permutation;
the set of those records which remain in N
after the current permutation.
If |O«(1)| designates the number of records of set O(1)
(=1, 2,---, w—1), then

0{2):
NQ):

N(2):

IND|=p(w—D~ x;
where
[OIESS

In the present proof, the incremental variation of the V-
function is considered only for the record exchange be-
tween the newly-fetched page and the resident (w—1)
pages. This is because the shuffling between the remain-
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Fig. 4 Main-memory pages before and after a permutation. Page boundaries are not ignored.

ing (w—1) pages can be considered as having been ab-
sorbed in those pagings that precede the current one.
(ii) The increment of the V-function pertaining to
the shaded portion of Fig. 4 (O{2) and N(2)).
Lemma 1. Let the records of set O(2) (i=1, 2,---,
w—1) and those of N(2) have k(i=1, 2,---, w—1) and
kn distinct destination pages, respectively. Also let the
increment of the V-function caused by the record move-
ment of the shaded portion of Fig. 4, i.e., by the move-
ment of those records in sets O(2) (i=1, 2, -+, w—1)
and N(2) be denoted by A,. The increment of entropy,
4;, then assumes the greatest value for
ki=ky=---=k,_1=kn; it follows that

4,=p. and

For proof of this lemma see Appendix 2.

(iii) The increment of the V-function pertaining to
the blank portion of Fig. 4 (O(1) and N(1)). Let x; and
n; be respectively the number of records of set O(1) and
that of set V(1) that should reach the destination page
# (e{l,2,---,p'}) through permuting processes
thereafter (i=1, 2, -, w—1; j=jij2,"**, jm). Here m;
for the i page of O (i.e., page #m;) is the number of the
distinct destination pages of the page’s records. Note
that 1 =m;<p. If the maximum increment of the V-
function resulting from the sets of records O{1) and
N(1) of Fig. 4 is denoted by A4,, then finding the value of
A4, reduces to the following problem of conditional max-
ima:

w—1 m,
A1=|Max|: > {e(x,v,-k+n,,»k)—e(x<,~k)—e(nijk)}] (18)
EMSPL =1 k=1

on condition that

m,

> Gy tn)=p (=12, -+, w—1),

k=1

(19

w—1 m,
2, My, =D, (20)
i=1 k=1
xU‘+nUk=p)
i=1,2, +-+, w—1;
0=xy, (k=1 5 ) 1
O=<n;

Leaving the details of demonstration to Appendix 3,
one has

(for w=2),

(for w=3). @2)

{p

A=

ple(w—1)—e(w—2)}
One thus concludes the proof of Theorem 2, which
gives

Amax(=Al+A2)- [:]
2.2.3 Estimation of Lower Bounds

There are p' pages of records, each page holding p
records, in external slow memory. We want to permute
the records with as small a number of page fetches as
possible, reordering the initially given distribution of
records A to the final and objective distribution B.
Since it is tacitly assumed that p’ >>w, i.e., main
memory size w (in pages) is very small in view of the
large amount of data, this process of external rearrange-
ment occurs as a train of partial permutations that will
asymptotically approach the final distribution.
Corollary. In the paging model where each page re-
tains its identity in main memory, the lower bound to
the number of page fetches required for permuting
records from distribution A to B is given by

VBIB)—V(A|B)

B (w—

1)) (23)

where

20 < Amax<2.4p, (24)
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Table 1 A4,,./p versus w.

w A/
2 2.
3 2.26
4 2.38
5 2.397
6 2.396
10 2.36
100 2.21
1000 2.14

the equality sign holding for w=2.

Proof. It follows from Theorem 2 that, with wincreas-
ing from w=2, A.../p exhibits the behavior shown in
Table 1. It can also be shown that A../p—2+0 as
w— o, so that over all the range of w the value of A .
/p remains that shown in (24). Formula (9), unlike the
Floyd model, does not include the page fetches for the
initial loading (cf. Step 1 of Section 2.1). This considera-
tion gives rise to the additional term (w—1) in (23). (J
It can therefore be said that, as a rule of thumb, the pag-
ing model reduces the lower bound of the Floyd model
by a factor of 2.

