Modelling and Analysis of Concurrent Processes
Connected by Streams

KazusHi KUSE*, MASATAKA Sassa** and Ikuo NAKATA**

A network of concurrent processes connected by streams is worth notice as a simple method for representing
nontrivial problems by combining simple modules. We define such a network as a subclass of general com-
municating concurrent processes. A network in this class has some restrictions, for example, a stream must have
only one producer and one consumer. However this is a practical class which can be used to represent many pro-
blems, and some representative classes of concurrent processes such as Hoare’s CSP belong to this class. In this
paper, we formulate the analysis of networks in this class based on the theory of Petri nets. We have clarified
some general characteristic features of this class, a major one being that the class is livelock-free. The analysis in-
cludes the detection of deadlocks, dead code and the possibility of termination, along with the determination of
a necessary buffer size for each stream. Here, we applied the analysis to networks described by the programming
language Stella, which we developed, but the analysis is independent of specific languages. In order to achieve
the above analysis, we implemented an automatic analysis system called SPRAT on a VAX-11/750. We suc-
cessfully analyzed many networks which belong to this class using SPRAT.

1. Introduction

Networks of concurrent processes communicating
with each other are widely used in recent programming
systems [Hoa] [Kah] [Occ]. Among these, a network of
concurrent processes connected by streams is worth
notice as a simple method for representing nontrivial
problems by combining simple modules. A stream is a
possibly infinite sequence of values and is receiving at-
tention in research on data flow languages [Den] [Arv],
functional programming [Bur] [Hen] and logic program-
ming [Cla].

In this paper, we use the theory of Petri nets [Pet] to
analyze a stream-connected network. This analysis can
be applied to CSP [Hoa] and to more general networks
connected with streams. Here, we applied the analysis
to networks described by Stella which is a language we
designed and implemented for programming with
streams [Nak]. In Stella, each stream must have only
one producer process and only one consumer process.
Such networks can be regarded as a class of com-
municating concurrent processes. We found that this
class is practical in that many problems can be
represented by it and it has some good features which
will be described later. Yet it is easy to analyze as a
result of the formalization which will be given in this
paper.

Our analysis determines properties of the network
system, such as detection of deadlocks, livelock (starva-

*Doctoral Program in Engineering, University of Tsukuba
**Institute of Information Science and Electronics, University of
Tsukuba

Journal of Information Processing, Vol. 9, No. 3, 1986

tion), dead code and the possibility of terminating. An
interesting subject is the determination of the minimum
buffer size for each stream, assuming a limited resource
for buffers.

This analysis also relates general properties of the
class. By investigating characteristics of the Petri net
which models the above class’s network, general
characteristic features of such a network are clarified.
One major discovery was that no livelock occurs in this
class’s network. The attractive properties of this class
seem to be a consequence of the restriction that each
stream has only one producer process and only one con-
sumer process.

In order to facilitate the analysis, we implemented an
automatic analysis system called SPRAT (Stream-con-
nected PRocesses Analyzer and Transformer) on a
VAX-11/750. We successfully analyzed many networks
of stream-connected processes using this system and ob-
tained useful information on them. Moreover, at the
same time, SPRAT can perform an in-line expansion.
An in-line expansion is transformation of concurrent
processes into a sequential process and is an interesting
method of implementation realizing maximum run-time
efficiency in a sequential machine. The details of in-line
expansion will be given in a separate paper.

Section 2 describes streams in the framework of
Stella in more detail and gives a definition of the class of
stream-connected processes which we deal with. Section
3 describes modelling with Petri nets and introduces the
marking graph which is obtained from a Petri net. Sec-
tion 4 proceeds to describe the analysis and
characteristic features of stream-connected processes
such as deadlocks and livelocks. The algorithm for

Modelling and Analysis of Concurrent Processes Connected by Streams

minimum buffer size analysis is also given. Section 5
describes implementation of the automatic analysis
system, SPRAT. Section 6 presents concluding
remarks. An earlier version of this paper appeared in
[Kus].

2, Streams and Concurrent Processes Connected by
Streams

Here we describe streams in the framework of Stella.
A stream is a sequence of values of a certain fixed type.
For example

{1,4,9,16,25,.. .

is of the type stream of integer.

A network of concurrent processes is represented by
a group of processes and the streams which connect
these processes. The processes can concurrently run
without strict synchronization since each stream can
store some data. When the stream flows from a pro-
ducer process it is called an output stream, and when
the stream flows to a consumer process it is called an in-
put stream. Multiple output and input streams are al-
lowed for each process, and in general a network of con-
current processes connected by streams can be realized.
Each stream must have only one producer process and
only one consumer process. A member of such a class
of concurrent processes is called an SCCP (Stream-Con-
nected Concurrent Processes) and is defined as follows.

Def 2.1

An SCCP is a network of communicating concurrent
processes which satisfies the following conditions.

(1) Processes communicate with each other only
with streams.

(2) A stream has only one producer process and
only one consumer process.

To illustrate this, case (a) of Fig. 1 is not allowed,
while case (b) is allowed. Output of the same stream to
many processes can be realized by case (b).

(3) A connection of streams cannot be dynamically
changed.

(4) A process cannot be dynamically created.

The SCCP is practical in that many problems can be
represented by it and most communicating concurrent
processes belong to this class. In this paper, the for-
malization is described with Petri nets.

(a) not allowed (b) allowed

D : process O : stream

Fig. 1 A restriction on SCCPs.

