The System FL,, , for Specification Analysis
and its Completeness Theorem

KEN HIROSE*, MAKOTO TAKAHASHI* and SHINICHI YAMADA™*

A formal system FL,,, is proposed to analyze the specification of concurrent programs.
The completeness theorem (soundness and completeness) for FL,,, is also proved.

1. Introduction

In [1] and [2], one of the authors and his colleagues
proposed a new specification technique called Process-
Data Representation (PDR).

PDR aim is to improve reliability and modifiability of
software systems, especially involving concurrent pro-
cessing, by giving a precise specification of their whole
computational processes.

In PDR, concurrent interactions between processes
and data are specified by describing the constraint condi-
tions imposed on them in the Forcing Logic (FL).

A formal system should be formulated not only to
provide a compact description of the system specifica-
tion but also to make it possible to derive certain useful
conclusions from the given specification. To fill this re-
quirement, we proposed a formal system in {3] as a tool
for analyzing the specification described in the Forcing
Logic and proved its soundness theorem.

In this paper, we present a formal system FL,, , by in-
troducing into the former system in [3] some modifica-
tions which facilitate its completeness proof. The for-
mal system FL,, , is delineated in Section 2 and the com-
pleteness theorem for FL,,, is proved in Section 3.

In brief, this completeness result implies that any pro-
position is (mechanically) deducible from a given (con-
sistent) specification in FL,,, if and only if it is true (in
the standard model of the specification).

In parallel with the modification and the com-
pleteness proof, several versions of automated theorem
provers (ATP) for FL,,, were also implemented in both
Prolog and micro-Prolog by making use of difference
reduction as its problem solving strategy [6, 7. Chap. 9],
part of which is described in [8]. In the appendix, sam-
ple specification and proof figure is shown for the din-
ing philosophers problem to illustrate the usage of
FL,, p.

In the following lines, for a set X, we denote the
power set of X by p(X), the cardinality of X by #X and
X—{¢} by X*.

*Waseda University

Journal of Information Processing, Vol. 9, No. 4, 1986

2. The formal system FL,, ,

In this section, we define the language L., and in-
ference rules for the formal system FL,,,.

2.1 Language L,
The language L,, . has as symbols the following.

2.1.1 Symbols
(1) Constant symbols,
Pis -« - 5 Pm (p-sort),
dy, ..., d, (d-sort).
(2) Function symbols,
Lede Lk (Fary, 0K, 10),
(’ <. :) (q'aryy ISQ)y
. ..,)) (rary, 0<r).
(3) Predicate symbols,
>, *y >, "/"y = .
Remarks

(1) Informally, constant symbols of p-sort denote
concurrent processes under consideration, and constant
symbols of d-sort denote data available to the pro-
cesses.

(2) Informally, {Xi, ..., XD« denotes a set of
the subsets of {Xi, ..., X} whose cardinality>k,
which means ‘‘at least k objects out of / objects
{X,...,X}”.[Xy,...,X]denotes a set of the sub-
sets of {Xi, ..., X)) whose cardinality<k, which
means ‘‘at most k objects out of / objects {X, ...,
X}, (X, ..., X,) denotes the set of objects desig-
nated by atomic terms (p-A-terms or d-A-terms), and
(Y1, . .., Y,)) denotes the set of objects designated by
p-B-terms or d-B-terms.

3) <X, ..., XDi»—Y means that the element
in <X\, . .., X« operates only on the element in Y,
[X1, . . ., Xk Y means that the element in Y can be
operated only by the element in [X, ..., X and
X = Y means that the elements in X operates on the
element in Y.

2.1.2 Terms
We inductively define the p-terms and d-terms as
follows:

The System FL,,, for Specification Analysis and its Completeness Theorgm 221

(i) pi, ..., pmarep-terms, and dy, . . ., d, are d-
terms;

@) IfS, ..., S are p-terms, then [S), ..., S
are<S,, ..., S)carep-terms, and if 7\, . . . , T,are d-
terms, then [T\, ..., T]y and <¢, ..., T are p-
terms.

