Short Note

A Time-Optimum Systolic Simulation
of One-Way Cellular Automata
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It is shown that, for any one-way kn time-bounded cellular automaton M, there exists a systolic array which
can simulate M in kn+n+O(1) optimum steps, where k is any positive integer.

1. Introduction

There has been increasing interest in the study of
systolic systems which overlap 1/0 operations and com-
putations. In the design of systolic algorithms, speeding
up the 1/O operations, without sacrificing the total
throughput, is an important problem. In [1] we have
developed a time-efficient conversion technique from
cellular algorithms which separate computations from
I/0 operations into systolic ones.

In this paper we consider a similar technique for the
1-dimensional cellular automata(CA’s) with restricted
information-flow. It is shown that a more remarkable
speed up is attained in the simulation of one-way CA’s
than in the case of two-way CA’s.

A l-dimensional one-way CA, M, consists of an ar-
ray of finite state automata, called cells C(l<i=zn),
which are uniformly interconnected. See Fig. 1. M is a
pair M=(Q, J), where Q is the set of cell states and J:
Q?—Q is the one-way local transition function. We
denote the state of C; at time ¢ by s{. At time =0, CA
receives a spatial input in a way such that
s?=a(1 <i=n). A step of computation of M consists of
a state transformation of each cell, that is, the
simultaneous applications of J at all cells in such a way
that s{*'=4(s!, s!+1). Thus the information-flow on M is
restricted to one-way, that is, from right to left. The
configuration s7"sI™ . . . sT™ is considered as the out-
put of T(n) time-bounded CA, M, for aninputa;, a,, . . .,
a,. Following the convention in the cellular automata
theory, we measure the time complexity for the CA’s by
parallel steps required only for the computations.

For systolic arrays(SA’s), various models have been
proposed [11, [4], [S]. We take an array configuration
shown in Fig. 2 as the systolic model. Details of the
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Fig. 1 Cellular automaton.
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Fig. 2 Systolic array.

SA’s are omitted. See [4]. Differing from the case of
CA'’s, the time complexity of the SA is measured by the
parallel steps from the beginning of the input opera-
tions to the end of the output operations.

2. Time-Optimum Systolic Simulation of One-Way
CA’s

In [1] we have gotten the following result for the two-
way CA’s.

[Theorem 1] For any two-way kn time-bounded CA,
M, there exists an SA which can simulate M in
kn+3n+0O(1) steps.

If the direction of the information-flow of the CA’s
is restricted to one-way, the following faster systolic
simulation is possible.

[Theorem 2] For any one-way kn time-bounded CA,
M, there exists an SA, A, which can simulate M in
kn+n—+0(1) steps.

(Proof sketch) We construct an SA, A, which simulates
M in kn+n steps. First we prove the case k=2. The SA,
A consists of n systolic cells, each contains four data
registers R,, Ry, Rs, and Rs. We refer to R, and R; in
each cell as the first layer and R; and R, as the second
layer. The initial data to A are loaded through the
buffer B according to the order a,, a,—,, . . ., az, a; at
the rate of 1 state/1 step. The data movement on the ar-
ray is as follows: A pair of states of M continue to ad-
vance in the right direction at a unit speed on the first
layer, looking for empty R; and R, registers. When they
are found, the data remains at R; and R, until an output
signal is transmitted to that cell. A pair of data registers
R; and R;.,, where i=1 and 3, simulate one cell of M.
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See Fig. 3. When the data are moving or staying on A,
they simulate a 1-step transition of M at every cycle. We
will explain how A simulates M in the first n steps. Let ¢
be any positive integer such that 1 =t=n—1. At time ¢
the configuration a:
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is folded at its center and is stored on the Ist and 2nd
layers of the first ¢/2 cells. At one step A is able to
transform « into §:
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since M is a one-way CA and the information necessary
for the transformation can be found in either the right
or the left neighbour cell. In time ¢ (€{¢|n=<t<kn}) the
simulation is made similarly by generating configura-
tions one by one. Note that at time t=kn the second
layer contains the following configuration:
Sﬁ"sf,"*lsﬁ"i'sf,'l_lz .. sll(n—n+lsllm-n.
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From time =1 A begins to prepare the firing squad
synchronization [6] which will fire at time t=kn'". The
firing tells each cell to begin output operations. Each
cell begins to shift its data on the second layer in the left
direction at a unit speed. Additional n steps are re-
quired for the output operation. In Fig. 3 we illustrate
the configurations of A in the case where k=2 and
n=3;.

In the case k=1, n/2 cells are sufficient for the simula-
tion. At time t=n the firing occurs and » data are out-
put after n steps.

Thus A requires kn+n-+O(1)"? steps for the simula-
tion of M.

Remark 1: Our simulation algorithm is time-optimum
under the following conditions:

Generally, the optimum firing squad synchronization algorithm [6]
fires n cells in (2n—2)-step later after the general issues an initial
‘“‘ready-for-fire’’ signal. But the firing squad synchronization
algorithm can be easily modified so that the firing occurs in kn-step
later for any integer k(= 2).

In this paper we use the modified kn-step version in cases where
k=2. On the basis of [6] it is designed as follows: In the case where
k=2k' for some fixed integer k' = 1: The cellular automaton repeats
the Waksman’s synchronization scheme [6] &’ times. We think of the
k'-th firing as the genuine firing. In the case where k=2k'—1 for
some constant k' =2: After generating a general at the right end (re-
quiring n steps), we use (2k’' —2)n=2(k'—1)n-step version given
above.

"To give more generality we add a term O(1).
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Fig. 3 Configurations of the systolic array A which simulates M.
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Fig. 4 a 2-D systolic array.

(1) The I/O operations are performed at the rate of
1 data/1 step, respectively.

(2) The compaction of the initial data is not allow-
ed. Each data s! (0=t =< kn, 1 <i<n) must not stay on A
for less than kn steps. So the time when the last data is
output is t=kn+n. Thus our time complexity is op-
timum,

Remark 2: If we allow the compaction of the initial
data, we can show that: Let ¢ be any positive constant.
For any one-way kn time-bounded CA, M, there exists
an SA, A, which can simulate M in (3+¢&)n steps. This
simulation technique is not realistic, since the number
of internal states of the systolic cell increases in exponen-
tial order.

Remark 3: In a hardware realization a one-step of
A seems to be more complex than that of M, however,
its complexity is bounded by a constant factor.
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Theorem 2 can be easily extended to the two-dimen-
sional (2-D) case. A 2-D systolic array is shown in Fig.
4. The following corollary is obtained. In the Corollary
two-way (three-way) means that C;; can communicate
with Oﬂ]y C,;l,j and C,‘}j+| (C,u.]'j, C,’J.H, and C,'_r|_j,
respectively). The proof is omitted since a similar techni-
que, as above, is employed.

[Corollary] For any 2-D two-way (even three-way)
km+In time-bounded C A of size m X n, M, there exists
a 2-D SA, A, which simulates M in km+(/+ 1)n steps.
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