Efficiency of Parallel Computation
on the Binary-Tree Machine CORAL '83

YOSHIZO TAKAHASHI®, YOSHITAKA YAMANE**, KAZUYOSHI NISHIYAMA™***|
FUMINOR! YOSHITANI™ and KATUHIRO INOUE™

In order to study the effectiveness of binary-tree architecture to parallel computing for general application
problems, a small-scale binary-tree machine CORAL ’83 equipped with a software environment has been
developed. The CORAL ’83 consists of a host computer and a processor tree. The latter is composed of 15 pro-
cessor elements each of which has an 8085 as a cpu, 8 kB ROM, 17 kB RAM, and one parallel port for each of
three directions. The software environment includes a C compiler for writing parallel programs, an initial pro-
gram loader, interprocessor and host-root communication routines, and several distributed operating systems.
Using this facility, a number of parallel computing programs for various problems were written and were ex-
ecuted to measure the efficiency of parallel computation. From them a parallel SOR computation of Laplace
equation, a tree sort, the N queens problem, a computation of prime numbers with the sieve of Eratosthenes,
and the FFT have been selected. The exploitation of parallel algorithms adequate to the binary-tree machine
and the measured efficiencies of parallel computation for these programs are presented. This study proves that
the binary-tree machine has modest efficiencies for both structured and unstructured problems.

1. Introduction

Various architectures for highly-parallel processing
systems have been proposed to date. Among them the
tree architecture is considered effective for some special
computing problems [1]{2][3]. In order to study the
effectiveness of the tree architecture for more general
parallel computing problems, the authors have built a
small-scale binary-tree machine, CORAL ’83, con-
sisting of 15 processor elements and have developed a
software environment for program writing. Using these
facilities a considerable number of parallel programs
for various problems were written and were executed to
measure the efficiency of parallel computing. From
these results the effectiveness and the limitations of the
binary-tree machine were confirmed.

This paper describes the hardware and software
facilities of the developed CORAL ’83, presents
measured efficiency of parallel computations of some of
the programs, and discusses the effectiveness of the
binary-tree architecture to general parallel computing
problems. In Chapter 2 of this paper the general proper-
ties of a binary-tree machine are reviewed, and in
Chapter 3 and Chapter 4 the hardware and software
facilities of CORAL °’83 are described. In Chapter §
parallel programs for different types of problems are
described and their efficiencies, measured by executing
them on CORAL ’83, are discussed. In Chapter 6 the
effectiveness of the binary-tree machine to parallel com-

*Department of Information Science, Faculty of Engineering
University of Tokushima
**Shikoku Kakouki Co., Ltd.
***Fuchu Works, Toshiba Corporations.

Journal of Information Processing, Vol. 8, No. 4, 1985

putations is explained, and some problems on CORAL
’83 that may be improved are discussed.

2. Properties of Binary-Tree Machine

The requirements for highly parallel processors based
on MIMD architecture are generally considered as
follows.

1) Simple structure which is implementable in a
VLSI chip.

2) Efficiency of parallel processing, that is, the
speed-up ratio or the processor utilization factor, which
is good for average parallel processing problems.

3) Small amount of interprocessor communication
which is required for tree-structured problems.

The last requirement arises from the fact that most
cpu-limited NP complete problems have mostly tree-
like structures. The following discussions reveal that
the binary-tree architectures best meet these re-
quirements.

As indicated in Fig. 1(a) the binary-tree machine is a
set of processor elements connected together as a binary
tree. We name a processor element at the root, a node
and a leaf of the tree as the root processor, a node pro-
cessor and a leaf processor. A node processor has con-
nections to other processor elements in three directions,
which are Top, Left and Right as indicated in Fig. 1(b).
For convenience we define the fourth direction In for
the node processor itself. The number of the processor
elements » and that of arcs @ of a binary-tree machine
with L levels are represented as

n=2L"1—1 (1)

Efficiency of Parallel Computation on the Binary-Tree Machine CORAL ’83 289

Top

Left Right

RP: root processor

NP: node processor
LP: leaf processor

(a) interconnection (b) directions of communication

Fig. 1 Binary-Tree Machine.

a=n—1. (93]

From these formula it can be shown that the number
of connections per processor element is 2 in average and
3 at most. This is the reason why the structure of a pro-
cessor element of the binary-tree machine is so simple.

The routing rule of the binary-tree machine is also
very simple. We give a processor number to each pro-
cessor element as indicated in Fig. 1(a). Let p and d be
processor numbers of the routing and the destination
processor elements. Then the direction of retransmit-
ting the message is obtained by the following formula in
McCarthy’s conditional expression.

direction(d)=[d=p —In.
d<p —Top,
d=2p —Left, 3)
d=2p—+1—-Right,
t —direction(d div 2)

To attain efficient parallel processing the amount of
communication between processor elements has to be
kept as small as possible. We represent this amount by
the processor distance which is the number of arcs that
exist between two processors. In the binary-tree
machine the average processor distance D is calculated
as follows [2].

_(L =22 (L4428
@ 1-nE—1)

The time to broadcast a datum from one processor
element to all other ones is also important. We assign
the processor element that makes this time minimum to
the control processor which manages the distribution of
program and data to, and the collection of the results
from, other processor elements. The broadcast distance
B is defined as the number of routings necessary to
deliver a message from this processor to all other pro-
cessor elements [2]. In the binary-tree machine the root
processor is the control processor and the broadcast
distance is calculated as

B=2L ~2log, n. 5)

D

~2logan 4)

These two values for the torus structure are given as
D=n/2 (6)

n

L i ¢
0 25 512 1024 2048

Fig. 2 Average Processor Distance of Binary-Tree and Torus
Machines.

riv,0)/r(,1)

relative routing load

Tevel of processor element

Fig. 3 Routing Load in a Binary-Tree Machine.