Next, we define the p-A-terms, p-B-terms and p-C-
terms; and d-A-terms, d-B-terms and d-C-terms as
follows:

(iii) py, ..., pmarep-A-terms,andd,, ..., d,are
d-A-terms;
Givy If oy, ..., o, are p-A-terms, then <g), .. .,

opis a p-A-term, and if py, . . . , p,are d-A-terms, then
{pi,...,porisad-A-term.

(v) Ifa, ..., o are p-A-terms, then (6), ..., 0)
is a p-B-term, and if p,, . . ., p; are d-A-terms, then
(p1, - - ., p)is a d-B-term.

(vi) If (())is a 0-ary function symbol, then (())
is a p-C-term and a d-C-term.

(vii) If wy, ..., u are p-B-terms, then ((ui, . - -,
) is a p-C-term, and if 7, . . . , 7,are d-B-terms, then
«r, ..., r))is d-C-term.

Remarks

(1) Generally, p-terms and d-terms are used to
describe a specification. py, . . ., p, denote processes
and d,, . . ., d, denote data. {Si, . . . , S, reads “‘at
least k objects out of {Sy, ..., S} and [Sy, . .., Sl
reads ‘‘at most k objects out of {S,, ..., S}”.

(2) p-A-terms, p-B-terms and p-C-terms (d-A-
terms, d-B-terms and d-C-terms, respectively) are
mainly used in the proof procedure of FL,, .. p-A-terms
and d-A-terms are atomic terms. p-B-terms and d-B-
terms are the sequence of atomic terms denoting the set
of the sets denoted by p-A-terms (or d-A-terms). And p-
C-terms and d-C-terms are the sequence of p-B-terms
and d-B-terms, respectively.

2.1.3 Formulas

In the following we use S for p-terms, 7 for d-terms,
o for p-A-terms, p for d-A-terms, u for p-B-terms, r for
d-B-terms, « for p-C-terms and g for d-C-terms.

S§—7T, S§—T,
S=T, u+tr,
a—>1, pu—>pf,

a=f

are formulas.

Remarks

S>> T'reads ““the element in S operates only on the ele-
ment in T".

S— T reads ‘‘the element in T can be operated only by
the element in S”.

S = Treads ‘‘the element in S operates on the element
inT".

o —> 1, u—> B, and u—>1 are used in the proof pro-
cedure of FL,, ..

2.3 Canonical Interpretation
Let X be a set, X, . . ., X, be subsets of p(X) and
k<.
We define {Xi, .
follows:
Xy oo Xk= Vel IS (1, ..., 1), #I>k
and xeX; for every iel},
[Xh sy X/]k={Ui51X,'|]g [], ey 1), #ISk
and x,eX; for every iel}.

ey X[)k and [X|, ey X/]k as

We define the canonical interpretation ~ of p-term
and d-terms, and the canonical interpretation-of p-A-
terms, p-B-terms, and p-C-terms (and d-A-terms, d-B-
terms, and d-C-term, respectively) as follows:

(i) If a is a constant symbol, then d= {{a}] and
a={a}.

(") <SI; -/~\-—‘, Sl>k=<§|, ey S—j>k and [Si, N, S[]k

=8y, . . . , Sl The canonical interpretation ~ of d-
terms is similarly defined.

(i) <ov, ..., ex=U(@lI<i<l), (o, ..., a)
=(O’—|, L))a)and((ul) LRI v/-ll))={mﬁ LR ,/Tl}

The canonical interpretation of d-A-terms, d-B-terms
and d-C-terms are similarly defined.