3. A New Algorithm of Transposition

Previously we constructed algorithms of transposi-
tion that are the best possible in the sense of the Floyd
model [5]. The meaning of the transposition is to
reorder p X p matrix-like data in such a way that data in-
itially stored rowwise in pages are redistributed to those
stored columnwise and vice versa. Through the
preceding sections of this paper, however, we have
learned that there may yet exist some other algorithm
that will transcend the Floyd-model lower bound and
come closer to that of the paging model of our present
interest. We show, in what follows, that we can in fact
construct such an algorithm in which substantially
fewer page fetches suffice.

Let f.(x) denote the number of page fetches required
for transposing an x X x matrix where x rows each with
x records (or data) are stored in x pages, each page hav-
ing capacity for holding p records. See Fig. 5 where an
example for x=4 is given. In the figure, the numbers
entered are the elements of relevant X-matrices, not the
records (or data) held in each page. It is assumed that at
one time the main memory can store w pages (x= w=2)
and that page size p is an integral multiple of x. Note
that in the X-matrix representation [4] of Fig. 5 the pro-
cess of diagonalizing the first xXx matrix can
simultaneously diagonalize the other x X x matrices (p/
x—1 in number) with no additional page fetches. We
then have the following.

Theorem 3. (Recurrence relations of the transposition
algorithm). If f.(p) denotes the number of page fetches
required for transposing a p X p matrix of records, each
row stored in a page, with the main memory of w pages
in size, and if p is an integral multiple of x and p>x
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Fig. 5 As the first (left-most) xXx matrix is diagonalized, the
other xXx matrices are diagonalized simultaneously in
main memory. Only non-zero elements are shown.

=wz=2, then the following holds.
S =L £+ x4, (ﬁ>. @5)
X X

Proof. All the elements of the initial X-matrix have
the value of unity (see Fig. 6(a)). This is then transform-
ed to one such as that seen in Fig. 6 (b) with the number
of page fetches (p/x) X f.(x). This locally diagonalized
matrix is reduced to that shown in (¢) by renumbering
the page numbers in such a way that

page #1 reads page #1,

page #2 reads page #(p/x+1),

page #3 reads page #2p/x+1),
page #x reads page #((x—1)p/x+1),
page #x+1 reads page #2,

page #x+2 reads page #(p/x+2),
page #x+3 reads page #(2p/x+2),

page #2x  reads page #((x— 1)p/x+2),
page #2x+1 reads page #3,
page #2x+2 reads page #(p/x+3),

page #p reads page #p.
Namely, the current page i should read

(—x([i/x] —=1D)—Dp/x+ [i/x] . (26)

As is obvious from Fig. 6 (c), what remains to be done
is to transpose a (p/x X p/x)-matrix x times, where each
matrix element is an aggregate of x records that move
together to the final destination page. (Or each record is
viewed as enlarged x times in length.) This process is
given by the second term xf..(p/x) in the right-hand side
of (25). We may economize page fetches at least by one
page when moving from processes (b) to (c) of Fig. 6
with the overlapping use of some resident pages, but
this contribution is very small, hence ignored, in (25).[]

Consider next the case where p is a power of w. The
Floyd model (p. 76 of [3]) then gives

SA(p)=plog.p, 27
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Fig. 6 Visual representation of the recurrence relation of the
transposition algorithm using the X-matrix. Only non-zero
elements are shown.
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and it is interesting that this function satisfies the recur-
rence of (25). Our strategy to let the paging model have
an edge on the Floyd model is to break up the transposi-
tion process by the repeated use of recurrence (25), so
that the final elementary transpositions of small
matrices of records can be done by an algorithm ob-
viously superior to that given by the Floyd model.

