Flexible Semantic Networks
for Knowledge Representation

KEN’IcHI HANDA*, TETsUuYA HicucHI*, Akio Kokueu* and Tatsumi Furuya*

IXL is a knowledge representation language based on semantic networks. IXL is developed in project IX as a
language to describe all kinds of semantic network applications such as natural language processing and
knowledge base system.

Since the abstraction level of the semantic networks in IXL is rather low compared with other networks,
semantics of relations between concepts can be flexibly described. Two basic hierarchical relations (is_a and in-
stance_of) are provided for inheritance. Other general relations are divided into two categories (assertion and
property) and are expressed by a newly proposed network structure. This structure enables us to describe seman-
tics of relations exactly and to treat negative knowledge in a natural manner.

In IXL, the consistency of knowledge throughout the network is checked by determing whether two concepts
are exclusive of each other, and we can easily write knowledge bases which answer ‘true’’, ‘‘false”’, or “‘no
idea’’ for inquiries.

For representing procedural knowledge, we adopted a logic-like expression which seems close to human think-
ing.

IXL is now implemented on DEC-2060 with Prolog, but will run at a high speed on the parallel hardware

SMU which is also being developped in project IX.

1. Introduction

The semantic network model [Quillian 66] in
knowledge representation has been widely utilized in
such areas of artificial intelligence as natural language
processing, knowledge base, and human memory
models. As knowledge information processing comes
into practical use, applications using semantic network
representation are required to treat larger sizes of
semantic networks.

In order to describe and execute upscaled programs
of semantic network applications, two goals should be
satisfied.

The first is to provide a programming language which
can describe various kinds of semantic network applica-
tions. A knowledge base system, for instance, requires
as its subsystem a natural language interface, inference
engine, and knowledge acquisition system. A natural
language processing system also requires a background
knowledge base. Therefore providing a single program-
ming language which describe all these types of
knowledge processing is desirable for constructing in-
tegrated applications.

The second is to design parallel hardware which can
utilize the concurrency peculiar to such semantic net-
work processing as marker propagation [Fahlman 80,
Hillis 81].

In order to meet these goals, we are developing the IX

*Electrotechnical Laboratory 1-1-4, Umezono, Sakura-mura,
Niihari-gun, Ibaraki, Japan 305.

Journal of Information Processing, Vol. 10, No. 1, 1986

system (the pronunciation of “‘IX’’ is [iks] which stands
for the Japanese term for ‘‘semantic memory system’’).
The IX system comprises two subsystems. The first is
the programming language, IXL, and the second is the
massively parallel hardware, SMU (Semantic Memory
Unit). The objective of the IX system is to support all
the processes of semantic network information process-
ing in an integrated fashion: from the modelling and
description of the semantic network application with
IXL, to parallel execution of the IXL program with the
SMU.

IXL plays an important role in the development of
the IX system because the SMU is being designed as a
language-oriented system. Therefore, the architecture
of SMU includes some dedicated functions to execute
the IXL programs efficiently.

This paper describes the features of IXL in section 2,
detailed explanations in section 3 through 5, and a
typical example showing the descriptive power of IXL
in section 6. Further discussion and the current state of
the IX project are given in section 7.

2. The Features of IXL

There are many methods available to represent
knowledge in computer, such as production systems,
first order logic, frame structures, and semantic net-
works.

Besides its good suitability for the massively parallel
hardware [Higuchi 85], we chose a semantic network to
represent declarative knowledge for the following



14

reasons.

At first, the semantic network can be a common basic
expression of all kinds of declarative (structural)
knowledge. For instance, since a working memory cell
in a production system can be regarded as a triplet of
two nodes and a link between them, the knowledge
represented by the production system can also be
represented by the semantic network.

The frame structure is the most widely used method
to represent structural knowledge because of its
tractability and readability. But when we want to ex-
press more detailed knowledge such as a meaning of a
slot itself or a backward relation from a slot value to its
belonging frame, we get into difficulty. To overcome
this problem, we must consider the frame, its slot, and
the slot value equally as concepts whose semantics must
be represented. In other words, we must decompose the
frame structure into more basic knowledge units. This
is an approach we intend to use with the semantic net-
work. From the standpoint of the semantic network,
the frame structure is just a syntax sugar to express
several knowledge compactly.

In addition, it appears that the structure of the seman-
tic network may even correspond to human intuition.