149

As a simple example of an SCCP, let us consider the
problem of calculating

124224324+, . . +n

The structure of a program to calculate this can be
best expressed by means of a stream, as shown in Fig. 2.
The process “‘sqr’’ produces the stream {1, 4,9, 16, . . .),
and the process ‘‘sum’’ consumes it and calculates the
sum of its elements.

Stella was designed and implemented by us as a
language for representing SCCPs [Nak]. The language
is designed as an extension of Pascal. Stella is intro-
duced here only to explain SCCPs. The modelling and
analysis in this paper are independent of the language
used. For example, a representation with LISP or FP
can be analyzed with the same method.

The representation of the module structure of Fig. 2
by Stella is shown in Fig. 3. Put and get operations are
represented by assignment statements with next. State-
ment (2) puts one element to a stream, and statement (4)
gets one element from the stream.

Termination is one of the main problems of concur-
rent processes communicating with each other. In
SCCP, termination is dealt with by exception handling.
When the producer ‘‘sqr’’ terminates first and the
generated stream is exhausted, the status of the stream
becomes eos (end of stream). On the other hand, when
the consumer ‘‘sum’’ terminates first, the status of the
stream becomes blocked (blocked stream). When a get
or put operation is attempted on a stream with eos or
blocked status, control is passed to the corresponding
exception handling statement. In Stella, the exception
handling statement is enclosed with “€’* and ‘“)”’, and
attached after the put/get operation.

Statement (5) of Fig. 3 is an example of exception

sum sqr{n)

stream
<1.4.9.16....>

Fig. 2 Module structure for the computation of 12 +22+32+, . . . ,+n.

module sqr(n: integer) outs: stream of integer; ...l (1)
var i: integer;
i

n
for i := 1 tondo
next outs := | * |

{put i®i to a stream}

end;
medule sum(ins: stream of integer): 3)
var x: integer;
begin
x = 0;
loop
x := x + next ins get one element from a stream}
<< writeln(x) >> {write x as the result value ..
end
end;

;l..lm(sqr(10)): {connect two processes by a stream}

Fig. 3 A program for Fig. 2.

150

handling statements. In order to change the flow of con-
trol, one of the following statements can be used at the
end of the exception handling statements: an exit state-
ment which passes control to the outside of the inner-
most loop including this statement, a terminate state-
ment which terminates the relevant process, or a goto
statement which is used to pass control to another
point. The terminate statement is assumed as a default
when none of these specific statements appear at the end
of an exception handling statement. For example, state-
ment (5) is equivalent to ‘‘{writeln (X); terminate)’’.
When the entire exception handling statement is omit-
ted, ‘‘{terminate)’’ is assumed.

3. Modelling

3.1 Modelling with Petri Nets

A network of processes (in the SCCP class) is mod-
elled as a Petri net as follows (Fig. 4).

(1) For each process, a Petri net is constructed by us-
ing transitions to represent statements and places to
represent control points (Fig. 4(a)). More precisely, a se-
quence of general statements not including put/get
operations of streams is represented by a transition.
Each put/get operation is also represented by a transi-
tion. A conditional branch where one side or both sides
include at least one put/get operation is represented by
a special EOR (exclusive or) transition [Bae]. A token
output from this EOR transition can go through only
one arc. Transitions for general statements are
necessary for in-line expansion, but they can be omitted
for other analyses such as detection of deadlocks.

(2) Transitions for put and get operations on a
stream are connected by a place modelling a buffer be-
tween them (Fig. 4(b)). The place is of capacity & for a
finite buffer of size k.

(3) Eos and blocked exception handling are mod-
elled as in Fig. 4(c). For each buffer, two places with a
capacity of 1 for an eos flag and a blocked flag are sup-
plied. In order that eos or blocked exception handling
arises only when a process connected to the relevant
stream terminates, transitions for put or get operations
and places for buffers and flags are connected using in-
hibitor arcs. The inhibitor arc enables a transition to
fire only if the input place of this arc is empty.
Therefore, eos transition occurs only when the buffer
place is empty and the eos flag is set. The blocked transi-
tion occurs only when the blocked flag is set. Note also
that, only one of the transitions for get and eos or put
and blocked occurs.

(4) The transitions preceding end places are con-
nected to flag places in such a way that when a process
ends, a token is set in each place for eos flags of the out-
put streams of the process and in each place for blocked
flags of the input streams of the process. (Fig. 4(d))

We introduce place capacity [Mat] and inhibitor arcs

K. Kusg, M. Sassa and I. NAKATA

‘i‘ transiton D’*‘ EOR transition

a sequence of conditional branch
general statements

or put/get operation

é place

control point

(a) representation of each process

get operation put operation

buffer

(b) connection of a put/get operation by a buffer

eos exception blocked exception
handling handling

(c) representation of an eos/blocked exception

(output stream)
eos flag

(input stream)
locked flag

end place

(d) connection of an end place and flag places

Fig. 4 Correspondence between programs and Petri nets.

[Age] to aid in the representation, but their introduc-
tion does not change the modelling power of the Petri
net [Pet].

The part of the Petri net corresponding to each pro-
cess (including EOR transitions representing condi-
tional branches) is a State Transition Diagram (STD)
[Pet]. Its places are 1-bounded and only one token ex-
ists for each process.

The program of Fig. 2 is modelled as a Petri net in
Fig. 5.