2.4 Deducibility

If xXS{pi, ..., pul (¥SHd\, ..., d)), then we
denote by £() one of the p-A-terms (d-A-terms) which

—

satisfies §=x(J=y). We denote by a; a, the p-C-term

(s - - o ks i, o o, uD) Where ar=((ul, . . ., ub))
and c,=((4f, . . . , ud).
Ifu=(a, ..., a), then u’is the p-A-term <o, . . ., g

We denote by §,*---*S; one of the p-C-terms
which satisfies S;*- - - *§,=8¢ x - -- x§} and by [S,, . . .,
S)¢ one of the p-C-terms which satisfies
IS, ...,S8K=

UTS* S HI1<ji<p<- <j,<l, g<k}.
ﬂ:f\ﬂz, ©, T\ --+Tyand [T}, . .
defined. Let

n={S>—r,..

., T)){ are similarly

.y S T
and
L={Si—~Ti, ..., Si—Ti.

We say that S = T is deducible from I, and I (I,
Inye,,S=> T)if S = Tis provable from I, I>and a
formula[S,,. .., 8]’ = [T\, ..., T}’ bythe follow-
ing inference rules.

Remarks

When no confusion appears possible, we shall write

+ in place of .

222

2.5 Inference Rules

(A1)

K. HIROSE, M. TAKAHASHI and S. YAMADA

S—»T

0 0
(g1, -+ -, 067,01,

5 o), -

SO PG Pr)

where (o, - - -, 0x)«£S and there exists a geT such that 55, for every i<k and 7;92,79 for every j<I'.

(@, ", 0i, "0

s ak')_/_)(ph P s Py

Ty Pk)

(42)

where G,=a,, g,=0}, pi=p; and p;=p;.
SPH—T18, -, 8)>—TY

(UI, B a-k,)>—> T?n . *T%

(B)

where g; € S? for every i<k’ and S?>— T9(i<k’) are all
different formulas.

B2 U=z, -y Ty LT, T
=71, 0y Tieny Tivny 0, Tr))
©) SI>—>T9 .- S>> TY
S?" . ~*52'—’(p1, .. .,pk,)

where p; e T? for every i<k’ and S?>— T(i<k’) are
all different formulas.

(Cz) ((”l, oy Mis .!/‘lk'))-*ri ”U+T
((uh Tty Hi-1s Miv1s ‘,/lk'))—"!'
((”ly C oy My “uk))=>ﬂ!)ul_)(())
D
o) W, -0y Mim1s Hivry =5 M) = B
o = ((Tla T Tiy Tty Tk'))a (())—)1!
(D) a=> (11, """, Ti=1, Tit1, ***»)
a=f
(E) o
where @=a' and ,B=F.
Wy) = (11, -5 W)
E
(&) [l - uil =, -+, 2,

where /', k' >1.

a=f
[pido == [di]o
where a=(()) or f=(().
S=T
S=T

(E3)

(F)

where SC§’ and TCT".

3. Completeness Theorem

In this section, we prove the completeness theorem
for FL,,, after defining standard models.
3.1 Standard Model

Let X, Y be sets, u be a subset of P(X)x P(Y) and y
be a subset of Y. We define u*, m,(u), mau), m*(u),
n*,(u), and A(u, y) as follows:

u*={(x, Yeuly+oe},

(Uly '”spjl'y ...)0;9 "’,Uk')_/“’(/’h ”'rpjr‘y 4..“0;’ o

o Pk)
m(u)= {x|(x, y)eu for some y},

)= {y|(x,)eu for some x},

@ =10, ..., x) o, ..., xid =mi(u),
k=#m @)},

=, ...,)y, ..., v =ma(u),
k=#n(w)},

A(u, y)= U {x|(x, y)eu for some y'Dy}.

LetP={p,, ..., pul, D=1{d\, ..., d,) and u be a
nonempty subset of p(p(P)* x P(D)). We define the rela-
tion ul=® (u satisfies @) for every formula @ as
follows:
(1) uES>— Tif and only if
S*=¢ or
V¥ (x, y)eu[xeS implies ye T,
3(x, y)eu[xeS$ and yeT) and
V(x, »), (x', y')eulx, x’eSand y, y'eTimply
[[x=x"andy=ylory=¢ ory =4¢]]
(2) uES—»Tif and only if

VyeT* | A(u, y)#¢ implies A(u, y)e§].