There also exists another kind of knowledge, pro-
cedural knowledge. To represent such knowledge, we
have adopted logic-like expressions. Although other
methods such as production rule, Pascal-like expres-
sions, and functional expressions have advantages, we
think logic is the most powerful and basic method to
represent all such knowledge as rules, procedures, and
functions.

We combine these two methods smoothly as de-
scribed in the following section.

With semantic networks, however, some problems re-
main to be solved. The first is ambiguity in the seman-
tics of links. In early works on semantic networks,
various meanings were attached to links based only on
the intuition of system developers. It is rather difficult
for the user of such a system to program the meanings
of links themselves. Woods provided important sugges-
tions about the semantics of links [Woods 75].

The second problem is the confusion about the levels
of concepts represented by the nodes in the networks
[Brachman 78]. Since humans generally have several
abstraction levels of concepts, it is difficult to define
which level of concepts systems should support for pro-
grammers wanting to describe many levels of
knowledge.

The third problem is the difficulty in describing pro-
cedural knowledge with semantic networks. With PSN
[Levesque 77], a procedure is assigned to a node and the
procedure is activated when the nodes are accessed.
However, there exists a gap between human knowledge
and representation using PSN because the procedure
itself is written in a conventional Pascal-like program.
With KRYPTON [Brachman 83], a logic-like expres-
sion of procedural knowledge is adopted. KRYPTON is

K. Hanpa, T. HicucHi, A. Kokusu and T. FURUYA

divided into network and procedue areas, so the connec-
tion between both areas is not clear, though the expres-
sion seems much closer to human thinking than PSN.

The first two problems originate from the gap be-
tween the simple structure of networks and the seman-
tics mapped on it. The difficulty is in defining how to
map semantics onto the simple data structure which con-
sists of nodes and links to represent concepts possessed
by humans.

With IXL, a small set of basic links are provided
whose level is semantically rather low compared with
other networks, and the network is considered only as a
data structure with some inheritance rules. This idea
results in the ability to organize the network more freely
and to describe the relation between concepts more ex-
actly.

The major features of IXL are:

(1) Two basic hierarchical relations (‘‘is_a’’ and ‘‘in-
stance_of’’), with simple inheritance rules, are sup-
ported in IXL. Other general relations are divided into
two categories (assertion and property) corresponding
to these hierarchical relations.

(2) Links are used as very primitive relations (in-
cluding ‘‘is_a’’ and ‘‘instance_of’’) whose semantics
are precisely defined in IXL. The other relational con-
cepts (such as ‘‘husband_of’’) are represented with
nodes, and the semantics of those concepts are defined
by the programmer in the network structure and pro-
cedures. Negative relations can also be treated naturally
in the network.

(3) A logic-like expression (using Prolog) can be at-
tached to each node, which enables us to have a descrip-
tion of procedural knowledge related to each concept.
(4) The consistency of knowledge throughout the net-
work is kept in IXL by checking whether two concepts
are exclusive of each other.

(5) IXL is implemented with Prolog. All IXL com-
mands in Fig. 1 are executed in the Prolog environment.

Although the treatment of the network at a low level
results in a strict semantics of networks, it causes a

To connect nodes by a link:

Link C(is_a, X, Y).

Link Cinstance_of,X,Y).

link(a_kind.of, (X,Y,..),2).

link(source,R,X).

Llink (destination,R,Y).

linkCrule, X, (¢
asstR X YGMGL)) - L,

Meanings of the variables
X, Y:concept node
R: relational node

isa(LYOM, W3-, ...

instance (X, Y(M( L)) :-....)), M(true/false) :
To construct a relatlon: the relation is trve/false
assertion(R,X,Y(,M)). L: list of used rules
(9%.)]

proper!y(ﬂ.i.\'l

To inquire about a link
IsadX,Y(,M(, L)),
instance(X,Y(,N(,L))).
ako (XL, Y( M L)),
source (R, X(M(,L))).
destination(R,Y(,M{,L))).

To Inquire about a relation.

asst(R,X,Y(M(, L)),
prop(R, X, Y(,M(,L))).

Fig. 1 Command list of IXL.



Flexible Semantic Networks for Knowledge Representation

semantic gap between the knowledge represented in
IXL and human thinking. For instance, such notions as
““A man has hands’’ and ‘‘John has hands’’ have the
same structure in natural language. But their precise
meanings are that every instance of a concept ‘“man”’
has an instance of ‘‘hand’’ and that a concept ‘‘John”’
itself has an instance of ‘‘hand’’. The network of IXL
must have the latter kind of the two different structures.