Restriction of the firing rule

Put and get operations on the same stream buffer
must be mutually excluded. This can be modelled pre-
cisely using a Petri net. However, since the purpose of
this paper is not the modelling of mutual exclusion,
which is rather straightforward, we have omitted its
modelling and instead have imposed the following

Modelling and Analysis of Concurrent Processes Connected by Streams

Fig. 5 Petri net for the program of Fig. 3.

firing rule:
Firing rule—Only one transition and fire at a time.

This rule reduces the complexity of the Petri net,
while maintaining the generality and the correctness of
later analyses.

3.2 Marking Graphs

Usually, a reachability tree [Pet] is used for analysis
of a Petri net. The reachability tree represents the
reachability set of a Petri net, where each node
represents a marking of the Petri net. But we use a
variant of the reachability tree called a marking graph.
It has two distinguishing features as explained in the
following.

First, we introduce a simple encoding to represent a
marking, i.e. node of a marking graph, as follows.
Each process has the property that it contains a token in
only one of its places. Then the marking of places of a
process is represented by the place number of the place
where the token resides, instead of giving the number of
tokens in all places. The marking of places for buffers
and flags is shown as usual by the number of tokens in
these places. Thus a marking for a network of n pro-
cesses connected by m streams is represented as

(Prye o s Dby by e, efm DA,

where p; is the control point of process i
(the location of the single token for the process),
b; is the number of elements in buffer j,
ef; is 0 or 1 as the eos flag of buffer j,
bf; is 0 or 1 as the blocked flag of buffer j.

. bfn)

Secondly and more important, a reachability set is
represented not by a tree, but by a graph, for the same
nodes often appear many times in a reachability tree.
Especially in a Petri net which models concurrent pro-
cesses, many nodes are duplicated because of their con-
currency. In order to improve on this, we unite two

151

nodes if certain conditions hold. To do this, we assign a
transition set to each node. A transition set for a given
node is a set of transitions from the root node of the
reachability tree to that node. A marking graph is made
by uniting two nodes n, n, in a reachability tree when
the following conditions hold:

(1) the marking of n, and n, are the same,

(2) n, and n, are on the same level (distance from
the root node) in the reachability tree,

(3) n; and n, have the same transition set.

This means that the nodes which are made by
nondeterministic execution join at the same point.

A marking graph may contain the following special
terminal nodes. These are introduced for an analysis
which will be presented later.

(1) root-node: a node where all processes are at

their initial state.

(2) end-node: a node where all processes are in the

terminated state (end place).

(3) pre-node: a node n, such that there is another no-

de n, of the same marking in the same or lower level

of the marking graph.

(4) full-node: a node which is not enabled due to

the limitation of a buffer size.

(5) dead-node: a node not enabled. (except for full-

nodes)

A marking graph is made with a fixed capacity for
each buffers. As a special case, we introduce the concept
of buffer size (or capacity) 0. The situation where a get
operation on a stream is executed immediately after the
corresponding put operation, in other words, the value
of an element of the stream is immediately transferred
from a producer process to a consumer process without
buffering, can be conceived of as buffer size 0 for that
stream. The situation could be modelled in a Petri net
using a single transition without using buffer places.
But, for generality, it is modelled in the same way as for
buffers with buffer size >0, adding the following conven-
tion.

Convention

If the number of tokens in a buffer place becomes 0
immediately after it becomes 1, the buffer size is as-
sumed to be 0.

A marking graph corresponding to the Petri net of
Fig. 5 is shown in Fig. 6 (The capacity of the buffer is set
to 0). In Fig. 6, the two arcs from the root-node mean
that transition 1 and 6 are enabled. If transition 6 fires,
the marking changes to (1, 2, 0, 0, 0). Since transition 7
is a conditional branch, the corresponding arc is split
into two arcs. In time, when transition 9 corresponding
to the put-operation fires, the number of tokens in the
buffer changes from 0 to 1. Immediately after that,
when transition 2 corresponding to the get-operation
fires, the number changes from 1 to 0.

152

K. Kusg, M. Sassa and 1. NAKATA

(1,1.0.0,0)
e \0
(2.1,n.f{ },z‘_u,u 0)
~, W \1}\
@ .u.ﬁ',\n/) FOaEeY TERLLY
1 - =<3 12*
P ~
F(2.3,.0,0,0) 1(2.0.0.‘/‘) (1.4.0,0,0) (1.7.0,1,0)
N '\/ Pl
’\i (1' 12? !
2000 (2.Y0.70)
s
wrafm @iow
5/ P
(5.7.0°0,1) (3.5.8.0,0)
end—node 5 \m
(2.5.0,0,0)
\ oty
W\? 6/’ 1*\
(2.2.0.0,0)
RAAL Fo. '.'{y"“&
3 >5s 12
5 asifn Glow o
(2,3,0,0,0) (2,6.0.0.0) (3.4.0.0,0) (3.1.0.1.0)
pre—node pre—node 3 3,/
(2,4.0,0.0) (2,7,8.1.0)
pre—node pre—

/:

transition of process sum \,: transition of process sqr

Each node represents (sum, sgr, buffer, eos flag, blocked flag)

Fig. 6 Marking graph for the Petri net of Fig. 5.
(buffer size=0, cf. section 3.2)

Two paths from the root-node to the node 2-levels
lower (2, 2, 0, 0, 0) represent nondeterministic execu-
tion of concurrent processes. The two occurrences of
node (2, 2, 0, 0, 0) are united since the conditions for
uniting nodes are satisfied (both transition sets are {1,
6}).