B=n/4. @)

Eq. (7) does not apply to some parallel processors such
as Illiac IV and PAX [4) as they are provided with a
broadcast-bus.

In Fig. 2 the processor distances of binary-tree and
torus machines are compared. As shown in the figure,
the average processor distance for the binary-tree
machine is less than that for torus machines when there
are more than 640 processor elements.

Two problems are known to exist in the binary-tree
machine. The first one is the unbalanced routing loads
among processor elements. In case a uniform com-
munication takes place between two processor elements
of all combinations, the routing load for a processor ele-
ment is represented by the number of paths connecting
two other processors and passing through it. Let the
routing load of a processor element of the v-th level be
denoted by r(v.L). It is represented as

rv, L)=4Q"— DR " —1)—-3QF -1 8)

Fig. 3 shows the ratio of r(v, L) to r(0, L) as a func-
tion of L. As is shown the routing load is largest in level
1 and decreases quickly as the level increases. However,
in practical parallel computations communication bet-
ween all processor elements may not be necessary. With
a deliberate strategy of problem decomposition and pro-
cessor allocation it is possible to balance the routing
loads of all processors.

The second problem of the binary-tree machine is
said to be the lack of reliability. As the root processor
serves as the control processor, the failure of the root
processor causes fatal system failure. When a node pro-
cessor fails, all the processor elements connected
underneath become unavailable. Let us assume that all

290

Processor Tree

Fig. 5 Organization of CORAL ’83.

processor elements have the same failure probability f.
Then the ratio of the expected number of unavailable
processors to the total processor elements, denoted by
U, is represented as follows [5].

L

U=3 f-2’bw)/n ©)
v=0

where b(v) is the number of processor elements belong-

ing to the subtree under a level v processor element,

which is

b)=2t"41—1, (10)
Therefore U is represented as
U=fIL+({L+1)/n]~flog:n (11)

We can conclude that the reliability of the binary-tree
machine is not so bad as has been believed. This is
reasonable because the processor elements that most
affect the reliability are few while those that least affect
it are many. Nevertheless the proposals to improve the
reliability of the tree machine [6][7] are worth consider-
ing.

3. Structure of CORAL ’83

The development of CORAL ’83 is purposed to pro-
vide a testbed for verifying parallel algorithm,
evaluating the performance of parallel computation,
and developing and refining distributed operating
systems. Fig. 4 shows the front view of CORAL ’83.
As shown in Fig. 5 it is constructed from a host com-
puter and a processor tree connected together with a

Y. TAKAHASHI, Y. YAMANE, K. NisHiYAMA F. YOsHITANI and K. INOUE

TX-85 . Lﬂ;—@_‘@

RAM 8255 Tep
8255 Left

(a) (b)

Circuit

Fig. 6 Processor Element of CORAL ’83.

Location

0000H
TK-85 Monjtor

0800H I
1 Initial Program Loader

i Interprocessor
! Communication Routines

1000H
Floating Point Package

1700H
Communication Test
Program

t800H

Host-Root Communication
Routines

2000H

8000H

! System Parameters RAM
8400H 77
/

AL
T

CO00H

User's Proyram
RAM

FFFFH

Fig. 7 Memory Map in a Processor Element.

9600 bit/sec serial communication channel. The host
computer is a personal computer, if 800 Model 30,
which uses a Z80 as cpu.

The processor tree is composed of 15 processor
elements each of which is a single-board microcom-
puter, TK-85, using an 808S as cpu, provided with 25kB
of memory and parallel communication channels. The
configuration of a processor element is shown in Fig.
6(a). As a means of interprocessor communication
three PPIs (programmable peripheral interface), each
an 8255, are provided, one for each of the three direc-
tions. As indicated in Fig. 6(b) port A of the PPI is used
to send and port B is used to receive 8 bit data, and port
C is divided into two 4 bit channels Cy and C; to send
and receive 4 bit control singnals for handshaking. To
transmit a one-byte data between two interconnected
processor elements, the following handshake pro-
cedures are used.
/ *sender * /
begin

/ *receiver* /
begin

Efficiency of Parallel Computation on the Binary-Tree Machine CORAL ’83

Table 1 Port Addresses and Interrupt Commands.

o Interrupt
Direction Port Address Command
A 03CH
B 03DH
Top o 03EH OUT 04FH
Control 03FH
A 02CH
B 02DH
Left c 02EH OUT 05FH
Control 02FH
A 01CH
) B OIDH
Right p OlEH OUT 06FH
Control 01FH

Note: No Top direction for root processor and no Left nor Right
direction for leaf processors.

Table 2 System Parameters.

Address System Parameters
8000H Interrupt Vector for Top Direction
8004H Interrupt Vector for Left Direction
8008H Interrupt Vector for Right Direction
800CH Interrupt Vector for Host-Root Channel
8010H Processor Number in LLHH
8012H Processor Level
8013H 0 when Left processor exists, FF when none
8014H 0 when Right processor exists, FF when none
8015H number of processor elements underneath
Chn:=05H; repeat until C; =05H;
repeat until C,=05H; Cy:=05H;
A:=data; repeat until C,=0AH;
Cy:=0AH; data: =B;
repeat until C,=0AH Cn:=0AH
end. end.

With these handshake programs a reliable data
transmission between two processor elements is
assured, while sacrificing the transmission speed which
is 9 kB/sec by measurement.

Another means for interprocessor communication is
the interrupt signal between interconnected processor
elements. The interrupt signals are generated to and
received from three directions. They are inputted to the
PIC (programmable interrupt controller) 8259 with the
highest priority to the Top, and the lowest one to the
Right direction. The port address and the interrupt com-
mand of each direction are indicated in Table 1. There
are no Left and Right directions in the leaf processors,
and the Top direction of the root processor is for the
serial communication channel to the host computer.

