The Reachability Problem for
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A term rewriting system is said to be a quasi-ground system if, for every rewrite rule in the system, the left-
hand-side is linear and the right-hand-side is a ground term. This paper shows that the reachability problem for
quasi-ground systems (i.e., the problem of deciding, for a quasi-ground system and two terms, whether one of
the terms can reduce to the other) is decidable, and there exists an efficient algorithm solving this problem under
the assumption that the number of the variable occurrences appearing in the left-hand-side for each rewrite rule

is bounded by a fixed constant.

1. Introduction

The reachability problem for term rewriting systems
(for short, TRS) is the problem of deciding, for a given
TRS E and two terms M and N, whether M can reduce
to N by applying the rules of E. It is well-known that
this problem is undecidable for general TRS’s: it
reduces to the halting problem for Turing machines.
Togashi-Noguchi [8] have shown, however, that
reachability for ground TRS’s is decidable in a
polynomial time. In this paper, we extend the above
result by showing that reachability is solvable for quasi-
ground TRS’s. Here, a TRS is said to be a quasi-ground
system if, for every rewrite rule in the system, the left-
hand-side is linear and the right-hand-side is a ground
term.

The reachability problem for TRS’s is closely related
to the Church-Rosser property (i.e., confluence) pro-
blem for TRS’s. For ground TRS’s, the decidability of
the former problem was used to show the decidability
of the latter problem [4]. The result of this paper can
also be used to show the decidability of the Church-
Rosser property for quasi-ground TRS’s (see [6]).
Moreover, in [5], the decidability result of this paper
can be used to obtain a sufficient (and decidable) condi-
tion insuring call-by-need computations in TRS’s (de-
fined in [2]).

To obtain the decidability of reachability for quasi-
ground TRS’s, we prove that, if a term P can reduce to
a term Q, then there exists a reduction sequence y from
P to Q such that the size of each rule instance used in y
is bounded by some constant depending on only the
sizes of P and rewrite rules. That is, there exists a finite
bound of the number of rule instances which we should
consider to check whether term P can reduce to term Q.
Thus, the reachability problem for quasi-ground TRS’s
is reducible to that for ground TRS’s. Using an
algorithm of deciding the latter problem, we show that
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reachability for quasi-ground TRS’s can be checked in a
polynomial time under the assumption that the number
of the variable occurrences appearing in the left-hand-
side for each rewrite rule is bounded by a fixed cons-
tant.

2. Preliminaries

We use definitions and notations similar to those in
[1, 4]. Let X and F be the sets of variables and opera-
tion symbols, respectively. Let T be the set of terms con-
structed from X and F. We use ¢ to denote the empty str-
ing and ¢ to denote the empty set. For a set Y, we use
|lY | to denote the cardinality of Y.

For a term M in T, we use O(M) to denote the set of
occurrences (positions) of M, and M/u to denote the
subterm of M at occurrence u, and M[u+ N] to denote
the term obtained from M by replacing the subterm M/
u by N. Let Ox(M) be the set of variable occurrences,
i.e., Ox(M)={ueOM)|M/ueX}. Let V(M) be the set
of variables occurring in M. We use #(M) to denote the
height of M and |M| to denote the size of M.

Example 1. Let M be a term f(g, x) where f, geF and
xeX. Then, OM)=1{e, 1,2}, M/1=g, M/e=M,
M2+<g]=f(g, 9), Ox(M)= {2}, V(M)= {x}, h(M)=1
and |M|=3.

For a term M, let sub (M) be the set of subterms of
M, i.e., sub(M)= {M/ulueO(M)}. This definition is
naturally extended to that for subsets of T: sub (I')
= Umer sub (M) for 'S T. For example, if M=f(g, x),
then sub (M)= (M, g, x} .

The set of occurrences O(M ), where MeT, is partially
ordered by the prefix ordering: u<v iff 3w uw=v. In
this case we denote w by v/u. If u€v and v<u, then u
and v are said to be disjoint, denoted u|v. If u<v and
u*v, then u<v.

A term M is said to be linear if no variable occurs
more than once in M, and a ground term if thete is no
variable occurring in M, i.e., V(M)=¢. A rule a—f is
a directed equation over terms where V(8)< V(«) and
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a¢X. Rule o— 8 is said to be a ground rule if « and f
are ground terms, and a quasi-ground rule if « is linear
and f is a ground term.

