An Optimal Algorithm for Approximating a
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It is shown that the problem of approximating a given piecewise linear function with n nondifferentiable
points by another piecewise linear function such that the absolute value of the difference between the two func-
tions be bounded by a given constant w and that the number of nondifferentiable points of the latter function be

minimum can be solved in O(n) time.

1. Introduction

Problems of approximating a piecewise linear func-
tion by another such function have several applications
in pattern recognition and data reduction. In this
paper, we consider the problem of approximating a
given piecewise linear function with » nondifferentiable
points by another piecewise linear function such that
the absolute value of the difference between the two
functions be bounded by a positive constant w and that
the number of nondifferentiable points of the latter
function be minimum. For this problem, Tomek [6]
gave heuristic algorithms, but no algorithm has been
known that produces an optimal solution. We here
show that an optimal solution of this problem can be
found efficiently. In fact, our algorithm runs in O(n)
time, which is optimal with respect to the time complexi-
ty. The algorithm utilizes computational-geometric
algorithms for the convex hull problem, is simple
enough, and runs fast in practice.

2. An Outline of the Algorithm

A function f:[x~, x*]—R is said to be ‘‘piecewise
linear’” if its graph y=f(x) in the xy-plane is a
polygonal line connecting points p;, pa, . . . , Dn in this
order such that x™ =x(p))<x(p)< . .. <x(p.)=x",
where x(p) denotes the x-coordinate of point p. This
polygonal line is denoted by pip- . . . p., and will often
be identified with the function f. This polygonal line is
strictly monotone with respect to the x-axis (henceforth,
“monotone’” will mean ‘‘strictly monotone with
respect to the x-axis’’). For the piecewise linear function
£, another piecewise linear function f is called an ap-
proximate piecewise linear function with error bound
w>0 if the x-coordinates of two endpoints of
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Fig. 1 Polygonal line p,p, . . . p, (dotted line) and polygon P(w).

polygonal line of y=F£(x) is x(p)) and x(p.), and if
| fFG)—f(x)| <w for any x between x(p;) and x(p.).
The problem is to find an approximate piecewise linear
function with error bound w which has as few seg-
ments as possible.

For a polygonal line p\p, . . . p., construct a polygon
by sliding the polygonal line p, p, . . . p, vertically by w
both upwards and downwards. We shall denote this
polygon by P(w) (see Fig. 1). We denote vertices of the
upper (lower) boundary of P(w) by pi,pi, ...,
py(pv,pi,...,pn) from left to right. A polygonal
line which connects a point on edge e and a point on
edge ¢’ and which is contained in P(w) will be called sim-
ply a polygonal line connecting edges e and e’. Then the
following is obvious.

Lemma 1. A polygonal line is an approximate
polygonal line of pyp, . . . p, with error bound wiff it is
a monotone polygonal line connecting edge p; pi and
edge p. p. of the polygon P(w). O

In the sequel, we consider the problem of finding a
monotone polygonal line having the minimum number
of points connecting edge p, pr and edge p. p. of
polygon P(w). First, we show that this polygonal line
can be found by repeatedly solving the edge-visibility
problem. A point p of a polygon P is said to be visible
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Fig. 2 Visibility from edge e.

from an edge e of P if there exists a point g on e such
that the line segment pgq is in P. An edge e’ of P is said
to be visible from edge e if there is a point on e’ which is
visible from e. The visibility polygon VP(P, e) from an
edge e of polygon P is then defined as the portion of
boundary of P that is visible from e (see Fig. 2). (This
visibility is the ‘‘weak visibility’’ in the sense of Tous-
saint and Avis [7].) By the visibility from e, the polygon
P is partitioned into several connected regions, i.e., into
VP(P, e) and other polygons invisible from e, which lat-
ter will be referred to as invisible polygons. When e’ is
not visible from e, there is an invisible polygon P’ the
edges of which contain e’. The intersection of boun-
daries of VP(P, e) and the invisible polygon P’ is an
edge of P, which is called the window (in P) from e to
e’ (In Fig. 2, the window from e to e’ is uv). Using these
concepts, we can solve the problem as follows.

1. Pi:=P(w); e:=p pr; i:=1;

2. while p, p; is not visible from e, in polygon P; do

e;+1:=window from e; to p, p, in polygon P;;
P, :=invisible polygon of e; containing
Pn pn in polygon Pi;
gi:=point of intersection of the line
containing e;+; and the edge e;;
i:=i+1;
3. m:=i+1, find a point g,-, on edge ¢; and a point
qm on edge p, p, which are visible from each
other in polygon P,-,.

At the end of the algorithm, q,q; . . . g is an approx-
imate polygonal line of the minimum number of points.
In Fig. 3, we show how the algorithm proceeds. The
validity of the algorithm can be shown as follows.