One bit of the Cy port for each direction is led to the
LED on the display panel to indicate the occurrence and
the direction of data transmission between processor
elements. The display panel has been very helpful for
debugging a parallel program and observing the efficien-

291

cy of a parallel computation.

Each processor element has 8 kB of ROM and 17 kB
of RAM to which the address space is allocated as in-
dicated in Fig. 7. The lowest 8 kB is allocated to ROM
in which the monitor program for the TK-85 and the
system support programs such as the initial program
loader, interprocessor and host-root communication
routines, and communication test programs, are stored.
The 1 kB RAM area starting from 8000H is used to
store system parameters as described in Table 2 and also
serves as the working storage for the ROM programs.
Another RAM area starting from CO00H is 16 kB in
size and is used as the user’s program area for the
operating system and the application program.

4. Software Environment of CORAL ’83.

4.1 Initial Program Loader

Software facilities are prepared to support develop-
ing application programs for CORAL ’83. Among
them are the initial program loader, the host-root and
interprocessor communication routines, the distributed
operating systems, and the C compiler. Their functions
will be described.

The functions of the initial program loader are to set
system parameters in the first RAM area and to deliver
copies of an application program from the host com-
puter to all processor elements. There are two initial pro-
gram loaders, one on the host computer and the other
on each processor element. The initial program loader
on the host computer reads an application program
from the disk file, and sends it to the root processor
together with its loading address, size, and starting ad-
dress. It then transmits a one-byte starting command to
the root processor. The initial program loader on each
processor element, which is executed as the reset button
on the control panel is depressed, receives the applica-
tion program from the Top direction and retransmits it
to its Left and Right processor elements unless it is on
the leaf processor. When the starting command is receiv-
ed from the Top direction, it retransmits it again and
then jumps to the starting address of the application
program.

4.2 Host-Root Communication Routines

The serial communication channel of the host com-
puter is connected to the USART 8251 installed in the
Top direction of the root processor. Serial data
transmitted from the host computer is converted into a
byte of data in the 8251 and when the data is complete,
the root processor is interrupted to store it in a ring
buffer. To transmit a byte of data to the host computer
the root processor writes it into the 8251 to send bit by
bit. Byte and block data host-root communication
routines both for the host computer and for the root
processor are provided.

292

Table 3 Input/Output Parameters for Interprocessor Communica-
tion Routines.

Transmission Mode Input Parameter ~ Output Parameter

Send B data A error code

Carry error flag

Byte Data
A error code

B data
Carry error flag

Receive

A error code

HL next-data address
DE remained-data size
Carry error flag

Block Data — -
A error code

HL next-data address
DE remained-data size
Carry error flag

HL data address

Send DE data size

HL data address

Receive R
DE data size

4.3 Interprocessor Communication Routines

As described in the previous chapter data transmis-
sion between interconnected processor elements is car-
ried out by handshake using the C port of each PPI.
Both byte and block data communication routines for
each of the three directions are stored in ROM. The in-
put/output parameters of these routines are shown in
Table 3. The interrupt routines to initialize the PIC, to
send interrupt signals to three individual directions, and
to write the EOI (end of interrupt) command in the PIC
are also provided.

A test program for the diagnosis of interprocessor
communication is also stored in ROM. When it is
started from location 1700H in a processor element, the
communications to both the Left and the Right direc-
tions are tested in all processor elements under this one.
When started from 1704H only the Left direction is
tested, and when started from 1708H only the Right
direction is tested. Results of the test can be observed
on the display panel.

4.4 Distributed Operating System

Among several operating systems which have been
developed for CORAL ’83 [9][10], ‘An’ is the smallest
of all allowing only one user’s process. Because of the
small RAM area of CORAL ’83, operating systems that
have extensive facilities do not afford sufficient area for
the application program. This is the reason why ‘An’
was developed. The functions of ‘An’ are, to down-
load a user’s program from the host computer to
generate a user’s process in each one of the processor
elements, and to support the routing of messages ex-
changed among processor elements.

There are three system processes that support inter-
processor communication for the user’s process. They
are the Interface, the Input, and the Output processes.
The relations among these and the user’s processes are
illustrated in Fig. 8. When a user’s process wants to

Y. TAKAHASHI, Y. YAMANE, K. NisHIYAMA F. YosHITANI and K. INOUE

Acknow]edge

From Adjacent Processor

Buffers

s Message Packet
User's Interface!
Process Process

To Adjacent Processor

[‘ \\‘
/ | [N
Packet 2 J

/7 \
Packet 1 N\ Packet 3

Fraction
of
Message

Fraction
of
Message

Fraction
of
Message

Header
Header
Header

N\

Packet Size
Destination
Origination
Packet Sequence
Number
Number of Total
Packets

Fig. 9 Disassembling a Message into Packets.

send a message to the user’s process on another proc-

essor element, it calls the following system subroutine
send (pno, adrs, size)

where pno is the processor number of the destination

processor element, adrs is the location of the message,

and size is the message size.

The send subroutine activates the Interface process,
which disassembles this message into a sequence of
packets each consisting of a header and a fraction of the
message less than 256 bytes, as illustrated in Fig. 9. In
the header is stored the information on destination and
origination processor numbers, packet size, packet se-
quence, and total number of packets. The Interface pro-
cess stores each packet in a buffer and links it to the tail
of the buffer-link for the sending direction. Buffer-links
are provided for each of the three sending directions. It
then transmits a request interrupt signal to the pro-
cessor in the sending direction demanding that the pro-
cessor receive the packet.