A term rewriting system (TRS) is a finite set of rules
E={a;~B:|1<i<n)} for some n>0 where «;, fi€T. A
substitution is a mapping g: X— T and ¢ is extended to
a mapping from terms to terms: o(fM,...M,)
=fo(M,). . .0(M,,) for feF where m is the arity of /. A
term M reduces to N at occurrence  iff M/u=0o(a) and
N=MI[u+<a(B)] for some substitution ¢ and rule
a—BeE. In this case, M/u is called the redex and u is
called the redex occurrence of this reduction. We
denote this reduction by M%> N. In this notation, u
and E may be omitted (i.e., M—N) and — is regarded
as a relation over 7. Let »* and —* be the transitive
closure and the reflexive-transitive closure of —, respec-
tively. A term M is reachable from N iff N—*M. Let—>°
be the identity relation and let—=%=—-—=*"! for k>0.
Let—>®= U% ,—' for k>0.

We define the size of system E by X, ~per (1ail + 18:]),
denoted size(E).

Henceforth, we are dealing with a fixed quasi-ground
system E= {o;,—B;|1<i<n} such that every o;—f; is a
quasi-ground rule, 1<i<n. Let Ly={o;|1<i<n},
Re= {Bi|1<i<n)} and hy=Max {h(a), H(B)|1<i<n}.
(Note that R is the set of ground terms f;.)

Let Red (E) be the set of redexes, i.e., Red(E)
= {0(a)laelr and o: X—T]). For a subset " of T, let
Red (E, I') be the subset of Red (E) whose elements are
obtained from mappings o: X—Tr, i.e., Red(E, I')
= {o(a)|laeLr and o: X—TI'}. In the next section, we
will show a technical lemma which says that, if a term P
can reduce to an instance o(a) of some left-hand-side «
in Lg (where o is a substitution), then P can also reduce
to another instance o (a) of the same « in Lg which
belongs to Red (E, sub ({P} U Rg)). As we will often use
this set Red (E, sub ({P} U Rxr)), we use Ag(P) as the ab-
breviation, hereafter.

Notation. We use Ax(P) to denote Red (E, sub ({P}
URg)

Further, we use E(P) to denote the set of rules which
have form o(x)—B where g(a)edg(P) and a—pfeE,
i.e., E(P)={o(a)—Blo(a)eds(P) and a—peE}. We
will regard E(P) as the set of ground rules by regarding
variables in X as constants. (That is, any instance
o’'(g(a)) of o(x), where a(a)—BeE(P), is not allowed
unless ¢ is the identity mapping.) Using the above
technical lemma, we will show that, if a term P can
reduce to a term Q, i.e., P—>*Q, then P can also
reduce to Q by applying (only) the ground rules E(P).
Thus, the reachability problem for quasi-ground TRS’s
is reducible to that for ground TRS’s.

The following lemma is a technical one used in the
next section. It says that Az(P)SA4(M) holds if Pis a
subterm of some term in {M} UR;.

Lemma 1. Let Pbeaterminsub ({M} URg) where
MeT. Then, Ag(P)SA£(M) holds.

The proof is obvious by the definition of 4£(P).
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3. Decidability of reachability

In this section, we will show that the reachability pro-
blem for quasi-ground TRS’s is reducible to that for
ground TRS’s. To show this, we prove a technical lem-
ma which says that, if a term P can reduce to an in-
stance o(«) of some left-hand-side o in Lg (where g is a
substitution), then P can also reduce to another in-
stance ¢'(c) of the same « in Lg which belongs to Ag(P).

Lemma 2. Let £ be a quasi-ground system. Let
P—*Q for k>0 where Q=0 («a) for some substitution g:
X—T and aeLg. Then, there exists a term Q'edx(P)
such that P-®Q’ and Q'=0'(a) for some substitution
.

Proof. Lety: P=P 2> P, P> Py
=Q. Let Q=0(a) for substitution ¢ and aelg. Let
Ox(e)={uy, . .., u,). For each u;, 1<i<n, we define

max {jlv,<u;, 1<j<k}
if 3v; such that v;<u;
0 otherwise

c(u)=

For the m-th reduction P, %> p, ., in y following the
c(u;)-th reduction (where c(u;))<m<k), if v,=u;, then
this reduction is not essential in order to obtain a redex
of form o'(a), since TRS E is left-linear. So, in this case
we omit this reduction from y. Let y': P=%Q’ be the
new reduction sequence obtained from y by removing
all redexes Pn—» P, ,, satisfying that m>c(u;) and
vn.=>u; for some u,Ox(c). Obviously, Q'=ac'(a) holds
for some o’ and we can prove that Q'eAg(P) holds,
since for each u,€Ox(a), if c(u;)=0, then Q'/u;=P/u,
otherwise Q'/uesub (Rg) holds by the definition of y'.
Thus, this lemma holids. [

We are now ready to show the main lemma which
says that, if a term P can reduce to a term Q, i.e.,
P—>*Q, then P can also reduce to Q by applying
(only) the ground rules E(P) (= {a(a)~B|o(ax)edc(P)
and a—BeE}).