By example let w=2, and p=2*=16. By use of (25)
we have

16 16
f2(16)=7f2(4)+4f2 (7) —=48. (28)
Here note that the paging model gives
Sf(4)=6 (paging model) 29)
(see, for this, Fig. 7), whereas the Floyd model gives
f:(4)=8 (Floyd model). (30)

If the Floyd model is used from the outset (i.e., by not
decomposing the whole transposition process like (25))
(see Theorem 1.1 of [5]), then

S2(16)=16 log, 16=64; 31
or by its slightly improved version
S(16)=(16—1) log; 16+ 1=61. (32)

Compare (28) against (31) and (32). The lower bound
given by the Corollary of Section 2.2.3 is, in this case,
34.
If p=2°=32, then
S2(32)=8fx(4)+4{2/2(4)+4/(2)!
=128 (paging model), (33
where obviously f2(2)=2. For this
f2(32)=3210g,32=160 (Floyd model). 39
If p=2%=64, then
Jx(64)=16/>(4)+41(16)
=288 (paging model), (35)
whereas
f2(64)=64 log, 64=384 (Floyd model). 36)

Although it is not possible to reach the theoretical lower
bound, the paging-model algorithm as combined with
decomposition by recurrence gives substantially better
results than before.

As an example where p is not a power of w, consider
w=2, p=12. In this case a possible decomposition by
recurrence (25) gives,

£(12)=(12/3)A(3)+ 312(4)
=34 (paging model), 37

where it can be verified in almost the same way as
shown in Fig. 7 that

£(3)=4 (paging model). (38)
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Fig. 7 X-matrix representation of the sequence of transposition f;

(4) by the paging model. A dot (+) indicates a new page fetched to main

memory, while those pages enclosed by horizontally stretched rectangles (drawn by thick lines) are resident pages. Only non-zero elements

are shown.

On the other hand the Floyd model algorithm given
elsewhere (see Theorem 1.2 of [5]) requires as many
page fetches as

S(12)=56 (Floyd model). 39

4. Concluding Remarks

The paging model introduced in this paper is a more
realistic description of data transfers between the fast
main memory and the slow but much larger auxiliary
memory.

Considering this better model we first assessed what
revisions are required of the Floyd model previously
studied with regard to the lower bound of the number
of page fetches for permuting information between
pages in slow memory.

We then derived the recurrence relations of the
transposition algorithm. By use of the relations the pro-
cess of transposition was decomposed into ‘low-level’
elementary transpositions, and it has been found that
the use of the paging-model algorithm at this low level
yields page fetches, significantly fewer than the Floyd
model, for the whole integrated process of the objective
transposition.

One sees from the present study that the lower bound
resulting from the generalized Floyd model previously
studied is merely an approximation to reality, but, since
the Floyd model is easy to use for analysis and its
difference from the paging model is quite moderate (a
factor of two at most), the generalized Floyd model is
still a good approximation of practical importance.

We have referred to the two levels of memory
abstractly in this paper as fast and slow. In the system
composed of main memory plus magnetic disks the
significance of the present study is evident, because data
transfers between the two levels are orders of
magnitude more time-consuming than CPU opera-
tions. Recent supercomputers of parallel pipeline ar-
chitecture are also equipped with the so-called extended

memory made up of fast semiconductor elements. In
this situation the term ‘page’ we have used in this paper
can be construed to be the prescribed amount of data
transferred at one time to and from the main memory.
Even in this case the simple policy of transmitting ‘“the
largest amount of data at a time whenever possible’’ is
not adequate, because the ratio of vectorization will
most probably be deteriorated by the unoptimized data
transfer [6]. We believe that in a few years the lower
bound theory of data transfers as studied in the present
connotations will be important in large-scale computa-
tions by supercomputers.