In the processor element which receives this request
interrupt signal from one of the directions, the Input
process is activated. After preparing an empty buffer,
the Input process returns an acknowledge interrupt

Efficiency of Parallel Computation on the Binary-Tree Machine CORAL 83 293

signal to that direction and waits until a packet arrives.
When the packet arrives, the Input process stores the
received packet in the buffer and, by finding the direc-
tion of retransmission by analyzing the header, links it
to the tail of the buffer-link of that direction. If the
direction is either Top, Left or Right, it transmits a re-
quest interrupt signal to that direction. If the direction
is In, the Input process activates the Interface process
which assembles the message from the packets and,
when completed, forwards it to the user’s process. In
this processor element the user’s process has already
called the system subroutine, receive, and has been
waiting for the arrival of the message. The call to
receive is as follows:

receive (pno, adrs, size)
where pno is the processor number of the originating
processor element, adrs is the address to store the
message.

When the sending processor element receives the
acknowledge interrupt signal from the sending direc-
tion, it activates the Output process which picks up a
packet from the first buffer of the buffer-link of that
direction and transmits it.

4.5 Method of Preparing an Application Program for
CORAL ’83

To perform a parallel computation on CORAL ’83 it
is necessary to prepare application programs individual-
ly for the host computer and for each processor ele-
ment. However, a common program may be used for
all processor elements if the processor dependent pro-
gram is written in a way to check the processor number
or the kind of current processor element. In this way,
usually, two programs, one for the host computer and
the other for the processor elements, may be prepared.
We call the former the host program and the latter the
CORAL program. The host program executes the in-
itial program loader to transmit the CORAL program
to all processor elements and let each process element
start, sends data and then collects results of the com-
putation from the processor tree to either display,
print, or write to a file. It also serves for interactive
operations of the user.

These two parallel computing programs are
developed on the host computer under the CP/M en-
vironment. The available programming languages are
8085 asembly language and C language. As the cpu of
the host computer, the Z80, is upward-compatible with
the cpu of the processor elements, the 8085, most of the
CORAL program can be debugged on the host com-
puter. Also the C compiler, which operates on the host
computer, generates 8085 machine code. Therefore the
program written in C and compiled by the host com-
puter runs on both host computer and procesor ele-
ment. The only difference is in the run-time and the stan-
dard subroutines linked to the compiled program. It is
also necessary to specify the program origin to CO00H
for CORAL programs.

The following additional standard functions of C are
prepared for the host program.
trans(store__address, start__address, program__name)

start()

rgetc()
rputc(byte__data)

rgetw()
rputw(word__data)

The trans function is used to execute the initial pro-
gram loader. The functions rgetc and rgetw are used to
receive byte or word data from, and the functions rputc
and rputw are used to send byte or word data to the
root processor.

Additional standard functions prepared for the COR-
AL program are as follows:

getc(direction) getw(direction)
putc(direction, putw(direction,
byte__data) word__data)
bufout(direction) bufin (direction,
word__data)
bufinit()

The first two functions return byte and word data
received from the specified direction. The processor
element executing the getc or getw function has to wait
until the processor element on the specified direction
executes the putc or putw function. Also the processor
element executing the putc or putw function has to wait
until the processor element on the specified direction
executes the getc or getw function.

The bufin and bufout functions offer an interrupt-
oriented buffered communication procedure without us-
ing the operating system. In every processor element
ring buffers are prepared, one for each direction. They
are initialized with the bufinit function. The program ex-
ecuting the bufin function needs not wait until the pro-
cessor element on the other side executes the bufout
function. When the bufin function is executed in a pro-
cessor element, an interrupt signal is sent to the
specified direction before executing the putw function.
The interrupted processor element immediately receives
the transmitted data with the getw function and stores
the received data in the ring buffer of this direction. As
the bufout function reads data from this buffer, the pro-
gram executing this function need not wait unless the
buffer is empty.

5. Parallel Computations on CORAL ’83 and Evalua-
tions

5.1 Parallel SOR Computation of Laplace Equation

A number of programs for parallel computation were
written for execution on CORAL ’83 to evaluate the
efficiency of the parallel computation. These programs
were written in assembly language in early stages but
recently they have been mostly written in C. Some pro-
grams use the operating system while others do not. The
efficiency of the parallel processing is generally

Fig. 10 Partitioning and Allocating Mesh-Points to Processor
Elements.

evaluated with two measures. They are the speed-up
ratio and the processor utilization factor. The speed-up
ratio is the rate of decrease in the computing time by
parallel processing, and the processor utilization factor
is the ratio of the speed-up ratio to the number of pro-
cessor elements used. By denoting the computing time,
the speed-up ratio, and the processor utilization factor
with n processor elements by T'(n), s(n), and u(n), the
following relations exist.

s(my=T(1)/T(n) (12)
u(n)=s(n)/n 13)

In this chapter the exploitations of the parallel
algorithms and the efficiency of some of these programs
are described. First, the parallel SOR computation of
the following Laplace equation is explained.

*w Fw
Frr
w(x, 0)=0, w(x, b)=f(x)

w(0, »)=0, w(a, »)=g(») (14)

The two-dimensional Laplace equation can be solved
by SOR method, in which a set of linear equations, ob-
tained by dividing the region inside of the boundary in-
to meshes and representing the function w with the
values at each mesh-point, is solved by iteration.
Assume that this region is divided into 30 by 30 meshes
and the obtained mesh points are partitioned into 15
subsets each of which contains 10 by 6 mesh-points as
shown in Fig. 10.

The strategy of partitioning and allocating these
mesh-points to the processor elements with minimum in-
terprocessor communication is an important problem
which was studied by the authors’s group [12]. One such
allocation is indicated in Fig. 10, where the processor
number of the processor element allocated to each parti-
tion is indicated in a circle. In this allocation processor
element 2, for example, has to exchange 6 pieces of data
each with processor elements 4 and 5, and 10 each with

0

Y. TAKAHASHI, Y. YAMANE, K. NisHIYAMA F. YOsHITANI and K. INOUE

Table 4 Results of Parallel SOR Computation.