Lemma 3. Let £ be a quasi-ground system. Let
P be a term in sub ({M} URg) where MeT. Then,
P—>*Qe P > *Q. Here, it is assumed that E(M)
={o(ax)—~Blo(a)ed:(M) and a—pBeE} is the set of
ground rules.

Proof. The proof of (=): Obvious.

The proof of (=). Let P—>*Q for some k=0. Let
| P| =n. We will prove this only-if-part by induction on
(k, n). Here, we define a noetherian ordering >on (k, n)
as follows:

k, >k, n)iff (k>k)V(k=k'An>n")

Basis. The case of k=0 is obvious. Let k=1 and
P—> Q. Obviously, P/uesub ({M} UR;) holds by the
assumption of this lemma. Thus, P/u=0(a) holds for
some aeLr and mapping 6: X—sub ({M} UR;). This
means that P/ued:(M) and P/u—Q/ueE(M). Hence,
P o7 Q holds, as claimed.

Induction Step: The case of k>1.

Let P:P1 —EL’Pz—’;;_’ . .Pk%’Pk.H:Q. We first
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consider the case of |P|=1. In this case, note that
P—P,is arule in E, so that P,eRe. Thus, Presub ({M}
URE). Hence, the induction hypothesis insures that
P, 57 *Q. Also, P ;7 P> holds by the proof of
Basis. It follows that P 4z *Q holds.

In the case where | P| > 1, there are two cases depend-
ing on whether e=u; for some i, 1 <i<k.

Case 1: &e+u; for any i, 1<i<k. Let P=fP,. . .P,
for some operation feF and terms P;, 1<j<m. Then,
Q=fQi. . .Qn holds for certain terms Q;, 1<j<m,
where P;—>®Q;, 1< j<m.

Note that Pesub ({M} U Rg) holds by the assumption
of this lemma and so F Hence, the induction
hypotheses insure that B; o *Q, 1<j<m. It
follows that P 57~ *Q, as claimed.

Thus, the following case 2 remains.

Case 2: &=u; for some i, 1<i<k.

In this case, P—>""'P, and P,=ad(a) for some
substitution o and aeLg. Moreover, P;.;=§ holds for
some BeRr where a— feE. By Lemma 2, there exists a
term P;eAg(P) such that P—> " P] and P;=0'(a)
for some substitution ¢’. Note that P;eAg(M) holds,
since A(P)SA4(M) by Lemma 1 and the assumption
of this lemma (i.e., Pesub ({M} URg)). Thus, it is en-
sured that

P,—P,, eEM)
Obviously, P 7 *P/ holds by the induction
hypothesis, so that P 5> *P,., holds. Since

P,y =peR:Ssub (M} U RE), the induction hypothesis
also insures that P., 57 *Pi+1. Hence, it follows
that P o5 *Pes1=Q, as claimed. O

In the above lemma, let P=M. Then, we have
M—>*Q iff M > *Q. Thus, the reachability
problem for quasi-ground TRS’s is reducible to that for
ground TRS’s. Since the latter problem is decidable
([8]), we have the following main theorem.

Theorem 1. The reachability problem for quasi-
ground TRS’s is decidable. (]

4. Time complexity

In the previous section we have shown that the
reachability problem for quasi-ground systems is reduci-
ble to that for ground systems. Thus, we can use an
algorithm solving the latter problem to decide the
former problem. Togashi-Noguchi [8] have given an
algorithm of deciding, for a given ground system Eg
and two terms M and N, whether M —>*N. This
algorithm operates in a polynomial time of n where n is
the sum of sizes of the given terms (i.e.,

=|M|+ |N| +size(Eg) where  size(Eg)=Z,—jes
(le|+1B81)). (For the readers unfamiliar to [8], an
outline of the algorithm is given in Appendix.)
Henceforth, we call this algorithm Algorithm A. Using
this Algorithm A, we can give an algorithm B of
deciding the reachability problem for quasi-ground
systems as follows:

M. OYAMAGUCHI

Algorithm B

Input: a quasi-ground system E and two terms M,
N.

Output: the same output value as that of algorithm
A taking as input the corresponding ground system
E(M) and the two terms M, N.

The correctness of Algorithm B is ensured by Lemma 3.