In general, the root-node and the end-node represent
a start point and a stop point of the execution of the net-
work, and a pre-node represents either the loop struc-
ture or a join of control points for a conditional
branch. In Fig. 6, pre-node (2, 2, 0, 0, 0) corresponds to
the loop (transitions 2-3 and 7-8-9-10) of Fig. 5.

Often the existence of loops in a program results in
an infinite number of tokens in a buffer place and this in
effect produces an infinite buffer. We represent such a
case by using a special symbol, w(infinity), which
represents a number of tokens which can be made ar-
bitrarily large [Pet]. The detail is described in section
4.3.

Since the cardinalities of pis and the number of
tokens in finite buffers b/s, ef;s and bfjs are finite, and
infinite buffers are represented by w, the marking graph
becomes finite.

4. Analysis

In this section, we present as general properties of
SCCP, deadlock, livelock, buffer size, termination and
dead code. We describe also analysis techniques for
each of them.

4.1 Deadlock

In this section, we give the definition of deadlock in
general concurrent processes, describe characteristics of
SCCP deadlock, and explain the detection of SCCP
deadlocks. First, we recall the general definition of
deadlock on marking graphs according to the defini-
tions for a Petri net in [Kwo].

Def 4.1

A reachable set for n is the set of all nodes reachable
[Pet] from n and is represented by R(n). (R(n) includes
n and also includes nodes in both the true part and the
false part of EOR transitions.)

Def 4.2

A process p; is said to be dead at node n of a marking
graph and is represented by dead(p;, n) iff the following
holds.

dead(p;, n) <> pis control point at n is not an end

place, and for all n'e R(n), pis control point at n’ is

the same as pis control point at n.

Using this definition, ‘‘deadlockable’> and
‘‘deadlock-free’’ can be defined as follows.

Def 4.3
deadlockable(p;, n) <> 3n’e R(n), dead(p:, n’').

Def 4.4
A network is said to be deadlock-free iff the following

Modelling and Analysis of Concurrent Processes Connected by Streams

holds.
deadlock-free <> "i, not deadlockable(p;, root-node)

The deadlock can be classified into two types.

Def 4.5
Type 1 deadlock <> i, dead(p;, n).
Type 2 deadlock <> %, dead(p;, n)
and ¥, not dead(p,, n).

In the marking graph, type 1 deadlock appears as a
terminal node(dead-node), but a type 2 deadlock does
not appear as a terminal node. Therefore, type 1
deadlock is easy to detect, but type 2 deadlock is
difficult to detect in general concurrent processes since
the reachable set must be calculated according to the
definition of deadlocks. The time complexity of this
detection is O(N?) where N is the number of nodes in
the marking graph. This is because the computation of
the reachable set, which is of order O(N), must be done
at each node. In SCCP, however, a type 2 deadlock is
also easy to detect because of a characteristic property
of SCCP, as follows.

A deadlock of SCCP occurs when some processes
want to get streams (resources) which are to be put by
other processes but all other processes are unable to put
to the stream. The deadlock can be determined by the
relation between the consumer and the producer since
the connection of streams is fixed (Def 2.1 (2) and (3)).
Strictly speaking, consider a relation between a con-
sumer process whose control point is before a get opera-
tion from an empty stream and the corresponding pro-
ducer process. If the set of these relations forms a cycle,
these processes are in deadlock. For example, in Fig. 7,
the connections of process fand process 4, g and f, and
h and g form a cycle.

Thus, type 2 deadlocks can be detected by examining
the relation between the consumer and the producer at
the time the marking graph is generated. The algorithm
follows.

Algorithm 4.1

Introduce a consumer/producer relation called a wait
relation, which is represented by (p;, p;), and which in-
dicates that the control point of process p; is before a

f e} h
get get get
Vay <
put put put

Fig. 7 An SCCP deadlock.

153

get operation from an empty stream which is to be put
to by process p;.

In constructing the marking graph, each time a new
node n is made by firing a transition ¢ on the marking
graph, apply the following rules.

1. If node n is a dead-node, type 1 deadlock occurs.
2. At node n, if process p;s control point is before a
get operation from an empty stream which is to be put
to by process p;, add relation (p;, p;) to the set of wait
relations. If a cycle exists in the wait relations, type 2
deadlock occurs.

3. If transition ¢ was a put-operation of process p; and
process p;s waiting stream became not empty by the put
operation, delete (p;, p,) from the set of wait relations.

Examples of deadlock are shown in Fig. 8 and Fig. 9.
In the marking graph of Fig. 8, a type 1 deadlock occurs
since a dead node appears. In the marking graph of Fig.
9, a type 2 deadlock occurs since (pi, p2) and (p2, p1) in
the set of wait relations form a cycle in the second node.

By the above algorithm, it was shown that the detec-
tion of deadlocks of SCCP is much easier than that for
general concurrent processes.

4.2 Livelock

If some process cannot run forever due to the
scheduler strategy, they are said to be in /ivelock or in-

(1.1.0.,0)

4,1,0,0
y)
Petri net (1.1,0,0
pre—node

marking graph

where each node represents
(p1. p2, b1, b2

Fig. 8 An example of a type 1 deadlock.

(1.1.1.1,0,0.0.0) {(p1.p2).(p3.p2).(pa.p3)}

3
(1,2,1.1.0,0,1,0) {(1.p2).(p2.p1).(papa)}
6
(1.2,2.1,0,0.0,0) {dead(pn). dead(pz). (pa.p3)}
7
(1.2.2,1.0.0.0.1) {dead(p).dead(p2)}

(1.2.2.1.0,0.0.0) {dead(p1).dead(pz).(pa.p3)}
pre—node

marking graph
where each node represents(pi, pz, p3, p4, b1, bz, b3, ba;
{ }is set of wait relations

Petri net

Fig. 9 An example of a type 2 deadlock.