Performance ° Measurement Percentage
T(1) 1320 sec

T(15) 119 » 100 %
Net Computation Time 90 » 75.6%
Data Transmission Time 21 » 17.6%
Overhead Time 7 5.9%
s(15) 11.2

u(15) 0.75

processor elements 1 and 11 in each iteration. In addi-
tion, it has to route 10 pieces of data exchanged be-
tween processor elements 6 and 9, 10 pieces of data
exchanged between 5 and 15, and 6 pieces of data ex-
changed between 8 and 11. Therefore the data sent and
received for this processor element amounts to 96 in
every iteration. This is the largest number for any proc-
essor and therefore limits the computational speed
of the system. This program runs under the operating
system ‘An’.

As any processor element in CORAL ’83 is unable to
see the status of all the other processors at the same
time, there is some difficulty in detecting the con-
vergence of computation. In this program every pro-
cessor element informs its Top processor element of con-
vergence when it is notified of convergence from its Left
and Right processors and its own computation has con-
verged. In this way the root processor can detect the con-
vergence of the computation.

The results of measurement are shown in Table 4.
The net computation time in this Table is measured by
decreasing the size of transmitted data to 1 (practically
0) byte and by fixing the iterations of the original pro-
gram. Consequently, this net computation time in-
cludes the computing time in each processor element
and the waiting time due to interprocessor synchroniza-
tion, but no interprocessor communication time. The
data transmission time, on the other hand, is measured
by removing the computational part from the original
program leaving only the data transmission part.
Therefore this data transmission time is considered as
the time consumed in the interprocessor communica-
tion during the computation. The overhead time is the
difference between the actual computation time and the
sum of the net computing time and the data transmis-
sion time. Overhead time is considered as the time con-
sumed in the operating system. Although the speed-up
ratio and the processor utilization factor with 15 pro-
cessor elements are obtained as 1320/119=11.2 and
11.2/15=0.75 these values could be improved to 1320/
(90+7)=13.5 and 13.5/15=0.9 should the data
transmission time be negligibly small.

5.2 Parallel Tree Sort

The principle of the parallel tree sort is as
follows [13]. Let n be the number of processor elements.
The data are divided into n blocks of equal size and one

'

Efficiency of Parallel Computation on the Binary-Tree Machine CORAL 83 295

Table S Results of Parallel Tree Sort.

n Data Size 7(1) T(n) s(n) u(n)
3 3kB 35 sec 20 sec 1.9 0.63
7 70 95 # 36 » 3.6 0.51
15 15 » 295 # 49 6.0 0.40

of them is delivered to each processor element. Each
processor element, after sorting the data block
delivered to it, merges the data it has sorted with those
sorted data sent from its Left and Right processor
elements, and then sends the result to the Top direction.
In this way the host computer finally receives the sorted
data.

The time to sort N data elements with a single pro-
cessor is represented as

T(1)=S(N) (15)

where S is a function which depends on the sorting
algorithm.

The time to sort the same data by parallel tree sorting
is estimated as follows. As the root processor is the
busiest in this computation, the computation time of
this processor element is approximately equal to that of
the system T'(n). The operation of the root processor is
as follows. It receives data from the host computer,
transmits all but one block of data to the lower pro-
cessor elements, sorts its own data block, collects data
from the lower directions to merge with its sorted data,
and transmits the result to the host computer.
Therefore the computation time is represented as
follows.

T(m)=2hN+2p(n—1)N/n+mN+S(N/n) (n%1)
(16)

Where h and p are the times to transmit a data element
between host computer and the root processor and
between two interconnected processor elements respec-
tively, m is the time to merge one data element. There-
fore the speed-up ratio is represented as follows.

s(m)=T1)/T(n)
=S(N)/[2AN+2p(n—1)N/n+mN~+SN/n)] (17)

Although it gives longer execution time, a better
speed-up ratio is obtained when a slower sorting
algorithm is used. The Shell sort, for which S(NV) is of
order N(log, N)?, is used in our program.

This program uses neither operating system nor
buffered interprocessor communication routines. The
result of the computation is indicated in Table 5. The
speed-up ratio and the processor utilization factor for
15 processor elements are 6.0 and 0.4 respectively,
which are not very satisfactory.

5.3 N Queens Problem

The N queens problem is known as a typical NP com-
plete problem which is usually solved with repeated

s(n)

19 Aueen

6 L 9 Queen

I —— .
T ///’/;’fiue’en"

Speed-1Ip Ratio

0 P PR 1 2 n

0 2 4 6 8 v 14
Number of Processors

Fig. 11 Speed-up Ratio of Parallel Computing of N Queens Pro-
blem.

backtracks. To solve this problem on CORAL ’83, the
search tree is broken down into many subtrees which
are distributed uniformly to all processor elements to
search in parallel. That is, each processor element gives
sequence numbers to the possible solutions by searching
first for two rows and when the remainder of its se-
quence number divided by a, the number of the pro-
cessors used, matches with its processor number, it con-
tinues searching for further rows. The C program to do
this is as follows.

int n, N, q[M];
main()
{int i, j, k, *pno;
pno=0Xx8010;
for (k=0, i=0; i<N; i++)
for (j=0; j<N; j++)
if ('=j && abs (i—j)!=1)
{k++;
if (k%n+1==x*pno)
{qlo)=i+1; q[1]=j+1:
queen(2, q);
}

}

Where pno is the address of the processor number as
was indicated in Table 2.

Although the number of subtrees searched by each
processor element is almost the same, the computa-
tional time for each may be different because the
number of solutions obtained may be different.
Therefore linear speed-up may not be expected. The pro-
gram uses the buffered interprocessor communication
routines. The relation of the obtained speed-up ratio to
the number of processor elements used is shown in Fig.
11. By using 15 processor elements the speed-up ratio of
10.9 and the processor utilization factor of 10.9/
15=0.73 are obtained for a 10 queens problem.