We now discuss time-complexity of Algorithm B.
Note that Algorithm B operates in a polynomial time of
k=size (E(M))+ M|+ |N|, since Algorithm A4
operates in the same time. It will be natural to define the
input size of Algorithm B by size (E)+ |M| + |N]. So,
let n=size (E)+ |M| + |N|. Generally, ¥ may not be
bounded by any polynomial size of n. Note that, for a
term « in Lg, if ||Ox(a)|| =i, then the number of terms
of form o(a) where o: X—sub ({M} URg) is bounded
by the order of n'. Thus, |4-(M)| is bounded by the
order of n*!' if MAX {||Ox()|| |a€Ls} <i, so that k
(=size (E(M))+ |M| + |N}|) is bounded by the same
order of n'*!,

By the above arguments,
theorem.

Theorem 2. Let n=size (E)+ |M| + |N| where E'is
a quasi-ground system and M and N are terms. Let
i=Max {|Ox(a)||laeLs}. Then, whether or not
M —> *N can be checked in time proportional to n“ for
some constant ¢>0. O

Note. In many applications, it is not so restrictive
to assume that, for every left-hand-side o in Lg,
|[Ox(e)|} is bounded by a fixed constant. Under this
assumption, the reachability problem for quasi-ground
TRS’s is decidable in a polynomial time of the input
size.

we have the following

5. Concluding Remarks

In this article, we have shown that the reachability
problem for quasi-ground TRS’s is decidable. This
result can be compared with the undecidability of the
same problem for gener.:l TRS’s (also left-linear TRS’s).
From a given left-linear TRS E we can construct a
quasi-ground TRS E’ as follows: rules of E’ are ob-
tained from rules of E by replacing variables occurring
in the right-hand-side terms by £ which is the least infor-
mation symbol (in the sense of [7, 2]) and regarded as a
new operation symbol with arity 0, i.e., a—BeE iff
a—g(f)eE’ where g: X— {Q}. Each reduction se-
quence of E’ can be considered as a (rough) approxima-
tion of the corresponding reduction sequence of E.
Thus, if we are content with such approximation, then
we can use the decidability result of this paper for
reachability, while there is no algorithm of deciding
reachability for general TRS’s. In fact, the result of this
paper can be used to obtain a sufficient (and decidable)
condition insuring call-by-need computations in left-
linear TRS’s defined in [2] (see [5]).

Using the result of this paper, we can show that the
Church-Rosser Property for quasi-ground TRS’s is
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decidable (see [6]). This result can also be compared
with the undecidability of the same problem for (left-
linear) TRS’s.
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Appendix

A dag (directed acyclic graph) is used as the data
structure for terms, e.g., a set of terms {f(g, 9), A(f(9g,
9), f(g, e)} is represented as Fig. 1. Here, e, f, 9, heF
and d’s are used as node names. Each node d, is con-
sidered to represent the subterm whose root node is d,
e.g., d) represents f(g, g). We will use Tm(d)) to denote
the subterm which node d; represents. (In the above ex-
ample, Tm(d)=/(g, 9).) Note that two distinct nodes
in the dag represent different terms. We will use Lb(d))
to denote the operation symbol assigned to node d;,
e.g., Lb(d\)=f. Let Ch(d)) be the sequence of children
of d;, e.g., Ch(d\)=d,d. and Ch(ds)=d.d,. We use
Ch(d,, j) to denote the j-th child of &}, e.g., Ch(d\, 1)=d:
and Ch(ds, 2)=d,. Note that if Ch(d)=e,. . .e,, then
Tm(d)=Lb(d) (Tm(e), . . . , Tm(e,)) holds.

We are now ready to explain an algorithm of deciding
reachability for given terms. To decide, for a given
ground system E, and terms M and N, where M > *N
or not, our algorithm uses a dag D representing the set
of terms Tp= {M, N} U Lg U Rg, where Lg, and Rg, are
the sets of left-hand-side terms and right-hand-side
terms of rules E,, respectively. Let Np be the set of
nodes of this dag D. The following algorithm A com-
putes the subset X of NpXx Np such that (d, d")eX iff
Tm(d)T;*Tm(d') for d, d'eNp, in order to decide
whether M 7> *N.

