On the Preprocessing Algorithm Used in the
Boyer-Moore Algorithm for String Searching

IcHIRO SEMBA*

We consider the preprocessing algorithm for Boyer-Moore string-searching.

This paper proposes a natural preprocessing algorithm coming to our mind. The average running time per pat-
tern of length m is proved to be O(m + m?/ g) under the assumption that g possible characters appear uniformly.

The computer experiments show that the average running time per pattern of our algorithm is better than
previous algorithms proposed.

1. Introduction LTIz TTIIIIIIIOIIITIINIT
m-t m
We consider an algorithm for computing the table of [cToooooes [*_[7777;[
pattern shifts used in the Boyer-Moore algorithm{l] for ~ ~~-7777=====—=="==="~
string searching. We assume that the pattern of length j;t 3 1“
m is given by the array pattern[l:m] and g possible (t<j<m) [CICI77777022°7777777

characters are used. Knuth[2] has shown the O(m)
algorithm and Rytter[3] and Noshita[4] have revised
Knuth’s algorithm.

In this paper we will present a natural algorithm com- ot n
ing to our mind. Even though it is O(/n?) algorithm, the
average running time per pattern of length m is proved
to be O(m + m?/q) under the assumption that g possible 1 n
characters appear uniformly. Practically we are able to ' ¥
expect that m<gq. It follows that the average running
time of our algorithm is linear.

The computer experiments indicate that the average
running time per pattern of our algorithm is better than

previous algorithms proposed. T_t ?
[CCZCCITICII771777771
2. Algorithm m
___________________ e
When a mismatch occurs at the position m—t¢ (3=0) Tl I

(1=t=m—1) in the pattern, the pattern can be moved
to the right. In order not to fail to find the pattern in the

text (processing string), we have to check the substrings pattern[j—¢+1:j]=pattern[m — ¢+ 1:m])}

in the pattern such that pattern [j—¢+1:j]=pattern
[m—t+1:m] (t<j<m)or pattern [l:j]=pattern
[m—j+1:m] (0</j=t) or empty string (j=0).

This substring is represented by the rightmost posi-
tion. The set of the rightmost positions is denoted by
S(t) (1=t=m—1) and defined as follows.

s()y=1{jlj=0
or (0<j=t and
pattern[l:j]=pattern[m—j+ 1:m])
or (t<j<m and

*College of General Education, Ibaraki University, 2-1-1 Bunkyo,
Mito, 310, Japan

Journal of Information Processing, Vol. 9, No. 4, 1986

The pattern shift is determined by choosing the max-
imum element j such that (jeS(¢) and j=<t) or (jeS(¢)
and ¢r<j and pattern[j—¢]#pattern[m—¢]). Let the
maximum element be denoted by p[¢] 1=t=m—1). It
is given as follows.

plt]=max {j|(jeS(¢) and j=t)
or (jeS(t) and <y
and pattern[j—¢]#pattern[m —t])}
Therefore the pattern can be moved to the right by
m—plt].

Example. Three patterns are taken by way of ex-

On the Preprocessing Algorithm Used in the Boyer-Moore Algorithm for String Searching

amples.

(1) pattern[l:5]=aaaaa.
SMH=SR)=S@)=S®=1{0,1,2,3, 4}
pl11=1, p[2]=2, p[3]=3 and p[4]=4

(2) pattern[l:5]=abcde.
S(M=82)=S3)=5(4)= {0}
pl11=p2]1=p[3]=pl[4]=0

(3) pattern[1:10] =bcaacbcabc.
sM=1{2,5,7} pl11=5
s@=1{,7 pli2]l=
S(H)=1{2] B3=t=9) plt1=2(3=t=9)

Let us denote the table of pattern shifts by D[j]
(1=j=m—1). The definition of D given in [2] is:

D{jl=min {s+m—j|s=1 and
(s=j or pattern[j—s]#pattern[j])
and ((s=i or pattern[i—s]=pattern[/])
for j<i=m))}
The table D[j] (1=j=m—1) can be represented by
the table p[t] (1=t=m—1).
Property 2.1 For 1=t=m—1,
Dim—t]1=t+m—plt].

Proof. By the following figures, the above result is
easily understood.