296

Table 6 Results of Parallel Computing Prime Numbers up to 40000
with the Sieve of Eratosthenes.

With Root-to-Host No Root-to-Host

Performance Data Transmission Data Transmission
() 940 sec 924 sec
T(15) 119 » 79 »
s(15) 7.9 11.7
u(15) 0.53 0.78
03t yeration z:d 3:d 45"
0 - =
1 i /2 / 0 ,—°) ﬁ<
2 // A 0 4] °
3 /) P \;’®<
4 9 (g y / //,“/ X2 "
5 X/~ 3 -
NN -
v REEBRRK . - ® -
./ X (_’00 . @ . -
1w ¢ Ol © :>=©<T

(a) bataflow Piagram

x X =

(b) Butterfly Operation

Fig. 12 Data-Flow Diagram of FFT for 16 Data and Butterfly
Operation. Each circle represents a butterfly operation.

5.4 The Sieve of Eratosthenes

The sieve of Eratosthenes is a well-known parallel
algorithm for computing prime numbers, in which a se-
quence of natural numbers is introduced into a series of
processors each one of which has a different sieve and,
if the incoming number is not a multiple of the sieve,
sends it to the next stage. This algorithm is transformed
and implemented for CORAL ’83 as follows.

When all prime numbers less than an integer M are to
be obtained, the necessary sieves are odd numbers from
3 to VM. The set of sieves is now divided into L+1
subsets, where L is the number of levels of the binary-
tree machine as before. Then each subset is allocated to
the processor elements of each level, which test the
numbers sent from the Left and the Right directions
with these sieves and send the not-a-multiple ones to the
Top direction. The leaf processors also generate
different series of natural numbers in addition to testing
them with sieves. In this way the host computer finally
receives a series of prime numbers.

One problem in this program is how to divide sieves
into optimum subsets so that the computational loads
of all processor elements balance. In our program a
nearly optimum division is realized by allocating twice
as many sieves to a processor element as to that in its up-

Y. TAKAHASHI, Y. YAMANE, K. NisHiyamMa F. YosHiTANI and K. INOUE

Data ——=| Stage 1{—w{BUF}-+1 Stage 2{~={BUF—=i Stage 3|—+[BUF}—={stage 4 Results

(a}

Stage 1. 0.1.2:03:4,5:6: 7y
[
Stage 2 041212, 3.4,5,6.,7,
Stage 3 1 0.1,2,3:4:5.6.7)
Stage 4 ‘ 200102, 3.8. 5.6 7
time —=

(b}

Stage 1 | 0,.4,2.6.1,513:1

Stage 2 0:4.2.6. 18 31 1)

Stage 3 (0.2,4,6.1,5,3,7,

Stage 4 0.1.2:3.4.5.6.7
time —e

(c)

Fig. 13 Space-Time Diagram of Linear Pipeline Processing of
FFT for 16 Data. Numbers denote the butterflies in Fig.
12.

per level. That is, the largest sieve H, and the smallest
sieve L, of processor elements of level v are determined
from the following formula.

H,=<M—-Q2"—1)m 18)

L=vM-Q"'—1)m 19)
where

m=<M/(2**'—1) (20)

This program uses buffered interprocessor com-
munication routines. The performance of the program
for M=40000 is shown in Table 6. As the host-root
communication speed limits the computational speed,
the result of a program which omits transmitting results
to the host computer is also shown. The speed-up ratio
of 924/79=11.7 and the processor utilization factor of
11.7/15=0.78 are obtained.

5.5 Pipelined Computation of FFT

The FFT is a computation suited to pipelined process-
ing and divide-and-conquer methods, both of which are
properly implemented on the binary-tree machine. In
the FFT for 2" data, n iterations of computing 2"~ ! bu-
tterflies are required. The data-flow diagram in Fig.
12(a) represents the computation of an FFT for n=4.
The circles in this figure denote the butterfly operations
as represented in Fig. 12(b) and the number in each cir-
cle identifies the individual butterfly. The computation
of this FFT can be carried out with a 4-stage pipeline
with buffer storages between stages as shown in Fig.
13(a), where the i-th stage is assigned to computing the
butterflies of the i-th iteration. When each stage com-
putes the butterflies in normal order the space-time

Efficiency of Parallel Computation on the Binary-Tree Machine CORAL ’83 297

Tterations

n 12 13 14 15 16 17

”T 0 I] o7 P 07 ‘U

h h . ! h |

| o
o5 ls g 1g

] 16

. ~(5) | !

S B :

< 31 31

> 3

< ')

c ! i

- ' 47 47

b4 I 8 43 48

2 \ 1 : N .)

' ! i | H N H H

63 1 63 |63 | 63 | 63 1 63 | 63

Fig. 14 Partitioning and Allocating Butterflies for Tree Pipeline
Processing of FFT. I1 . . . 17 denote the iterations and the
numbers represents the butterfly numbers. The circles
denote the processor elements to which the partition of
butterflies is allocated.