In our approach, however, this gap should be reduc-
ed by application programs written in IXL, not by the
network itself. IXL is developped just as a language to
describe such applications. The details are given in the
following sections.

3. Hierarchical Relation

One of the advantages of semantic networks is that
they can directly represent hierarchical relationships be-
tween concepts. This leads to the notion of inheritance,
which means that the property of a concept (class) is in-
herited by its subconcept (subclass).

However, it is impossible for a system to support all
hierarchy types and corresponding inheritance rules
because of their infinite number in the real world.

In the IXL system, only ‘‘instance_of’’ and “‘is_a”’
are supported as primitive links for hierarchy descrip-
tion. Other complex inheritance are to be described in
the form of logical rules and attached to relational con-
cepts. This mechanism of procedure addition is de-
scribed in section 5.

“Instance_of”’ is a link to connect two concepts in
the case that one (i.e. ‘‘X’’) is instanciation or realiza-
tion of the other (i.e. “‘Y”’). In other words, X is in a
lower abstraction level than Y. We call X the ¢‘in-
stance’’ in regard to Y, and Y the ‘‘class’’ concerning
X.

There also exist a hierarchy in the same abstraction
level, and ‘‘is_a’’ is used to connect two concepts in the
case that one (i.e. ““XX”’) is a specialization of the other
(i.e. ““YY”’) or the latter is a generalization of the
former. Concepts such as XX/YY are called subclass/
superclass. But this definition is rather ambiguous. The
strict definition of ‘‘is_a’’ is:

“XXis_aYY” o

‘‘every instance of XX is also an instance of YY”’
This leads to:

“XXis_a YY” and “‘YY is_a ZZ”
—“XXis_a ZZ”

Fig. 2 shows an example of these hierarchies. (2-1) and
(2-2) are declaration of hierarchy. (2-3) asks what is a
subclass of ‘‘animal’’, and the system replays ‘‘man’’
by binding it with variable X. (2-4) asks a instance of
““animal’’ and the system replies ‘‘smith’’,

IXL has also a facility to show the exclusiveness of
concepts. For example, to show that ‘‘man’’ and

15

Ix1>link(is.a, man, animal). (2-1}
ves :—lmes with underline are typed in

ix1>link (instance_of,smith,man). (2-2)
yes

Ix1>isa(X,animal)., (2-3)
isa(man,aninal)
yes

Ix1>instance (X, animal). (2-4)
instance (smith,animal)
yes

ix1>1link(a_kind_of, (man, woman), human).

instance_of
yes

Ix1>instance(smith, woman, M). (2-6)

instance (smith,woman, false)
yes

Fig. 2 Hierarchical relation.

“human’’ are both subconcept of ‘‘human’’ but ex-
clusive of each other, we can say:

link (a_kind_of, [man, woman], human).

The exact meaning of ‘exclusiveness’ in IXL is that if
several concepts are exclusive of each other, every in-
stance of one of them can never be an instance of the
other ones. (2-6) of Fig. 2 shows that the system detects
the inconsistency with exclusiveness and says ‘‘Mr.
Smith is not an instance of woman’’

All IXL commands for query have an optional argu-
ment to show whether a reply is positive (true) or
negative (false), and the failure of commands shows
that the system knows nothing, indicating an answer of
neither true nor false, about the question.

4. Relation

4.1 Assertion and Property

General relations (A concept X has a relationshp R
with Y in the direction X—Y) are expressed by the net-
work structure, which consist of the three nodes X, R,
and Y combined by links. In this case, X is called the
source of this relation, Y the destination, and R the rela-
tional concept. It is characteristic of IXL that these
general relations are divided into the two categories of
‘“assertion’’ and ‘‘property’’

An assertion is a relation in which the source and
destination themselves are concerned. A property is a
relation in which instances of the source and the destina-
tion are concerned.

For instance, the notion ‘‘An airplane is equipped
with wings’’ means that every instance of airplane has
an instance of wings. So this relation is a property
‘‘airplane equipped_with wings’’. On the other hand,
“The airplane was invented by the Wright brothers”
means that the very concept ‘‘airplane’’, not an in-
stance of it, was invented by the Wright brothers, and
this is an assertion ‘‘airplane invented_by
wright_brothers’’. A lack of such a distinction resulted
in misinterpretations in early networks.