3) uF(o,...,a)7(p\, ..., p)if and only if
W@,), . . ., @ POl
4 uF(oy, ..., 0)— Bif and only if

Yy, ... ePDY ¥ = (@1,), -
implies (y1, . . ., ¥)€EB].

(5) uFEa—>(pi, ..., p)if and only if

Vxi, ..., xep(P) [u*={(a, 1), - . .
implies (xi, . .

L] (a_kr yk)}

s (e P
., X)ER].
(6) ukFoa = gif and only if
m@*)=¢ or [n¥(u*)N ca#¢ and nFu*)NF+6).
(7) uES = Tif and only if
Um@*)eS and U ny(u*)eT.
Let
r={S>—r17,...,8—T
and
nL={S/>T|,...,S—~T/}.

u is said to be a (standard) model of I, and I if and

The System FL,,, for Specification Analysis and its Completeness Theorem 223

orlly ifulE 4 for every @el U3 and Y(x, Y)eudi<k[x-
€S; and yeT)]. We write I, I = & if every model of I
and 7, satisfies @.

3.2 A Proof of the Completeness Theorem

We say that I is normal if Vi<k[S; #¢ and ¢eT}
and Vi, j<k[i#j implies S} NS} =¢]. Also, we say
that Iy is good if I is normal and Vi, j<k[i#j implies
TrnT}=9¢l.

Remark
If I, is normal but not good, then let

rt={S>—KT, b, . . ., S>> KT bl

where by, . . . , by are new constant symbols of d-sort.
Then for every T, there is a d-term T* in L, .+ such
that I, NS = Tif and only if 'Y, RES = T*.
Moreover, if I is normal, then I'} is good. Hence, I,
IES = Tif and only if I'¥, N ik S = T*.
Lemma 1

Suppose that I} is normal.

@ Yu: a model of Il and I3[+ U n,(u*)] if and
only if Ny o
V(xl, ey Xk)G[S|]| XX [Sk]|v(y1, ey yk)
ef,x-~><7~'k[6=U{x,vIISiSk} and {llX,*d)}

= {ily#¢} imply 3j</AyeT;*IIC li|lx#}[J#4,
yeniylieJ}, UlxlieJ}¢S; and Vielilx;#¢}
—JIyCyill.

(i) In (i), we can replace 6+ Um(u*) by p+
Umyu*)and 6= U {x;|1<i<k} by p=U {y;|1<i<k}.
Proof. (i) (=) Suppose that the negation of the right
hand side holds, i.e., 3(x1, . . ., x)e[Si]i X - X [Si]y
H(y., ey _}’k)ET1 X oo X Tk[6'= U {X1|1£lgk} N {ilXi
*¢) = lily# ¢} and Vi<NyeT;*VIC {i|x# ¢} [J* o,
yEniylieJt and Vielilxi#o} —J[yEy]l imply
U {xlieJ}eS/.

Without loss of generality, we can assume that {i|x;
#o}=1{1,2,...,k’}. Pick xeS; for k' <i<k, and
let u={(x;, y)N<i<k}U{(x], DIk <i<k}. ukEn,
since I'| is normal. N

Suppose that 1<j</, yeT;"” and A(u, y)#¢, and
let J={ilySy). Then, JC {i|xi#¢} and J#¢, since
y#¢ and A(u, y)+o.

It is clear that yS N {y;lieJ}. Hence, by the assump-
tion, A(u, y)=U (xlySy} =U {xlieJ} eS. So uk=1.
Hence u is a model of I'y and I'; by the definition of u,
and Umu*)=U {x|1<i<k’}=U (x|1<i<k} =6.
But this contradicts our assumption that Vu: a model of
Iy and N[e# Um@u®)).

(=) Suppose that Ju: a model of It and N[6=
Um@™).