Processor | ! kd hd a8 28 | - 2| - 12
a7 61|13 - |+ o+ 1a -
Wetin | 1 |2 3 |a 5 8 7 i A FS S I A
an as |- 138 -
Tt I 50 ts] - 20]s .
S 2 . 51 s1 |3 - 1 .
H 2, . 52 11 f1s - 5 .
2 el . 53 a3 |- 3 |13 .
H 2 | 1's . 54 27| s) .
3 IS R I 55 69 |11 - 13 .
56 7 |27 - .
5 2a | - e |- . R
7 56| 8 - s 39
: AR A . 58 23 27 |3 .
59 55 | 7 1 .
4 384 - 81 80 15 |23 . .
10 20f - 2a4}0
1 52 | a 8 81 17 . N
62 31] - 23] - .
12 12 |20 .
12 a2 : 63 63 [1s - | - .
sa e - | .
12 28 [- 20
85 © s |- -
15 60 |12
68 ol .
16 2 |28 o8 Ty .
17 aa |- 12 -
68 - I
18 18 | - a H : .
19 so |2 - o 8 . °
20 10 |18 .a 70 . s !
21 az |- 2 |2 o : N
22 28 8|+ 8 2 . H
23 58 |10 Y Y
7a -7 -
2a s |26 . 43 . s
25 as |+ 10| - 44 . N
28 22 | - 2 e : H
27 5a s 10 44 : ;08
28 1a |22 % : H
29 6| 8 54 5 7
30 30| - 22
81 15 .
at 62 [1a
82 BT .
32 N E 82 X o
aa 3a |- 1a 82 .
3a 17] . 308 o H
365 as |1 2 1 o0
a6 9 |17 o H Vo
37 a1 |- 1 2 14 19
a8 26 | - 17 s - s :
39 57 |8 - a 4 s .
10 s |28 -] 20 2
a1 37 |- 8 |1a . o 12
a2 21|+ 28 o -
93 18
a3 53 5 8 3 e
aa 13 |21 - 10 38 e
as as s 18 - 8

Fig. 15 Result of Simulated Tree Pipeline Processing of 128 Data
FFT Indicating the Identification Numbers of Butterflies
Computed in Sequence by the Processor Elements.

diagram of this pipeline is as shown in (b).
Let ¢ be the computation time for one butterfly. The
total computing time T is wirtten as

T=18. Q1)

The same result is obtained when the first stage com-
putes in bit-reversal order which is shown in (c). The
computation time for an FFT for 2" data with an n-
stage pipeline is derived as follows.

T=[R" '+ D)+ 2+ 1+. . . +QR'+D)+1]¢

=@2"+n—2)t. 22)
The processor utilization factor is then
u=2""'/2"+n—2)<0.5. (23)

That is, in a linear pipeline computation of an FFT, the

processor utilization factor can never exceed 50%.
Now the pipelined computation of an FFT on the

binary-tree machine is considered. To balance the com-

<

1.9 fF-=-=-====-=--2 =3
0.8 /
0.6
0.4
0.2
0 1 2 3 4 5 6 t

Fig. 16 Processor Utilization Factor in Tree Pipeline Processing
of FFT

Iterations

Butterfly no.

Fig. 17 Partitioning and Allocating Butterflies when Unbalance
of Load is Unavoidable.

putational loads among processor elements, the bu-
tterflies are allocated to the processors of the binary tree
machine in the way indicated in Fig. 14. That is, the
computation of all butterflies of the first iteration is
assigned to the root processor and those of the second
and the third iterations are divided into two halves. The
computation of one of the halves is assigned to each pro-
cessor element of level 1. In general, for each of the j-th
level processor elements, one 2’th of the butterflies in
the 2th to (2*'—)th iterations are allocated. In this
way each processor element needs not communicate
with other processor elements except receiving data
from the processor element in Top direction and sen-
ding the computed results to those in the Left and Right
directions.

The computation in each of the iterations is perform-
ed as follows. In the first iteration the butterflies are
computed in bit-reversal order. Two butterflies in the j-
th iteration can be computed only after two butterflies
in the (j— 1)th iteration, for which sequence numbers
are 2"~/ apart, are computed. The computation process
is simulated and the result is shown in Fig. 15, in which
the sequence of computations of butterflies of each itera-
tion by processor elements 1, 2 and 4 is illustrated. For
n=17 the computation time, the speed-up ratio, and the
processor utilization factor are as follows.

T=96¢ 24)
s=(64 X7t/ T=4.7 25)
u=4.7/15=0.67 (26)

298

Comparing these results with Eq. (23) reveals that the
efficiency of the tree pipeline processing is better than
that of the linear pipeline processing.

The computation time and the speed-up ratio for the
FFT for 2" data with an L level binary-tree machine,
where n=2"'-—1, can be derived as follows by study-
ing the result in Fig. 15 in which L=2.

L
T=2%""24 143 (27T -2 27

r=1
u=22"2%T (28)

In Fig. 16 u is plotted against L. As is observed the pro-
cessor utilization factor asymptotes 1 as the number of
processor elements increases.

We now consider a case when there are more pro-
cessor elements than the iterations of an FFT and their
loads are unbalanced. For example, in computing the
FFT for 2'° data with a 4 level binary-tree machine, the
allocation shown in Fig. 17 may be applicable, where
the level 2 and 3 processor elements are less loaded than
others. The simulation of this allocation reveals that

T(15)=640¢ (29)
s(15)=(512x 10)¢/ T(15)=8.0 (30)
u(15)=8.0/15=0.53 31

The program for this algorithm was implemented and
executed on CORAL ’83 and the following results were
obtained.

T(1)=202 sec (32)
T(15)=23.0 sec (33)
s(15)=202/23.0=8.8 (34)
u(15)=8.8/15=0.59 (35)

The greater speed-up ratio obtained in actual com-
putation than in simulation results from the reason that
the weights used in calculating butterflies in the first and
the second iterations are either 1 or —1, which require
no multiplication, while in simulation the computation
time for all butterflies was assumed the same.

5.6 Discussion

In the preceding sections the efficiencies of parallel
computing of three types of problem have been studied.
The processor utilization factors for 15 processor
elements range from 0.4 to 0.78. The first type of pro-
blem is the near-neighbor problem for which the lattice
machine is believed to outperform the binary-tree
machine. The parallel SOR computation is this type of
problem. As was reported in [14] the processor utiliza-
tion obtained with 128 processors PAX-128 for com-
puting 32 by 32 mesh-points is 0.83, while our result
with 15 processor elements for 30 by 30 mesh-points is
0.7 which is less than but not very much behind the lat-
tice machine. In this comparison, the numbers of mesh-
points allocated to one processor element are 8 for PAX
and 60 for CORAL. The processor utilization may be

Y. TAKAHASHI, Y. YAMANE, K. NisHIYAMA F. YosHiTaN! and K. INOUE

smaller if the same number of mesh-points is allocated
to the processor elements of CORAL.