A difference between assertion and property also ap-
pears in inheritance rules. An assertion is never in-



16

Ixl>assertion(inveanted_by,alrplane,wright_brothars). (3-1)
{:T>propur!y(uqu1ppud-'lth.al!planl.tln(s). 3-2)
{::>link(ls-a.propullor-plane.alrplane). 3-3)
{;i>llnk(ln:tancl_o(.thl_spirit_of_s(_loul:,prepollcr-plznl). 3-4
{::>assnrllon(possassod-by.thc_splrl&-ol-sl_louls.Ilndberxh). 3-5
{;t>prop(uqulpped_lllh propeller_plane,wings). ¢3-6)
lx:)prop(equlppld-'llh the.spirit_of_st_louis,wings). (3-7)

lxl>a:sl(uqulppod_llth the_spirit_of_st_louls,wings). (3-8)
yes

equipped_with

property

is.a invented_by

assertion

propeller_plane
N\
ins tance_of

4

P by
[the_spirit_of_st_louis 2ssertion lindbergh

Fig. 3 Assertion and property.

herited unless a procedure forces it. A property is in-
herited through an “‘is_a”’ link, which means some
properties true with one concept also hold true with its
subclass. A property is inherited through an ‘‘in-
stance_of”’ link in a different way. If a class has some
properties with destinations, every instance of the class
has the same assertions with those destinations. So we
can say that properties are inherited by its instance as
assertions.

Fig. 3 is an example to show the distinction of asser-
tion and property. A network is constructed by (3-1)
through (3-5). (3-6) asks if instances of propeller plane,
a subclass of airplane, has wings. On the other hand,
3-7 asks the same question about
‘“the_spirit_of_st_louis’’ and the answer ‘fail’ means
that the system knows nothing about that. It is because
there’s no such knowledge, but that
“‘the_spirit_of_st_louis”’ itself has instance of wings (3-
8).

In some cases, we want to say that something has an
assertion with an instance of something (i.e. Robin,
which is a specific instance of a bird, has wings). Of
course,

property (equipped-with, bird, wings).
link (instance_of, robin, bird).

shows the information, but we can do that without men-
tioning bird as follows:

assertion (equipped_with, robin, X),
link (instance_of, X, wings).

In this case, variable X becomes an internal node
without name.

K. HaNDA, T. HiGUcHI, A. KokuBu and T. FURUYA

instance_ol Instance.of
PSN expression

source

IXL expression

Ix1>assertion (husband_of, John,mary). (4-1)
yes

Ix1>1ink (source,husband_of, husband). (4-2)
yes

Ix1>1ink (is_a,husband, man). (4-3)

yes

Ix1>link(destination, husband_of,wife). (4-4)
yos

Ix1>link¢is_a,wife, woman). (4-5)
yes

Fig. 4 Structure of relation (assertion).

When we describe a knowledge in IXL, we must con-
sider the deep semantics of the knowledge. Namely, the
difference of hierarchy (‘‘is_a’’ or ‘‘instance_of’’), and
the difference of relation (assertion or property). These
differences do not appear explicitly in natural
languages.

4.2 Network Structure of Relation

To describe the semantics of a relational concept
itself, the concept must be represented by nodes (not by
links as in Fig. 3). Therefore some structure is required
to combine concepts which concern a relation. Though
the structure proposed here is similar to that in PSN, its
meaning is more strict.

IXL introduces ‘‘source’’ and ‘‘destination’’ links,
which connect a relational concept with concepts which
necessarily concern the relation. Fig. 4 is an example of
an assertion which also shows the difference between
IXL and PSN. (4-1) creates the structure which consists
of 6 numbered nodes. At this time, node 1, 3, and §
have no names. (4-2) and (4-4) name the nodes 1 and 3
“‘husband’’ and ‘‘wife’’ respectively. Node 5 is the key
node of this structure because the system knows the rela-
tion between John and Mary through this node.

The structure of the IXL network shows that every in-
stance of ‘‘husband’’ requires a relation ‘‘husband_of”’
to some instance of ‘‘wife’’. So, only if Mr. Smith is an
instance of husband, we know that Mr. Smith surely
has assertional relationship ‘‘husband_of’’ with some
instance of ‘‘wife’’. Such knowledge is difficult to repre-
sent by the ‘““domain’’ and ‘‘range’’ links of PSN.