Lemma 2. Any polygonal line connecting p; pi and
Da Pn in P(w) has at least m points.

Proof: It suffices to show the following claim: Any
polygonal line in P(w), with / points, starting from
p1 pi cannot reach the interior of polygon P;. The
claim is true for i=1. Suppose the claim is true for i—1,
and consider the claim for i. If there is a polygonal line
in P(w) with i points which starts from p, p; and ter-
minates in the interior of P;, then, denoting the (i —1)-st
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Fig. 3 How the algorithm proceeds.

point and the i-th of the polygonal line by v;—, and v;, v;
is in the interior of P; and, from the induction
hypothesis, v;—; is not in the interior of P;-,. Hence, line
segment v;-,v; intersects e;—; at some point ¢, and line
segment gy, is in P;—;. But, this contradicts the defini-
tion of P; that P; is an invisible polygon from e;—; in
polygon P;_,. O

Lemma 3. The polygonal line q1q; ... g, is in
polygon P(w).
Proof: From a property of the edge visibility, every

point on e;4, is visible from ¢, and hence g;g;+, is in
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P(w) for i=1, ,m—2.[1

From the monotonicity of P(w), we have

Lemma 4. Foreachi=1, , m=2, x(0)<x(Vi+1)
for any point »; on e; and any point v;+, on €;+,.0]

From Lemmas 3 and 4, we see §1qz2. .. gm iS @
monotone polygonal line in P(w) connecting py pi’ and
pa P . Combining this with Lemmas 1 and 2, we have.

Theorem 1. The polygonal line giq:. .. gm Ob-
tained by the above algorithm is an approximate
polygonal line of p\p: . . . p, with error bound w hav-
ing the minimum number of points. [J

From the algorithmic point of view, it is crucial to
find windows efficiently. Of course, we can find a win-
dow by constructing an edge-visibility polygon com-
pletely. Since the visibility polygon from an edge in a
polygon with n edges can be found in O(n log n) time,
shown by ElIGindy [2] and Lee and Lin [4] (as is
reported in Lee and Preparata’s survey [5]) and also by
Chazelle and Guibas [1], the above algorithm can be ex-
ecuted in O(mnlog n) time. However, we can do it
much better by taking advantage of the monotonicity of
polygon P(w). In fact, we can solve the problem in O(r)
time, as will be shown in the following section.

3. An O(n)-Time Algorithm

We first consider some geometrxc propemes of win-
dows. In polygon P(w), let p* beapointon p;_p; prupi (distinct
from p;'), and p~ be a point on p;_,p; (distinct from
p;) such that p* and p~ are visible from each other.
Then, we can consider a simple monotone polygon P
whose upper boundary is p*pf'p,—f,. ... pr and lower
boundary is p”p; pj+1 - - . We shall consider the
window from edge p p" to p,, p,. in this polygon P.
For a polygonal line of pip; . . . pi of a piecewise linear
function y=£"(x), denote by CH*(pi . .. Dx) the con-
vex hull of a region {(x, Y)1y=f (x), x(p1) <x<x(pi)),

+
Py+1

| P+l
|
]
i I

two separating lines and a window.

Fig. 4 CH*,CH",
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and denote by CH™(pi . . . p) the convex hull of a
region {(x, »)Iy<f (), x(p)<x<x(pi)}. Then, we
have the following.

Lemma 5. For k>max {i,/},
are equlvalent

@) pk pi is visible fromp p.
(i) CH*(p*p!pii...pi)and CH (p™pj pis1 . ..

pi ) have no common interior point (but they may
touch each other).

(iii) There are two separating lines (which coincide
with each other in case the two convex hulls
touch each other at more than one point) of
CH*(p*p/ ...pi) and CH (p7p;j ...Pi)
each of which supports the two convex hulls at
points r* and /~ or at 7~ and /*, respectively, as
in Fig. 4. O

For three points u, v and w, define angles
/ *uvw and Z "uvw as in Fig. 5.

Lemma 6. For k>max {i,j}, let us suppose that
CH*(p*pi'pis...pi) and CH (p™pipi+i-..Pi)
have no common interior point, and let r*, r=,/*, [~ be
the four supporting points as defined in Lemma 5.
Then, we have

@) if Z*pinl*r-=n and L pealTr*zm,
CH*(p*p’ ...piv1)andCH (p™pi . . . Pix1)
have no common interior point;

(i) if £*pinl*r-<m, CH*(p*p/ ...pi+) and
CH (p™pj . ..Ppk+) have a common interior
point, and the window is r~v where v is the point
of intersection of line /*r~ and pi px+:; and,

(iii) the proposition obtained by interchanging
superscripts + and — in (ii).