Appendix 1. Derivation of (15)

Fix m at a certain value. Lagrange’s method of in-
determinate multipliers is then applied to the contents
enclosed by the square brackets of (11). The Lagrangian
function F is defined as

F(o,n, A, a)=§: {e(0i+n)—e(0)—e(n))
i=1

—A {Zm% 0i—(w— l)p} —A {i ni_P=

—Z:,a;(p—oi—n;), (Al)

where A, and A, are the Lagrange multipliers and
afi=1,2,---, m) are the generalized Lagrange
multipliers with conditions p—o,—n;=0(=1, 2, -,
m). The solution (o0;, n;, A1, A2, et1,* * *, o) of the follow-
ing equations gives the maximum we are looking for.

Mz
o
l
<
L
]

W
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aj(p—o0;—n)=0,
o;=0,
o,+n,=p.

The subscripts j in the above run for 1, 2, - - -+, m. Defini-
tion (3) of e(x) then gives (0;%0, n;%0)

0j+’lj
w———=

log o A—aj, (A2)
logn 2= 3, a, (A3)

j
o;=(w—1)p, (Ad)

i=1

; ni=p, (AS)
aj(p—o0,—n)=0, (A6)
o;=0, (A7)
0j+n;=p. (A8)

It follows from (A2) and (A3) that
nj/oj=constantéﬂ G=1,2,---, m)

where f is independent of j. Using this in (A4) and (AS)
we have f=1/(w—1), hence
o,=(w—1)n,. (A9)
This, when substituted to (A2) and (A3), gives
1—logw—1)=21,—q;,
1=2—q; }
from which it follows that
O£1=Olz:“':0£méa (const.).
We thus see from (A6) there are two cases:
® p=o;tn (j=1,2,---,m) (A10)
or
(i) «=0. (All)

These two cases are examined separately as follows.
@ p=oitn (j=1,2,--+, m)
Adding (A4) to (A5) we have

3

m
o+ ni=wp.
1 i=1

i

H

Comparing this with (A9), one finds

m=w. (A12)
On the other hand (A9) and (A10) give
n=p/w,
i } (A13)
o=p(w—1)/w

at which function F assumes the maximum value. Con-
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straints (12) through (14) define the domain of search to
be a bounded closed set in which the greatest maximum

exists and is none other than the only maximum just
found. Hence, applying (A12) and (A13) to (11), we

have
o)=<(2)}
(i) a=0

In this case the following holds.

D= w[e(p)—e(w (Al4)

1—logu(w—1)=4,,

1=2,,

2 ni=p,
o,}=(w—1)n;.

Using these relations we rewrite the contents of the
square brackets of (11) as

3

{e(0i+n)—e(0)—e(n)!

i=1

It

{n{w—(w—1) log,, (w— 1))}

™

il

=p{w—(w—Dlog.(w—1)}

=plw—e(w—1)}. (A15)

It is straightforward to verify that (A14) agrees with
(A15) by use of (3).
In both cases (i) and (ii) we have thus derived that

Amax=p{w—e(w—1)}, (Al6)
and especially for w=2
Amax‘—'p{z—e(l)}:Zp (A17)
Appendix 2. Proof of Lemma 1
Suppose
ki=ky=: =k 1=Kkjs1=+--=ky,
—kn2m, (A18)
ki=m+1, (A19)

and, moreover, set O(2) (i=1, 2,--+, w—1) and N(2)
have the same common m destination pages, i.e., pages
#i), i,+ -, and i,,. Extra to these, page #i,,+ is also the
destination page of Of2). Let zi1,* -+, Zim and Zim+1
denote the number of those records of page #n; (see Fig.
4) that have the destination pages #i1,* * *, im, im+1 r€spec-
tively. Also n,,- * -, n,, indicate that the number of those
records of N(2) that are destined to reach page #i,, -,
im, respectively. We then have

|042)} = Z; Zi=p—X; (*)), (A20)

| 0](2) | = Zl zj,r+zj,m+l =P —Xj, (AZI)
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|N(2>|—Zn, Zx, (w—2)p. (A22)