154

dividual starvation [Ash]. A famous example is the
possibility of livelock in the Dining Philosopher Pro-
blem [Dij].

In general concurrent processes, the existence or non-
existence of livelocks is a complicated problem. We will
show an important property of SCCP, which is that
there is no livelock for SCCP. This can be explained by
using Petri nets and marking graphs as follows.

First, the definition of livelocks is presented as a
refinement of the definition in [Kwo].

Def 4.6
A process p; is said to be starvable at node n and

represented by starvable(p;, n) iff the following holds.
starvable(p;, n) <> pis control point at n is not an
end place, and there is a loop in a marking graph,
such that the control point of p; is invariable on the
loop, and the loop contains at least one node where p;
is disabled and at least one node where p; is enabled.

Using this definition, “‘livelockable’’ and ‘‘livelock-
free>> can be defined as follows similarly to
deadlockable and deadlock-free.

Def 4.7

A process p; is said to be livelockable at node n and
represented by livelockable(p;, n) iff the following
holds.
livelockable(p;, n) <> 3n’'e R(n), starvable(p;, n)

Def 4.8

A network is said to be livelock-free iff the following
holds.
livelock-free <> Vi, not livelockable(p;, root-node)

The reader is referred to [Kwo] for a strict definition
and classification of livelocks.

A possible livelock situation is illustrated in Fig. 10.
In Fig. 10, process p. is in livelock since the marking
graph includes a loop, p;s control point is invariable,
and there exist some nodes where transition of p, are
disabled.

An important property of SCCP is that it is livelock-
free.

Assumption
Each buffer is infinite.

/: enabled transitions of process p1

\: enabled transitions of process p2

. "\.\]: disabled transitions of process p2

Fig. 10 Livelock in a marking graph.

K. Kusg, M. Sassa and I. NAKATA

Theorem
SCCP is livelock-free.

Proof

We first note that in SCCP, a disabled transition oc-
curs only at a get operation of a stream. The transition
corresponding to a get operation is disabled when the as-
sociated buffer is empty. Since it is assumed that each
buffer is infinite, the transitions corresponding to put
operations are always enabled.

Livelock arises as a loop in a marking graph as shown
in Fig. 10. Let us suppose that process p- is in livelock.
Loops where p,s control point is invariable (Since our
interest is the livelock, we consider only the status
where a process is not running) in the marking graphs
are classified into three types as shown in Fig. 11.

Type (b) is a livelock status. In type (a), since there
are no disabled transitions both processes can always
run and there is neither livelock nor deadlock. In type
(b), the bold lines and the dotted lines of process p,
should both be associated with one transition corre-
sponding to a get operation by the above note. The dot-
ted lines represent the fact that a get operation from an
empty buffer is impossible. Transition ¢, is a put opera-
tion which puts data into the buffer since after transi-
tion ¢, fires, transition #, becomes enabled.

In type (c), process p, never runs since the associated
buffer is empty. This type represents a deadlock status.

Now, return to the livelock status in type (b). We
want to point out that this type does not occur in
SCCP. If in type (b), transition ¢, fires and ¢, does not
fire, the buffer becomes not empty the next time,
therefore the disabled transitions #; and #; become ena-
bled at the next loop, realizing a loop of type (a). Thus
type (b) never occurs meaning there is no livelock.

The characteristic that SCCP is livelock-free is an at-
tractive feature of SCCPs since this means we need not
worry about the scheduling.

PO —— ,‘.73\‘3

\H

ti(put),/” . 4(get)
/ N

t2(enable)

‘/: enabled transitions of process p1, p3 .pa
\: enabled transitions of process p2

.,
_‘ : disabled transitions of process pz

pre—node

type(c)
Fig. 11 Three types of loops in SCCP marking graphs.

Modelling and Analysis of Concurrent Processes Connected by Streams

4.3 Analysis to Determine the Necessary Buffer Size

In SCCP, processes communicate with each other
through streams which are realized by buffers. Deter-
mination of necessary buffer sizes before the actual ex-
ecution of SCCP networks is important for allocating a
buffer of proper size to each stream. This analysis is
also needed to determinate whether or not in-line expan-
sion [Kus] is possible. The necessary size (including in-
finity) can be determined by the following algorithm us-
ing the capacity of each buffer place in the Petri net.

Algorithm 4.2

Let b;(i=1, . . ., m) be a buffer. We use b; for both
the buffer in the running program and the buffer place
in the Petri net corresponding to the program. Let C(b))
be the capacity of buffer b;. Let M(pl;, ni) be the mark-
ing of place p/; at node n.
1. For bi(i=1, ..., m), set C(b) to 0. Generate a
marking graph with capacity C(b;) for b,.
2. If there are no full-nodes, set the size of each

bi(i=1, ..., n) to C(b) and stop. Otherwise, go to
step 3.
3. Choose one b, which is full at a full-node, and let

C(b)<C(by+1.

4. Extend the marking graph using the new capacity
C(b). If a node n, and a buffer b, satisfy the following
conditions, let M(by, n;) and C(b,) be w (infinite) and
make n, a pre-node.

(1) At the level of the marking graph including n,,
there are no other nodes except for n,.