Property can be represented in a similar structure by
using ‘‘is_a’’ link instead of ‘‘instance_of’’ link.

These structures also make it possible to represent
negative relations in a simple way. To treat negative rela-
tions, we introduce ‘‘not_isa’’ and ‘‘not_instanceof”’
and use them as shown in Fig. 5. (5-3) declares that
penguin doesn’t have relation ‘‘can” with ““fly’’. In
other words, a penguin can’t fly. This declaration
brings on the warning from the system that (5-3) goes
against the relation inferred from (5-1) and (5-2). **;”’
forces the system to accept the new knowledge. This



Flexible Semantic Networks for Knowledge Representation

ixi>property(can,bird,fiy). (-1
yes
ixt>link(is_a,penguin,bird). (5-2)
yes

ixi>link(instance_of,pen_A,penguin).

yes

ix|>property(can,penguin,fly,false). (5-3)

It's inconsistent because,
Cisa(penguin,bird),
prop(can,bird,fly,true)]

accepted —torcing

ixl>asst(can,pen_A,fly,M).

asst(can,pen_A,fly,false).

Fig. 5 Structure of property and negation.

type of knowledge is very useful in knowledge base
description and inquiry.

5. Procedure Addition

A procedure in knowledge representation can be
assumed to be a rule to infer the existence of a relation
between some concepts. From this point of view, it is
natural to express the procedure in a logic-like form. In
IXL, Prolog is adopted to express procedural
knowledge.

It is not known how procedural knowledge is stored
in the human brain, but at least it can be said that pro-
cedural knowledge stored without structure is not prac-
tical. If procedural knowledge is described monotonous-
ly, we can’t tell when to use it to infer some relation.
Fortunately, since concepts are represented by nodes in
a structured network, we only have to add a procedure
to a node which specifically concerns the relation.

The method for the procedure addition is shown
below. A “‘rule’’ link from a concept node indicates a
procedural node which:consists of several Prolog Horn
clauses such as:

asst (R, X, Y,M,L):-...,

prop R, X, Y, M, L):-. ..,
isa(X, Y,M,L):-...,and
instance (X, Y, M, L):—. . .,

where R is the relational node, X is the source of the
relation, Y is the destination of the relation, M is a
true/false flag to indicate whether the inference is cor-
rect/incorrect, and L is a list of inference rules used in
this procedure. The body of those clauses consists of
any prolog term at all and IXL commands. Each Horn
clause is activated when the corresponding inquiry oc-
curs.

The priority in determining which inferred relation is
true is as follows:
1) A relation described directly in the network.
2) A relation inferred from an inheritance rule.
3) A relation inferred from a procedure.

3.1) Inferred from a procedure added to the source
of a relation.

3.2) Inferred from a procedure added to a rela-
tional node.

17

3.3) Inferred from a procedure added to the destina-
tion of a relation.

If the inference fails at a priority level, it advances to
the next lower priority level.

This method makes it possible to represent inference
rules accompanying a relational concept. Fig. 6 is an ex-
ample of relational concept ‘‘brother_of”’. (6-1) is a
step to declare that A is a brother of C if A is a brother
of B and B is a brother of C. The query (6-2) sequential-
ly returns answers one by one by using this procedural
knowledge.

The procedure in Fig. 6 indicates a recursive call with
no terminate conditions (i.e. asst(. .) appears in the
clause whose head is asst(. .)). Although, in general,
such a Prolog program doesn’t stop when no solution is
found, IXL can check this kind of infinite loop and stop
and fail such a predicate call. IXL owes this to the fact
that all variables in IXL commands can be bound only
with names of nodes on semantic network.

6. Description of Semantics of Relational Concept

Although knowledge representation languages pro-
posed so far have respective advantages in expressing
semantics of such concepts as bird, man, or desk, they
do not have sufficient power to describe semantics of
such relational concepts as color_is, husband_of, etc.

The advantage of IXL is that all the procedural
knowledge to infer some relation is activated only when
required by adding such knowledge to a proper con-
cept. We don’t have to describe the knowledge either
too specifically or too generally.

In this section, how the inference rule of IXL works
with procedural knowledge is described along with an
example about the concept ‘‘husband_of”’. The goal of
the program in Fig. 7 is to infer that Mary is a wife of
John only from the knowledge that John is a husband
of Mary.