Without loss of generality, we can assume that
w*={(x, »), ..., (xe, »)) and (x;, y)eS;x T; for
every i<k’

Letx;=y,=¢ for k'<i<k. Then,
=U{x1<i<k’} =Unu*)=¢6 and
= lily:#e}. ~
Hence, by our assumption, 3</3yeT; JC {i|x# ¢}
£, ySn{ylies), UlxlicJ)¢S;” and Vie

U {xl1<i<k}
{ilx;# o}

{iix::#qb} —J{yZy]l. Therefore A(u, y)=U {x:|ieJ}
¢S, .
Since J#¢, A(u, y)*¢, u ¥~ S;—~T,. But this con-
tradicts that u is a model of I') and I'>. Therefore Vu: a
model of Iy and Nfo= Umu™)].

(ii) The proof of (ii) is similar to that of (i).
Remark

It is easy to show that if €S, then there is a S’ such
that §'=SN[S), .7, Sk So let Sr, be one of the p-
terms which satisfies S, =SN[S,, . 7=, S« for every S
such that ¢S, T, is defined similarly.
Lemma 2

Suppose that I, satisfies Vi<k[¢eT)], ¢€S$ and ¢eT.
I, =S~ Tif and only if I', =Sy, = T
Proof. (=) It follows easily from §,SS and TS T.
(=) Suppose that I, I''E=S = T. Let u be a model of
Iy and 1. Then, U n,(u*)eS, since ulES = T. On the
other hand, Umu*e[S;, .7, Sd« since ubr.
Hence Umu*)eSN[S, ., SJ«=3Sr. It is similarly
shown that U m,(u*)eTr,. Therefore

I, LES, = Tr.

Theorem (Completeness theorem).

Suppose that I'; is good.

I, +-S=>Tifandonlyif I, RES=T.
Proof (soundness).

It is enough to show that for every inference rule, if u
satisfies upper formulas of a rule and is a model of I',
and I3, then u satisfies a lower formulas of a rule.
(A)) Suppose that u = (@3, ..., a?, o1, . .., G)F
(07 T Ny T 7% %

Then u*={(6?, pD)1<j<I'} U (0, p) 11 KiK'}
By the conditions of (4)), there is a peT such that pSp;
for every i<k’ and p&p! for every j</'.

Hence A(u, p)=U la/l12izk'} =<a,, . . ., o OceS.
Therefore A(u, p)¢S.
But this contradicts that u[=S— T, since A(u, p)#¢.
(A;) Clear.
(B)) Suppose that u & (61, . . ., O)—> T3+ -+T%.
Then

I PO W= {1), -, @,)
and

Dir « ooy PRTI 2T =T x - x T).

Therefore 3i<k’[6:€S? and y£T9. But this con-
tradicts u F=S>— T?,

(B,) Clear.
(C}) Suppose that
U S xS —(p, ..., po).
Then
Ixi, .. xeep(P) W= {1, p1)s - - - (o, i)
and

Oy oo, X)ESTE 28 =80 x - - - x 9],

Therefore 3j</[x#£S°* and p,eT?). Then 3/ </[xeS;

224

and peT)), since u is a model of I, and I,. Hence
T?=T,and §?=S}, since I', is normal and pe T+ N T'#.
But this contradicts that x¢S?* and x.€S;.

(C;) Clear.

(D)) Suppose that u & (a1, . . . » Hicty fiss - -« 5 4))
= B, Let y;=(a, . . . ,0v). Sinceul=((uy, . . .\ 1tiy . . .,
ur)) = B, m@)#¢ and mentw*). Then Iy, ...,

yeePD)* [u*={(a1,), . . . , (Ox, Y¢)}]. But this con-
tradicts that ul=u;, —> (().

(D2) The proof is similar to that of (D)).

(E1), (E3) and (F) Clear.

(E2) Suppose that u }& [48, . . .
Then

Um@™)élud, .77, uflior Una(u®)é[zS, . 77, 2.

Hence Um(u*)#¢. Since

=1, ...,)

ubEWy) = (T, ...,)
and

m*)#¢, a¥@*)N (@, . . ., G #¢
and

N (T, ..., o) #e.