The entropy variation is then given by

w— w—1

A= [e(m+ Ej Zi,l> —e(n)— 2, e(z:',l)} +
i=1 i=1

+ {e(nm+ > z,-,m> —e(nm)— 2 e(zi.m)}

+e(z,l m-H) e(ZJ m+|)

m w—I

2 n,+Z Z zi, (see Eq. (4))

w—1
(Z x.—(w—2)p>+2 (P—X) = Zjm+1

=p—Zime1 2P (Zm+120) (A23)

Conversely, the extra destination page #i,,+, may be one
of the destination pages of record set N(2) and the other
destination pages #i, -, in are common to the m
destination pages of N(2) and Oi(2) (i=1, 2,---, w—1).
Even in this case we arrive at 4, <p by similar argu-
ment. It is not difficult to prove the lemma in the same
way for the general case where the destination page
numbers do not completely match between pages of
0o(2) (i=1, 2,-++, w—1) and N(Q2).

Appendix 3. Conditional maximization of (18)

Let m; be fixed at a certain positive integer. As in Ap-
pendix 1, Lagrange’s method of indeterminate
multipliers is used. The Lagrange function is given by

w—1 m;

Z e(x‘!k+n'!k
=1 k=1
w—1

% ((Enr &)
pxyn)

where A; (i=1,2,---, w—1) are the Lagrange
multipliers, and o« 1is the generalized Lagrange
multiplier, the latter being for condition (20). Since the
domain of search is a bounded closed set given by (21),
the maximum, if it is the only maximum, will give the
greatest maximum. The following equations are solved

F(x,n, A, ) e(xijk)—e(nijk)}

(A24)

for x;,, ny,, Ai (i=1, 2,-++, w—1; k=1, 2,---, m)) and
o.

%’;———0, (A25)

aiizo, (A26)

%zo, (A27)

(p DIDY n) =0 (A28)
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= 3 ny, 20, (A29)
i k

a=0. (A30)

With the use of definition (3), the first 3 equations
above respectively give the following (x;, %0, n;, *0):

X, +n;
log, ~—2=1,, (A31)
Uy
logy X6y, (A32)
U
Zk] xj,+ ; ni=p (A33)
Eliminating A; in (A31) and (A32) results in
logw (ny;,/X;,)=c=constant
or
Xy, /nij, = constant e B. (A34)

Substituting x;, of (A34) for those of (A31), (A32) and
(A33), we then have

log, 211 ; =121, (A35)
logu(B+1)=A—a, (A36)
3 nu=p/(B+1); (A37)

A and p/(B8+ 1) are constants irrespective of i. Next we
analyze (A35), (A36), (A37) plus (A28), (A29), (A30).
By (A28), either of (i) =0 or (ii)) p=L § n;, holds.

(i) If «=0, then (A35) and (A36) give
p==1. (A38)

If B=—1, A is not finite; hence =1 gives the solution
such that

A=log, 2. (A39)
It then follows from (A37) that
; n;=p/2, (A40)
which further gives
S vl (A41)

zi; ; ny = Zl ?Z—Z—p,

a value greater than p insofar as w>3. And then this
contradicts (A29). The present case (i) therefore holds
only for 2=w=3. For w as such, the contents of the
square brackets of (18) reduces to

2 Z} {e2n;)—2e(ny,)}
=2log,2 > >y,

=p(w—1)log.2, (A42)
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where (A34) with =1 and (A41) are used.
@Gi) If p=L % ny,, then this together with (A37) gives

B=w—2. (A43)

w must be such that w>2, because w=2 gives §=0,
hence 1= —oo. Using the relation (A43) in (A37), we
have

; n; =p/(w—1). (A44)

It thus follows that, for w>2, the contents enclosed by
the square brackets in (18) results in

2 ; te((w—1n)—e((w—2)n;,)—e(n;))

=> ; {n;((w—1) log,, (w—1)—(w—2) log,, (w—2))}

=ple(w—1)—e(w—2)},

where again (A34) and (A44) are used.
Combining (i) and (ii) yields the objective solution:
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A <{p(w—l)]ogWZ (for2=wx3)

“ lpfe(w—1)—e(w—2)} (for wz3)

which is none other than (22).
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