[Algorithm A}
(1) Let X=RuleU/’ where
I={(d, d)|deNp} and
Rule= ((d, d')eNpx Np| T.(d)— Tm(d)eEg}
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}
dl@ @ds
H < |

Fig. 1. A dag representing terms

(2) Let X=Closure (X) where
Closure (X)) is the reflexive-transitive closure of X.
(3) While there exist d, d'eNp such that
(d, d')¢X and Con (d, d')=True {where Con
(d, d')=True iff Lb(d)=Lb(d') and, for Ch(d)
=d,. . .d,and Ch(d)=d;. . .d,, (d;, d;) belongs
to X, 1<i<n}
do let X=Closure (XU {(d, d')})
4) If (d, d)eX such that Tm(d)=M and Tm(d)=N
then output (‘True: Reachable’)
else output (‘False’)

Intuitively, Algorithm A first assigns pairs (d, d')
eNpXx Np to X such that either d=d’ holds or Tm(d)
—Tm(d') is a rule in Eg. Next it computes the reflexive-
transitive closure of X and then the congruence closure
of X. Let d, d eNp where Lb(d)=Lb(d’), and let Ch(d)
=d,. . .d, and Ch(d')=d.. . .d, for some nodes d,
dieNp, 1 <i<n. Then, the pair (d, d') is said to be con-
gruent if (d;, d))eX for all i, 1<i<n. Note that Tm(d)
—*Tm(d’) if (d, d') is congruent and (d;, d;/)eX implies
Tm(d)—*Tm(d}), 1 <i<n. Whenever such a congruent
pair (d, d') is discovered, Algorithm A adds the pair
(d, d') to X and computes the transitive closure of X'U
{d, d)}.

The fundamental idea of Algorithm A is the same as
those in [8, 3].

Now, we can give a simpler proof for the correctness
of Algorithm A than that in [8]. .

Lemma. Let X, be the final value of X by the execu-
tion of Algorithm A (i.e., X,is the value in the line (4)).
Then, for any d, d' eNp,

Tm(d) 5> *Tm(d') = (d, d)eX;

Proof. (=). The proof is obvious, since we can
easily prove this if-part by induction on the number of
execution steps of Algorithm A4.

(=). For d, d'eNp, let P=Tm(d), Q=Tm(d’) and
P O for some k>0. Let | P| =n. We will prove this
only-if-part by induction on (k, n). Here, we define a
noetherian ordering > on (k, n) as follows: (k, n)>(k’,
n)iff (k>k'YV (k=k' An>n"). (This proof is similar to
that of Lemma 3.)

Basis. The case of k=0 is obvious. Let k=1 and
P1>_Q for some ueO(P). Obviously there exist nodes
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e, e'eNp such that Tm(e)=P/u and Tm(e')=Q/u, since
d, d'eNp. In the line (1) of Algorithm A, (e, ') is added
to X, so that by the executions of the line (3), (d, d') is
eventually added to X. Thus, (d, d')eX}, as claimed.

Induction Step: The case of k>1.

Let P=P1 _|>P2_uz_‘> .. .Pk—uk—)Pk+1=Q. In the case
where |P|=1, P—P; is a rule in E, so that P,eRg,.
Thus, there exists a node eeNp such that Tm(e) = P,. Ob-
viously, (d, e)eX, holds by the execution of the line (1)
of Algorithm A. Since Tm(e)—*"'Tm(d’) and Tm(e)
€Rg,, the induction hypothesis insures that (e, d')eX;.
Since X/ is closed under transitivity, it follows that (d,
d')eX;, as claimed.

In the case where | P| > 1, there are two cases depend-
ing on whether e=u; for some i, 1<i<k.

Case 1: e+#u, for any i, 1 <i<k.

Let P=fP,. . .P, for some operation feF and terms
P, 1<j<m. Then, Q=fQ,. . .Qn holds for certain
terms Q;, 1<j<m, where P;7>®Q;, 1<j<m. Ob-
viously, there are nodes e, and e; such that Tm(e)=PF;
and Tm(e)=Q;, 1<j<m. Thus, the induction
hypotheses insure that (e, €)X, 1<j<m. Hence, in
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the line (3) of algorithm A, Con (d, d')=True, so that
(d, d’) must be added to X in the line (3) (if (d, d') is not
still added to X). Thus, (d, d)eX], as claimed.

Thus, the following case 2 remains:

Case 2: e=u; for some i, 1<i<k.

In this case, P> '~'P; and Pi€Lg,. Obviously, there
exists a node e in Np such that Tm(e)=P;. Hence, the in-
duction hypothesis insures that (d, e)eX,. Note that
P;—P;y, is a rule in Eg. Thus, for the node e’ such that
T(e')=Pi.1, (e, €)X, holds. Moreover, since P;y1=
Tm(e')>* PP, =Q=Tm(d'), the induction hypothe-
sis insures that (e, d")eX;. Since X is closed under tran-
sitivity, it follows that (d, d')eX}, as claimed. O

The above lemma insures the correctness of
Algorithm A. We can show that some implementation
of Algorithm A operates in a polynomial time of n
where n=|M|+ |N|+size (Eg) (see [8]). Thus, the
reachability problem for ground TRS’s is polynomially
decidable.
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