(2) There is another node n, in the marking graph
where

M(pl;, n)=M(pl;, no) (pl;* by)
and
M(by, n))>M(by, no).

Go to step 2.

For example in Fig. 12, we start with O capacity for b,

1 A ;000 full—node — O (1)
e) Lo
! 4 (1.2,0,1) full—node —————i
5
: (1.3.0,2)
2 5 5\‘
3 b2 3 (1.4.1.2)
@40 2)1 (©[0.2)
3 E o U,
“ o2
(3.4,0.1)
P
Petri net e(:éigo?:)e
marking graph

where each node represents (p1,p2,b1,b2)
[] at the right means [capacity of bi, capacity of b2]

Fig. 12 Analysis of necessary buffer size.

155

and b,. The marking graph is only part (a) and (1, 1, 0,
0) is a full-node. Since there is a full-node in the mark-
ing graph, increase the capacity of b, (C(b,)) from 0 to
1, and extend the marking graph from the full-node.
Now part (b) is added to the marking graph. There is
again a full-node (1, 2, 0, 1). Increase the capacity of b,
from 1 to 2. This time part (c) is added to the marking
graph and there are no full-nodes. Thus the necessary
sizes of buffer b, and b, are 0 and 2, respectively.

An example of the determination of infinite buffer
size is shown in Fig. 13. After extending the marking
graph from the full-node (1, 4, 0, 0), we get node n,
which is (1, 1, 0, 1). Since n,, no and b, satisfy the condi-
tion described in step 4 of the algorithm, we let C(b,) be
w and set n, to be (1, 1, 0, w) and a pre-node. The result
is that the necessary size of b, is 0 and the necessary size
of b, is infinite.

A proof of the correctness of the algorithm is shown
in Appendix A.

4.4 Examination of the Possibility of Termination

A network, except for filter-type networks, is usually
assumed to terminate sooner or later. Thus, analysis of
a network for its possibility of termination is generally
useful.

In SCCP networks, each process has a terminating
machanism at least implicitly with exception handling
statements. But, the possibility of termination of a net-
work depends on how the processes are connected.

If there are no end-nodes on the marking graph, the
network is nonterminating. On the other hand, if all
paths on the marking graph lead to end-node(s), the net-
work always terminates. If some paths (with branches)
lead to end-node(s), the network has a possibility of ter-
mination. Whether or not termination occurs depends
on the semantics of the program. For example, ‘‘sum-
sqr’’ may possibly terminate since there is an end-node
in Fig. 6.

o (1,1.0.0)

full—node (1.4.0.0)
7
n (1,1.0.w)
marking graph
where each node represents (p1,p2.b1,b2)

Petri net

Fig. 13 Analysis of necessary buffer size.

156

4.5 Detection of Dead Code

Dead code may be caused by linking individual pro-
cesses to make a network. This is because each process
usually has exception statements, but some of these
may never be executed in the connected network. The
detection of such dead code is useful since programmers
may mistakenly expect that they are executed in excep-
tion statements and it is not always easy to detect them
by simple observation.

Dead code of a network can be detected easily as tran-
sitions which do not appear in the marking graph of the
network.

For example, in the case of ‘‘sum-sqr’’, transition 11
is dead code (Fig. 5) since it does not appear in the mark-
ing graph of Fig. 6.

5. Automatic Analyzing System

We constructed a system called SPRAT as an
automatic analyzing system for SCCPs. It consists of
two parts, a translator and an analyzer. The translator
translates an SCCP into an equivalent Petri net. The
analyzer analyzes the subjects described in section 4 and
also performs an in-line expansion which is a transfor-
mation of concurrent processes into a sequential pro-
cess. While the translator depends on the programming
language Stella, the analyzer is independent of the
language used. This system has been implemented on a
VAX-11/750 using Pascal.

The analyzer analyzes and transforms an SCCP net-
work modelled by a Petri net in the following order.

(1) Detection of deadlocks

A marking graph is constructed for analysis of
deadlocks assuming that all buffers are infinite.

(2) Analysis of buffer sizes

(3) Examination of possibility of termination

(4) Detection of dead code

(5) In-line expansion

If, as a result of (2), all buffers are shown to be
realizable with a finite size, the network can be in-line ex-
panded.

We analyzed many networks with SPRAT, and ob-
tained useful information of them. For example, for a
program of an inventory control system [Ku2] which in-
cludes four processes and six streams, SPRAT detected
a deadlock that would be difficult for us to detect by
hand. In the program for a Hamming problem [Di2],
SPRAT correctly found that three streams need infinite
buffers. When we regard processes as black boxes and
connect them, it often happens that the network never
stops. SPRAT has also detected such a situation in the
program for the Hamming problem. SPRAT also did
in-line expansions which would be extremely difficult to
perform by hand. In Appendix B, an example of the
analysis for the ‘‘sum-sqr’’ program by SPRAT is
shown.

K. Kusg, M. Sassa and . NAKATA
6. Concluding Remarks

We have defined a class of networks of concurrent
processes connected by streams and labeled this class
SCCP. One special property of SCCPs is that each
stream has one producer and one consumer. We have
modelled and analyzed an SCCP using a Petri net.

We showed how to detect deadlocks and dead code,
and how to determine the possibility of termination of
an SCCP. We also presented an analysis for finding the
necessary buffer sizes. Buffer size analysis has not been
studied much in other works concerning general concur-
rent processes.