ZZZ:ZIZZ:ZZZZZZZZZI_IZZZZZf:f%::l:l::::::
m-t m

| T T77777T

p[t] -t p[t]

mt m

(pltl=0y | ___ o ______L
This property means that the table DJj]
(1=j=m—1) obtained by computing the table p[¢]
(=t=m—-1).
Now we will present the algorithm determining the
table p[¢] (1=¢t=m—1). The following property is im-

229
portant.
Property 2.2 For 1=t=m-—2,
S+ 1)={jl(jeS(t) and j<1)
or (jeS(¢) and t<j
and pattern{j— t]=pattern[m —t])}

Proof.
vious.

By the definition of the set S(z+1), it is ob-

We note that the right-hand side of the above equa-
tion is similar to the definition of the table p[¢]. This
fact means that both S(#+1) and p[] are derived from
the set S(¢) at once.

Example. Let pattern[1:12]=bbaacbcbaacb.
J 1 23 45 6 7 8 9 101112
pattern[j] b baacbcbaachb

S(h=1{o, 1, 2, 6, 8)

S(2=1{0, 1, 6, 8} pl 1]1=2
S(=10, 1, 6} pl 2]=
S(H={0, 1, 6} pl 31=1
S(=10, 1, 6} pl 41=1
S(6)=1{0, 1} pl 51=1
s(=10, 1} pl 6]=1
S(8)=10, 1} pl 11=1
S(9= {0, 1} pl 81=1
S(10)= {0, 1} pl 9]=1
san=fo, 1} pl10]=
pli]=1

The following property will speed up the running
time.
Property 2.3
If max {j|jeS(¢)} =t for some ¢, then we have
S(t)=...=8(m—1) and p[t]=...=p[m—1]=
max {j|jeS(¢)}.
Proof. Obvious.

3. Implementation

Combining Property 2.1, 2.2 and 2.3, our algorithm
is constructed.

create the set S(1); t:=1;
while max {j|jeS(¢)} >t do begin
create the set S(f+1) and determine p[¢];
Dim—tl:=t+m—plt]; t:=t+1;
end;
Dim—t]:=t+m—max {j|jeS(t)};
for k:=t+1to m—1 do D[m—k]:
+1;

=Dim—k+1]

230

. max {ili=0 or
X[!]={

undefined

In our program, the set S(1) is represented by the ar-
ray X[1:m]. The element X[/j] (1=j=m) is defined as
above.

We note that X[m] corresponds to max {j|jeS(1)}.

Example. Let pattern[1:12]=bbaacbcbaacb.
J 1 23 45 6 7 8 9101112
pattern{/] b baacbc b aacb
X1 0 1 2 6 8

The process of creating the set S(1) is given as
follows.
k:=0;
for j:=1 to m—1 do begin
if pattern[j]=pattern[m] then begin X|[jl:=k;

k:=j; end;
end;
X{m]l:=k;

The process of creating the set S(¢+ 1) and determin-
ing p[t] is described as follows.

k:=m; I.=X[m]; p[t]:=0;
while />t do begin
if pattern[m —¢t]=pattern[/—¢] then begin
Xk):=1I; k:=lI,
end else begin
pltl:=max {p[?], !}
end;
L=X[;
end;
pltl:=max {p[¢], I};
Xlkl:=1;

We note that the array x[1:m] represents the set
S(¢+1) after the above process and X[m] corresponds
to max {jljeS(t+1)}.

Now we will estimate the average running time per
pattern of length m. We assume that ¢ possible
characters appear uniformly. The algorithm suggests
that the number of character comparisons in the pattern
is a good measure of the running time.

Let tO=min {¢|X[m]=t}. By the fact that |S(1)| =
ISQ)|=...=Z|Sm—1)| and t0<m—1, we can see
that the number of character comparisons is bounded
by

m+|SM]+1SQ)+. . . +(S¢0)|=m+|S1)|t0
=m+ S |(m-1).

Let the probability such that [S(1)|=k
(0=k=m—1) be denoted by Prob(|S(1)|=k). We

(i<j and pattern [i]=pattern [j])}

I. SEmBA

if pattern [j]=pattern [m].
if pattern [j]+#pattern [m].

have
m—1
Prob(]S(1)|=k)=(.)(l_l/q)m-k—l/qk

The average number of character comparisons A(g,
m) is derived as follows.

m=1
A(g, m)=m+ >, (m—1)kProb (|S(1)| =k)
k=1
J— —_ m_l _ m—2
=m+(m 1)[(.)(1 /@) ?/q

+2 ('"2_') (A=1/gy/q*+ -

-1
o= ("7) a-1/arie]

=m+(m—1Dm—1)1/g){1/g+(1—1/g)}"]
=m+(m~-1)/q

Thus we obtain the following theorem.
Theorem 1

If g possible characters appear uniformly, then the
average running time per pattern of length m of our
algorithm is O(m+m?/q).
We note that the average running time becomes linear
when m<gq.