Proof: (i) In this case, there is a point p on
PitiDier such that Z*pl~r*<m and £ pl*r <m.
Then, a line connecting p and the point of intersection
of r*l~ and r~/* is a separating line.

(i) Inthiscase, pr+i/*and CH (p™p; ... pi)in-
tersect, and hence CH*(p*p/ ...pi+) and
CH (ppj . . .Dpis) intersect. Therefore, any point
p in P with elther “x(p)=x(pi+1)” or “x(r )<x(p)
<x(pk+1) and £*pl*r-<nm’ is invisible from p*p~.
rvis visible from p*p~, so that r~v is the window from
p p to pn p’l .

(iii) Similar. O

Based on these lemmas, we can develop the following
algorithm: Starting with pt=pi, p~=pi and k=3
(the case of k=2 s trivial), check whether CH™(p* . . .pi)

the following three

L uvw +

Fig. 5 Angles £* uvw and £ uvw.
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and CH (p~ ... pi ) intersect for k=3,4,5, ... ;if
they have a common interior point, find the window
from p*p~ to p, p. by using Lemma 6, and updating
p*p” to be this window, repeat this procedure until
p- Dn becomes visible from p*p~. Below, we describe
this algorithm more precisely, where s*(p), s~(p) are
the right-adjacent points of pin CH* and CH ™, respec-
tively, and ¢t *(p) and ¢~ (p) are the left-adjacent points
of p in CH" and CH"™, respectively (x(*(p))<x(p)
<x(s*(p))).
1. (Initialization)
pri=pi;1ti=pi; rti=pi; st (pl):=ps;
tY(py):=pi; pTi=pi; I Ti=prirri=ps;
sT(pr):=pr; tT(pr)i=pi; ii=3; j:=1.
2. (Updating CH* and CH")

Q1) p:=piy
while p#p* and 2 *p; pt*(p)>n do
p:=t"(p);
s*(p):=pi; Y0 ):=p;
(2.2) Interchanging superscripts + and — with

each other, execute (2.1).
3. (Checking whether CH* and CH™ intersect or
not)
(3.1) if Z*p’1Tr-<n then
g;:=point of intersection of line /*r~
and p*p~;
Ji=j+1
p :=r"; p*:=point of intersection
of line /*r~ and p:_.\p/";

st(p*y:=p; t*(pl):=p*;

rt:=pty roi=pr; Iti=p*; 1T:=p7;
while £ 1 r*s (7)<mdo ! :=s"(I7);
gotos.

(3.2) Interchanging + and — superscripts with
each other, execute (3.1);
4. (Updating the two separating and supporting
lines)
@.1) if Z*p 1 r*<m then
ri=p;
while Z*p/ 1 s (7 )<mdo !l :=s"(I").
(4.2) Interchanging + and — superscripts with
each other, execute (4.1);
5. ifi=nthen|m:=j+1;
find gn-) and g,, and halt
else [i:=i+1; return to 2).

Since the polygons constructed in the course of the
algorithm are monotone, the simple algorithm in step 2
correctly updates the convex hulls (Toussaint and Avis
[71). When, in (3.1), the condition of ¢‘if’’ holds with
r-=pi, point p; is an extreme point of CH™, and
CH (pi pPi+1 - . . pi") has already been formed. The
above algorithm obviously runs in O(n) time (note that
step 3 can be executed in O(n) time in total due to the
property of Lemma 4). Thus, we obtain the following.

Theorem 2. An approximate polygonal line of
D\D> . . . p, With error bound w with the minimum
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number of points can be found in O(n) time. O]
4. Concluding Remarks

The above algorithm is so simple that it runs fast in
practice. It produces an approximate polygonal line for
which the maximum absolute error attains the upper
bound w (if m>2). Hence, the next problem to
challenge would be to find an approximate polygonal
line with at most m points such that the maximum error
is minimum. It would also be interesting to apply the
approach taken in this paper to more general polygonal
approximation problems such as that raised in [3]. It
would be useful to generalize the approach to the case
of a function of many variables, but seems quite
difficult since this approach relies substantially upon
efficient algorithms in computational geometry, which
are valid only in the one-dimensional case, such as two-
dimensional convex hull algorithms.

The algorithm presented in this paper can readily be
extended to an algorithm for finding the visibility
polygon from an edge in a monotone polygon with n
edges in O(n) time. Applying this extended algorithm,
we can find a polygonal path, which connects two
points or two edges in a general polygon and which has
the minimum number of points, in O(#n log n) time by
first slicing the polygon with vertical lines passing the
vertices, next removing the subpolygons redundant with
respect to the shortest paths and decomposing the
polygon into monotone subpolygons, and then apply-
ing the extended algorithm to the respective monotone
polygons in O(n) time in total.
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