We have also shown important characteristics of
SCCP. The occurrence of deadlocks is restricted and
can be checked more easily than in general concurrent
processes. There is no livelock in SCCP. These results
demonstrate a good basis for programming and valida-
tion using SCCPs,

In this paper, we have not fully examined program
semantics, i.e., both branches in each conditional
branch are assumed to have a possibility of being ex-
ecuted. Though this assumption seems to be a good ap-
proach without getting into complex reasoning on pro-
gram semantics, some results of this analysis, e.g., deci-
sion of deadlock and buffer size may be worse than
what occurs in reality. For example, the analysis may
sometimes indicate a need for an infinite buffer size,
even if this need can never arise in practice. This is one
limitation of an analysis which does not include pro-
gram semantics. But, in many cases the user will be able
to find more useful properties by adding other informa-
tion concerning the actual behavior of the program.

Using SPRAT for this analysis can be a great help to
programmers of SCCPs.

Acknowledgements

I would like to thank Harushi Ishizuka who studied
the analysis with me, and Kenji Toriya who im-
plemented the automatic analysis system SPRAT with
me. I would also like to thank David Duncan who
helped with the English in this paper.

References

[Age] AGERwALA, T., Comments on Capabilities, Limitations and
““Correctness’’ of Petri Nets. Proc. Ist. Ann. Symp. Computer Ar-
chitecture, ACM, (1973), 81-86.

[Arv] ARVIND and BRrock, J. D. Streams and Managers, Lecture
Notes in Computer Science, 143, 452-465, Springer.

[Bae] BAER, J. L., Modeling for Parallel Computation: A Case
Study, Proc. of the 1973 Conf. on Parallel Processing, IEEE, (1973),
13-22.

[Bur] BURGE, W. H. Stream Processing Functions, /BM J. Res.
Dev, 19, (1975), 12-25.

[Cla] Crark, K. L. and GREGORY, S. A Relational Language for
Parallel Programming, Proc. of the 1981 Conf. on Functional Pro-
gramming Languages and Computer Architecture, (Oct. 1981), 171-
178.

[Den] DenNnNIs, J. B. and WENG, K. K.-S. An Abstract Implementa-
tion for Concurrent Computation with Streams, Proc. of the 1979
Int. Conf. on Parallel Processing, (1979) 35-45.

Modelling and Analysis of Concurrent Processes Connected by Streams

[Dij] DuksTrRA, E. W. Hierachical Ordering of Sequential Pro-
cesses, Acta. Inf., 1, 2, (1971), 115-138.

[Di2] DuksTRA, E. W. A Discipline of Programming, Prentice-Hall
(1976).

[Hag] HAcINo, T. Proofs of Communicating Sequential Processes,
Preprint of WG on Software Foundation of IPSJ, (in Japanese) (Oct.
1982).

[Hen) HEeNDERSON, P. Purely Functional Operating Systems, in
Darlington et al.(eds.), Functional Programming and its Applica-
tions, Cambridge Univ. Press (1982).

[Hoa] Hoarg, C. A. R., Communicating Sequential Processes,
Comm ACM, 21, 8, (Aug. 1978), 666-677.

[Kah] KaHN, G. and MACQuEEN, D. B. Coroutines and Networks
of Parallel Processes, Information Processing 77, North-Holland,
(1977), 993-998.

[Kus] Kuskg, K. Analysis and Program Transformation of Concur-
rent Processes Connected by Streams, Master Thesis, Univ. of
Tsukuba (1984).

[Ku2] Kusg, K., Programming an Inventory Control System Using
Stella- A Programming Language with Streams, J. IPS Japan, 26, 5,
(in Japanese) (1985), 497-505.

[Ku3] Kusk, K. and SAssA, M. Analysis of Necessary Buffer Size for
Concurrent Processes Connected by Streams, Tech. Momo PL-12,
PL Research group, Univ. of Tsukuba (1986).

[Kwo] KwoNG, Y. S. On the Absence of Livelocks in Parallel Pro-
grams, Lecture Notes in Computer Science, 70 172-190, Springer.
[Mat] MATSUBARA, Y. Capacity Designated Petri Nets, Trans.
IEICE Japan, 62, 5, (in Japanese) (1979), 309-316.

[Nak] NAKATA, I. and SassA, M. Programming with Streams, /BM
Research Reports, RJ3751 (43317) (Jan. 1983).

[Occ] OCCAM Programming manual, INMOS Limited (1982).
[Pet] PETERSON, J. L. Petri Net Theory and the Modeling of
Systems, Prentice-Hall (1981), or, PETERSON, J. L. Petri Nets, Com-
put. Surv., 9, 3, (Sep. 1977), 223-252.

Appendix A
Proof of the algorithm

We only prove the nontrivial point, i.e., the correct-
ness of the determination of infinite buffer size. (The
determination of buffer size for the case of finite size is
obvious.) For this purpose, it is enough to prove that
the following proposition holds when there are nodes
and n and buffer b, satisfying the condition in step 4 of
algorithm 4.2.

Proposition

Even if we extend the marking graph from node n, by
increasing C(b,), another node n, which is the same as
n, except for a larger b, marking and which satisfies the
condition will appear again. Inductively, when this fact
is applied repeatedly the marking of buffer b, eventually
becomes infinite (see Fig. Al).