Table 1 The average running time per pattern of length m under the
assumption that g possible characters appear uniformly.
(times in milliseconds)

Rytter’s Our

')
3

patterns

algorithm algorithm
3 4 16 0.37 0.25 0.66
2 5 32 0.50 0.31 0.62
2 6 64 0.56 0.40 0.72
2 7 128 0.62 0.46 0.75
2 8 256 0.69 0.53 0.76
2 9 512 0.79 0.61 0.77
2 10 1024 0.87 0.69 0.78
2 11 2048 0.94 0.76 0.81
2 12 4096 1.02 0.84 0.82
2 13 8192 1.10 0.91 0.83
2 14 16384 1.17 0.99 0.84
2 15 32768 1.24 1.05 0.84
2 16 65536 1.30 1.11 0.85
3 3 27 0.22 0.14 0.66
3 4 81 0.34 0.19 0.57
3 5 243 0.41 0.25 0.60
3 6 729 0.49 0.32 0.66
3 7 2187 0.56 0.38 0.67
3 8 6561 0.63 0.43 0.69
3 9 19683 0.70 0.49 0.70
4 3 64 0.21 0.12 0.57
4 4 256 0.32 0.17 0.54
4 5 1024 0.40 0.25 0.62
4 6 4096 0.46 0.30 0.64
4 7 16384 0.53 0.35 0.65

On the Preprocessing Algorithm Used in the Boyer-Moore Algorithm for String Searching 231

Table 2 The average running time per pattern of length m under the
assumption that g possible characters appear uniformly.
1000 patterns are generated. (times in milliseconds)

Rytter’s Our

q m patterns alg)grithm algorithm rate

8 4 1000 0.34 0.22 0.63

8 8 1000 0.55 0.35 0.64

8 16 1000 1.07 0.69 0.65

8 32 1000 2.08 1.33 0.64

8 64 1000 4.05 2.73 0.67
16 4 1000 0.29 0.16 0.56
16 8 1000 0.53 0.33 0.62
16 16 1000 1.02 0.72 0.70
16 32 1000 1.87 1.28 0.68
16 64 1000 3.92 2.70 0.69
32 4 1000 0.29 0.17 0.58
32 8 1000 0.52 0.33 0.63
32 16 1000 1.01 0.62 0.61
32 32 1000 1.93 1.24 0.64
32 64 1000 3.86 2.48 0.64
64 4 1000 0.30 0.17 0.58
64 8 1000 0.52 0.31 0.60
64 16 1000 1.03 0.69 0.66
64 32 1000 1.98 1.26 0.63
64 64 1000 3.85 2.42 0.62

4. Computer experiments

Computer experiments have been done and the

average running time per pattern of length m has been
measured under the assumption that ¢ possible
characters appear uniformly. All patterns of length m
are generated for g=2, 3, 4 and the results are shown in
Table 1. We have also generated 1000 patterns of length
m at random for g=8, 16, 32, 64. Since Rytter’s
algorithm is better than Noshita’s algorithm in the
average running time, Rytter’s algorithm and our
algorithm have been compared. The results are shown
in Table 2. These results indicate that our algorithm is
better than Rytter’s algorithm in the average running
time.

These algorithms are written in PASCAL and have
been executed on a MELCOM-COSMO 700 III.

Acknowledgement

The author would like to thank Prof. Nozaki for his
valuable advices and hearty encouragements.

References

1. BOYER, R. S. and MOORE, J. S. A fast string searching algorithm,
Comm. ACM, 20 (1977), 762-772.

2. KnNuTH, D. E., MORRIs, J. H. and PRATT, V. R. Fast pattern mat-
ching in strings, SIAM Journal on Computing, 6 (1977), 323-350.
3. RYTTER, W. A correct preprocessing algorithm for Boyer-Moore
string-searching, SIAM Journal on Computing, 9 (1980), 509-512.
4. NosHITA, K. Fundamental Algorithm, Information Science 10
(1983), Iwanami-Koza, Iwanami Shoten Publishers.

(Received August 16, 1985; revised November 25, 1986)