The second type of problem is the unstructured one.
The N queens problem solved in our program falls in
this category. In this program the tree-structure
inherent in this problem was not utilized, but all
processor elements are made to operate almost in-
dependently of each other. The processor utilization fac-
tor for this problem is fairly good.

The tree sort, the sieve of Eratostenes, and the FFT
belong to the third type of problem, which is tree-struc-
tured. This type of problems appears to fit the binary-
tree machine. However, the processor utilization factor
for the parallel tree sort is as small as 0.4, while those
of the other programs are satisfactory. The reason is
that, in a parallel tree sort the data to merge in upper
processor elements are much greater than those in
lower ones, while in other programs the loads are well
balanced in all processor elements.

From the above discussions we can conclude that the
overhead due to interprocessor communications is
reasonably small in the binary-tree machine, and if a
successful load balancing is accomplished, a satisfac-
tory performance is obtained.

6. Conclusion

Having developed a binary-tree machine CORAL ’83
and performed several parallel computations with it,
the following conclusions are obtained.

1) The binary-tree architecture adapts well to the
parallel computation of a wide range of problems.

2) Although the binary-tree machine generally
adapts to the problems with tree structure, a careful
load balancing among processor elements is necessary.

3) The amount of interprocessor communication in
the binary-tree machine does not degrade the efficiency
of parallel computation by much.

As CORAL ’83 is a prototype machine, several pro-
blems, that have to be improved to make it competitive
with conventional computers, are observed. They are as
follows.

1) The slow host-root communication speed
reduces the efficiency of problems which need a great
deal of input or output data.

2) The rather slow interprocessor communication
sometimes limits the efficiency of the parallel process-
ing.

3) The small size of the local memory of each pro-
cessor element does not afford a sufficient area for the
application program when the operating system is used.

4) The computing speed of the processor element
itself is poor.

To dissolve these shortcomings we are now undertak-
ing a project to build a new binary-tree machine com-
posed of 63 16-bit microprocessors connected with a
DMA channel [15]. When this is complete, many real-
scale problems will be solved much more efficiently than

Efficiency of Parallel Computation on the Binary-Tree Machine CORAL ’83 299

are those presented in this article.

The authors are grateful to Prof. Yeng Jia Fung of
Benjing Technical Institute of Architecture whose sug-
gestive discussions with us, during his stay at our
laboratory from 1983 to 1984, helped the progress of
this study.

References

1. Horowitz, E. and ZORAT, A. The Binary Tree as an Interconnec-
tion Network: Application to Multiprocessor System and VLSI,
IEEE Trans., C-30, 4 (1981), 247-253.

2. TakaHAsHI, Y. Processor Interconnection Systems for Parallel
Processors, J. IPSJ, 23, 3(1982), 201-209 (in Japanese).

3. TAKAHASHI, Y., WAKABAYASHI, N. and NoBUTOMO, Y. A Binary
Tree Multiprocessor:CORAL, J. Inf. Process., 3, 4 (1981), 232-237.
4. HosHiNo, T. et al. PACS: A Parallel Microprocessor Array for
Scientific Calculations, ACM Trans. Comput. Syst., 1, 3 (Aug. 1983),
195-221.

5. TakaHasHI, Y. Fault Tolerance in Processor Networks, Proc.
25th Annual Convention IPSJ (1982), IF-6.

6. DEesPAIN, A. and PATTERSON, D. Xtree: A Structured Multiproc-
essor Computer Architecture, Proc. 5Sth Symp. Comput. Arch. (April
1978), 144~151.

7. RAGHAVENDRA, C. S., Avizienis, A. and ERCEGOVAC, M. D.
Fault Tolerance in Binary Tree Architectures, /EEE Trans., C-33, 6

(June 1984), 568-572.

8. TakaHAsHI, Y. A Distributed Operating System for a Binary
Tree Multiprocessor, Proc. 14th IBM Comput. Sci. Symp. (Oct.
1980), Operating System Engineering, Lecture Notes in Computer
Science, 143, 270-286.

9. Nosutomo, Y. and TAKAHASHI, Y. Performance Evaluation of
Binary Tree Multiprocessor CORAL Prototype, Trans. Comput.
Arch, IPSJ, 44-1 (Feb. 1982) (in Japanese).

10. YENG, J. F. and TakAHASHI, Y. BTOS: A Distributed Operating
System for Binary Tree Multiprocessor CORAL, Proc. 29th Annual
Convention IPSJ (1984), 7E-7 (in Japanese).

11. NisHiYaMA, Y. and TAKAHASHI, Y. Parallel Processing of a
Functional Programming Language FP on Binary Tree Multiproces-
sor CORAL, Proc. 27th Annual Convention IPSJ (1983), 6N-4 (in
Japanese).

12. TAKAHASHI, Y., NoBuTOMO, Y. and KaAwAaMURA T. Strategies
and Performance Evaluation in Solving Laplace Equation, J. Inf.
Process., 5, 4 (1982), 239-246.

13. MEeaps C. and Conway, L. Introduction to VLSI systems,
Addison-Welsley, (1980).

14. SHIrRAKAWA, T., KAGEYAMA, T., ABE, H. and HosHiNO, T. Proc-
essor Array PAX-128, Trans. IECE, J671-D, 8 (Aug. 1984), 853-860
(in Japanese).

15. Funmoto, K., KuwAHARA, A. and TAKAHASHI, Y. Design of
Prototype Binary Tree Machine CORAL with MC68000, Proc. 29th
Annual Convention IPSJ (1984), 5B-2 (in Japanese).

(Received July 22, 1985; revised November 22, 1985)