We have 3xi, ..., Xm, Vi, - .., YulCO, - ..y Xw)
ent@)N{m, ..., m) and (y, ..., yenfu*)
Nnim, ..., 7l
Therefore m(u*)=1{x;,, ..., xu and m@u*)=
{yly LR)yn'}-
Hence Umu*)=U {x|1<i<m’}e{/s, ., oullc

[, .77, ufliand Umau®)= U {yil1<i<n’} e[z}, . . .,
7¥],. But this is a contradiction.

(completeness)

Suppose that Iy, I =S = T.

Since I is normal, u={(x, ¢)|1<i<k, xS} is a
model of I'} and 1.

Hence ¢= Um(u*)eS and ¢= U ny(u*)eT.

Hence, by virtue of lemma 2, I, IES;, = T

We try to show that I}, I+ Sy, = Tr,. If we can show
it, then I, IS = T by the inference rule (F).

For xe[S,, .”. 7, Sl and ye[T,, .7, Til

let

Fx)={(o1, ..., onla, . .. » GnElSy, . . ., Sild,
x=U {o;|1<i<h} and h<k},
F(y)= {(pla e ey ph)l(pl; e e ey ph)e[T‘f’ se ey Tk]ly’

y=U{p|1<i<h} and h<k}.

Since I, L[S, .. ., S¥ = [Ty, ..., T, it is
enough to show that
n,nLh—@,...,o0)—()
and
L= D—(p, ..., ps)forevery(a, ..., s

€F(x) and (py, . . . , pA)EF(y) where x¢Sy, and y¢Tr,.
Suppose that x¢Sr, and (o, . . ., ox)eF(x). Without
loss of generality, we assume that eS; for every i<h.

K. HIROSE, M. TAKAHASHI and S. YAMADA

Let xi=y;=¢ for h<i<k and x;=g; for 1<i<h.
If there is an i< h such that T/ =¢, then by the rule (B))

S>—T,...,8>—T,
@, ...,0)—().

Hence we assume that 7" #¢ for every i<h.

Pick yeT} for 1<i<h. Then U {x|1<i<k}
=U x|1<i<h}=x=x" and {i|x;#¢} = {i|yi#).
Since I, ISy, => Ty, Vu: a model of I, and
Fz[Unl(u*)eSr,]. .
Therefore Yu: a model of I, and (U miu*)#xV].
Hence, by lemma 1, 3/<AyeT;* IS (ilx#} [J#¢,
yeni{nlies}, UlxlieJ}¢S;” and Vielilx,#¢)
—JyEyil.

Without loss of generality, we assume J= (1, 2, . . . s
m'}.

Then <&, ..., ZDw=UF|I<i<m'=U {xie])
¢S;. Also, JeT;*, <7, for 1<i<m’ and ¢ for
m'<i<h.

Hence, by the rules (4,) and (4,),

S;>»T;
Frt1s coes Xny R1s oooy B)P, cees Py Piseeny)

('fh T fh)—’L’(ﬁl’ t "ﬁh)
(&la Tty &h)+(ﬁl’ o 'sﬁy)'

Hence I'i, I;-(01, . . ., o) (P, . . ., J») for every
Dy oo y)eTEx - x T,
Therefore, by the rules (B,), (B,) and A), N, (o, . . .,
) —>(().
It is similarly proved that

N, o= D—, ...,
Appendix

(1) Problem

In the dining philosophers problem, five philosophers
phl, . .., phS5 are sitting at a round table and spend
their time eating and thinking. In the middle of the
table, there is a large, continually replenished bow! of
spaghetti, from which they can help themselves when
they are hungry. There are only five forks f1, . . . W fS
on the table, one between each philosopher’s place
(Figure). The spagetti however is so long and tangled
that every philosopher requires two forks to eat it, and,
furthermore, the only forks a philosopher can use are
those on his immediate right and his immediate left.
The problem is to find whether five philosophers can
cooperate with each other for continually eating and
thinking without a deadlock or starvation.