Proof

Assume that the marking graph is extended of node
n,. In this case, there will be a node n, with the same
marking as n, except for b,, for which the marking
becomes larger. Let m, and m; be the part of marking
graph from n, to n, and n, to n;, respectively. Since the
marking of buffer b, at each node of m, is larger than
the marking at the corresponding node of m,, part m, in-
cludes (is a superset of) part m;. (When C(b,) is 0, we
made a convention allowing a path where the marking
of b, changes as 0—1—0. Accordingly, when C(b,) is
greater than 1, we may also add such a path C(b,)
—C(by)+1—C(b,) to the marking graph without a loss of

157

Proof of determination of infinite buffer size.

Fig. Al

generality.)

There may be a new path in m, which does not have
the corresponding path in m, (meshed part in Fig. Al).
We want to show that even if there is an expanded part
in m,, node n, is a single node in that level.

Let start nodes of such expanded paths in m, be
si(i=1, . . ., n) and the corresponding node in m, be
d{i=1, ..., n). Since the paths do not exist in m, but
exist in m,, the marking of b, of d; is 0 and the marking
of b, of s; is more than 1, and the control point of one
process (let us call it a consumer process) at d; and s; is
before a get operation. Since the marking of b, is 0 at
node d; and it is greater than or equal to 1 at node n,,
there must be at least one transition which is a put
operation to buffer b, on any paths from d; to n,. Let
pi(i=1, ..., n) be such transitions which first appear
starting from d;. Let the node immediately after p; be
e(i=1,...,n).

Since the marking of b, is 1 at node e; is 1 at node e;
and the control point of the consumer process does not
change from d; up to e; (it is before a get operation),
transition g; for the get operation from b, is enabled at
e. Let ri(i=1, . . ., n) be a node reached from ¢; by
firing only transitions of the consumer process.

In my, let u;(i=1, . . . , n) be the node reached from
s; by firing only transitions of the consumer process. Let
vi(i=1, ., n) be a node reached from s; by

158

(hypothetically) firing only the transitions of the con-
sumer process up to the point where the consumer pro-
cess is at the same status as in r,. The transition se-
quence from s; to v; is the same as the concatenation of
the transition sequence from e; to r;, consumer process
transitions from r; to di+,, from e+, to r;+1, . . ., and
from e, to r,. Let v,., be the node in m, corresponding
to r, in m.

In m,, the cause for transitions of the consumer pro-
cess to be disabled at d; or r; is either that (i) the transi-
tion is a get operation from an empty b, or (ii) the transi-
tion is a get operation from another empty buffer or (iii)
the transition is a put operation to another full buffer.
In case (i), there may be expanded paths in m,, and
edges from s; to u; may exist. In case (ii) or (iii), there
are no expanded paths in m, since the status of those
empty or full buffers does not change in m,.

Now, let us examine r,. We show that the consumer
process can not fire at r, not because of cause (i). If we
suppose that the consumer process could not fire at r,
because of cause (i), the marking of b, at r, should be 0.
Since the marking of b, is more than 1 at n,, there is at
least one put transition to b, between r, to #, which will
then enable the get transition from b,. Thus, there exists
another expanded path in m, starting from such node.
Appendix B
An analyses generated by SPRAT for sum-sqr

marking graph :
€1,1,0,0,0
\

1 6

K. KuUSE, M. Sassa and I. NAKATA

This contradicts the assumption that d, or s, cor-
responds to the last starting node for expanded paths.

Since the consumer process could not fire at r,
because of cause (ii) or (iii) and the status of buffers
other than b, does not change in m., the consumer pro-
cess can not fire at node v, and the paths from v,+, to
n, is the same as the paths from r, to n,. Considering
also that the condition by which the consumer process
can fire at v;(/=1, . . ., n) is the same or stricter than
the condition at v,+,, the transition sequence from s; to
ui(i=1, . .., n) which actually fires must be included in
the transition sequence s; to v;. In other words, transi-
tion sequence from s; to u;(i=1, . . ., n) is limited by
the straight line v;, v, . . . , v+, in the marking graph.

From the above facts, all new paths go through n,
and n, is a single node in that level. Then n, satisfies the
condition in step 4 of algorithm 4.2 and the proposi-
tion holds.

There are two specific cases which require a more de-
tailed proof. The first case is that the marking graph
from no to n, includes a conditional branch and the se-
cond case is that more than two buffers are full at a full-
node. The proof for these cases can be made similarly
to the above one. The details are given in [Ku3].

/ \
€2,1,3,0,® €1,2,0,0,0
\ ’ \

6 1 n
\ / N7
€2,2,0,0,0 €1,3,0,0,0)
\ /7 €1,6,0,0,0)
7 1 /8 A\
N7y 1 N 12
€2,3,0,0,0)/ (1,4,0,0,0)
4

(2,%,0,0,0
\

+0,
(1,7,0,1,m
8 ’

1

N2 s 1

€(2,4,0,0,0)/
€(2,7,0,1,0)
/9

o \
/ €2,5,1,0,0)
(4,7,0,0,0) 7
’
5 /
4 €3,5,0,0,0
(5+7,0,0,1) / \
end 3 10
’ \
€2,5,0,0,0) ¢3,2,0,0,0)
\ / \
10 3 7
\ ’ N7
€2,2,0,0,0) (3,3,0,0,0)
pre / (3,6,0,0,0)
3 /7 8 N\

/ 3 N2
<2,3,0,0,0)/ (3,4,0,0,0)
pre (2,6,0,0,00 / (3,7,0,1,0)
join 3 /
/ 3
€(2,4,0,0,%)7
pre (2,7,0,1,0)
join

deadlock ¢ deadlock-~free
buffer-size : [g 1
termination : can terminate

geaz-code 11

(Received March 10, 1986; revised July 11, 1986)