The System FL,,, for Specification Analysis and its Completeness Theorem 225

» / f4><\\ //;(15
&/
/ &
I s
=~
\\\ ;SE‘ fl
«\
i
T

Figure Dining Philosopher

(2) Formulation in FL,,,

When formulating the problem in FL,, five
philosophers phl, . . . , ph5 will represent the processes
concurrently using the data available to them, which are
five forks f1,. . .,f5. Hence, m=n=35,and phl, . . .,
ph5 are constant symbols of p-sort and fi, . . . , f5 are
constant symbols of d-sort. One of the constraint condi-
tions is that every philosopher is allowed to use only
forks on his immediate right and left. For instance, a
philosopher phl is allowed to use only two forks f1 and
f5. Hence, in all possible situations, at least one
philosopher phl uses at most a pair of fork f1 and f5,
which will be written in FLss as:

{ph1>>—[{f1, f5].

This constraint condition can be similarly written down
for each philosopher, totality of which forms the axiom
I,. Another constraint condition is that a fork between
each philosopher’s place can be used by both of the ad-
jacent philosophers. For instance, fork f1 can be used
by at most one of the two philosophers phl and ph2 in
all possible situations, which will be written in FLss as:

[phl, ph2],—=»<{f 1)

The totality of these constrains written for all forks
forms the axiom 7. In addition, it is an obvious
premise in the problem that at most five philosophers
use at most five pairs of forks in all possible situation.
This general premise is represented in FLss by the for-
mula:

[phl, . .., phSlY = Kf5, 1), . .., {f4, 5D,

which is generated and used within the proof procedure
of FL,, .. Under the axiom I'; and I;, we would like to
prove that at most two philosophers use the respective

pair of forks allowed to them in all possible situations,
which is written in FLs s as:

[phl’ L] ph5]2 = [<f5’fl>2, <f1,f2>2y LRI}
{Sf4, 522

If this formula is provable from the axiom Iy and I3,
then it is true, by our completeness theorem. In this
case, this problem has an affirmative solution and five
philosophers can continually keep eating and thinking.
(3) Specification in FL,,,
In summary, the specification of the dining
philosophers problem is described in FLss as follows:

PhI>>—=[KfS5, f D) . . . (P,
ph2>>—=>[Kf1, f20)i . . . (P),
I: <ph3>>—[Kf2, 3] . .. (P3),
<phad>—[{f3, A . . . (Ps),
<PhS> > [{f4, 5l . . . (Ps).
[phl, ph2],=»<{f 1), . . . (Q),
[ph2, ph3]i—=<{f2> . . . (O,
I3 [ph3, phdi=<{f3): .. . (Q),
[ph4, ph5]i—=<fa) . . . (Qu),
[phS, ph1li=»<{f5 . . . (Qs),

(4) Sample Proof
In the following we give a proof figure (also see [8])
which shows

{P\, Py, Py, Py, Ps), {Qh Q2 Os, Qs Qs} Fss
[ph1, ph2, ph3, ph4, ph5], =
<S5, 102, K F 1, 1202, S 2, £ 302, < f 3, /41, { 4, f $D3)a.
For the sake of simplicity, we denote d-A-terms
IS, D0 SN f 202, S 2, f302, <f3, f4D2, <S8, 52
by 1, 2, 13, 14, 15.

Let 1<k<S5and 1<i,iy, ..., ik <5.
We abbreviate some formulas as follws:

226

@i s k=(phiy, -

Wi "y ic=(phis,

0., -, ik=(phiy, -

& o W=W((phiy, - -

My =5 & =(() — (h, -~

,Phlk)+ (tils tT
*» phi) — (((thy,
s phi) — ()

*5 tix)
)]
5 PhI))) —> (tiy, - - -, tix)
T t’k)

K. HIROSE, M. TAKAHASHI and S. YAMADA

|phl, ---, phS|%s = [11, -+, t5]% 4,

lph1, ---, phS|% = 11, ---,

sty P 4

(D
[phl, - - -, ph51Y(((ph1, ph2, ph3, phS), - - -, (ph2, ph3, ph4, phS))) = (11, -+, 15]%

1) H H H
0123501245 01345 02345

(D))
[phl, -, phS]% = (11, -, 15)Y
Fig. 1
lpht, -, phs1Y <o [, -, 1514 by | b
[phl, o ,Phsly(((PhlyPhZ, ph4): (phl)phz) phs): Ty (ph3, ph4v phs))) hand [tl’ Ty t5];/ 01.2.4 61.2,5 03,4,5 (D)
2,
[phy, -, phSYY = [11, -+, 151y
Fig. 2
[phl, -, phSTY = [11, -, 151Y 2y
[phl, - phSlY = (11, 5] % oy PP i
) § i
[phl, -+, phSYY = [11, -, 1SV, 12, 13, £5), -+, (12, 13, 14, £5))) Mi235Mi2as Maas Hasaes Dy
2

[phl, ---, phSly == [11, -

Ty 15]3/ 'I1:z,3 ?11:2,4 m:z.s '11:3.4 t ”3:4.5

Fig. 3

D.
[hl, -, phSTY = 111, ---, 15 (P2
(Ey, F)
[phl, - - -, phS]Y = [0, ---,t5]))
Fig. 4
[o]]
Hows; 2 A
where 4,, 4,, A, are as follows 1 Sresia (Ax; Py, P, Py, Py, P ©
2
A O “4n R 12345 {EXY ’ (C)
: P..)
345,12 A, Py, Py, P, Py, Ps (B) M23.4,5
D123.45 V1,2,3,4,5 (B) 5 [0} ©)
62,345 ’ B3.4.12 Py, P, Py, P,
Q (A2) (&)
Ay 1 (A) pp ®1,234 €124 (€
@341, (A2) Py, P,, P;, P, (B) Mizsa
¢l,2,3,4, 1,2,3,4 (Bz)
61234 Remarks
) o In the proof figure, ——=(X) denotes the repeated ap-
4;: Sora (4) P, Py, P,) plications of rule X.
= (A) (G
123 P iz (C) Acknowledgement
1,2,3

and X\, 2, are also as follows;

The authors are grateful to Prof. N. Saito, Prof. N.
Doi and Prof. S. Takasu for their advice and comments
in completing this paper.

The System FL,, , for Specification Analysis and its Completeness Theorem

Reference

1. Hirosg, K., Saito, N., Do, N. et al. Process-data Representa-
tion, Proc. 3rd US-Japan Computer Conference, (1978), 225-230.
2. Hirosg, K., Saito, N., Dol, N. et al. Specification technique for
parallel processing; process-data representation, AFIPS, Conference
Proc., 50 (1981), 407-413.

3. Hiroskg, K. and TAKAHASHI, M. A Formal System for Specifica-
tion Analysis of Concurrent Programs, Publ. RIMS, Kyoto Univ., 19
(1983), 911-926.

4. CaMBELL, R. H. and HABERMANN, A. N. The Specification of
Process Synchronization by Path Expressions, Proc. of International
Symposium on Operating System, Lecture Note in Comp. Sci. 16, Spr-

227

inger Verlag, Berlin, (1974).

5. ASCHCROFT, E. and MANNA, Z. Formalization of Properties of
Parallel Programs, Stanford AI Memo, AIM-110 (1970).

6. CLARK, K. L. and McCaBg, F. G. micro-PROLOG: Programm-
ing in Logic, Prentice-Hall (1984).

7. Kowatski, R. A. Logic for Problem Solving, North-Holland
(1979).

8. HiRosE, K., TAKAHASHI, M. and YAMADA, S. The system FL,,,
for specification analysis and an automatic theorem prover for FL,, ,,
Bulletin of Center for Informatics, Waseda Univ., 3 (to appear).

(Received June 21, 1985; revised November 25, 1986)