Required knowledge for this inference is:

(1) “husband_of”’ is an inverse relation of
“wife_of”’.

(2) If R is an inverse of RR and Y has a relation RR
with X, X has a relation R with Y.

(3) The relational concept ‘‘inverse_of”’ is a subclass
of ‘“‘symmetric_relation’’.

(4) If R is a symmetric relation and Y has a relation R

ixl>linkCrule,brother_of, (¢

asst true Hid
asst®,X,Z, true,L1),asst(R,Z, ¥, true, L2))). (6-1)

yes
ixl>assertion(brother_of,paul, john).
ixl>assertion(brother_of, john,kenny).
ixl>assertion(brother_of,kenny, tom).
ixl>asst(brolher—of,paul, Y, N, ). (6-2)
asst{brother_of,paul, John, true,
(Cbrother_of,paul, john))) ;
asst(brother_of,paul,kenny, true,
((brother_of,paul, john),
(brother_of, john,kanny})) ;
asst(brother_of,paul, tom, true,
({brother_of,paul, john),
((brother_of, John,kenny),
(brother_of,kenny, tom)))) ;

no

Fig. 6 Procedure addition.



18

Cmtricore i >—rate—] PP ®LLIL -
prop®, ¥, X, M, L.
astRX YN, U= i

prop(inverse_of,R, R, true, D,
asstQR, Y, X, M, V).

IxL>property(inverse_of,husband of,wifeof). C-1)
ixl>source (inverse_of, S,
Link(destination, inverseof,S),
Link(ruls, S, CGasst®, X, Y, M, U,V):-
prop(inversaof,R,FR, true, ), asst ®R, Y, X,M,))). (-2
ixL>Link (is_a, Inverse_of, symetric_relation). (-3
1x1>Link Crule, symmetr ic_ralatlen, (
Prop® X, Y, M, := prop R Y. X M, L)), Q-4
ixL>assertion Gusband.st, john,mary). 7-5)
ixl>asst (wife_ot,mary, jobn,M,L0. T-6)
asst(vife_of,mary, john, true,
{prop(inverse_ol,husband_of, wife_ol),
isalnverse_of,symoetric.relation),
prop (inverse_ol, wifeof,husband o £),
assthusband_of, John, mary))
IxL>property Cinverse.of, rightol, left.ol). G-
Ixl>assertion(right of,block.A,bleck B). (7-8)
Ixl>asst(leftof,block B, X.
asstCleftoof,block B,block &  (7-9)

Fig. 7 Semantics of relational concepts.

with X, X also has the relation R with Y.

This knowledge corresponds to each statement of the
IXL program. (1) is regarded as an assertion because
every instance relation of ‘‘husband_of”’ has an inverse
relation which is an instance of ‘‘wife_of’’, and is
declared as (7-1).

The procedure representing (2) must be activated
when a query about a relation, an inverse relation of
which exists, occured. So the procedure is added to the
node indicated from ‘‘inverse_of’’ by source and
destination link so as to be inherited to every subclass
of the node which surely have some inverse relation of
it.

(3) is a simple subclass/superclass hierarchy, and (4)
is expressed as a procedure to be activated on a query
about ‘‘symmetric_relation”’.

After this background knowledge is entered and con-
structed as a semantic network within the system, the
declaration of (7-5) induces the objective inference of
(7-6). First the system searches the network and fails.
Next it searches for a procedure added to ‘‘john’’,
“mary’’, or ‘‘husband_of”’, and finds the rule of (7-2)
inherited to ‘‘husband_of”’. The procedure is called
and the body predicates are executed as follows:

prop (inverse_of, wife_of, RR, true, U),

asst (RR, john, mary, true, V).

On the call of the first predicate, the system searches the
network and fails again because there’s only property
(inverse_of, husband_of, wife_of). Then a procedure

about ‘‘wife_of’’ or ‘‘inverse_of’’ is searched and (7-4)
is found. The call for this procedure terminate suc-

K. HaNDA, T. HiGucHl, A. Kokusu and T. Furuya

cessfully and return ‘‘husband_of”’, the inverse relation
“wife_of”’, to variable RR. The next predicate of the
body of (7-2) is then executed with instanciated RR and
terminated successfully, and the initial call of (7-6) also
terminates successfully with L which has a list of used
rules.

The remarkable thing with this example is that all the
knowledge is represented at an appropriately general
level. For instance, it is of course possible to have the
same inference only through the below knowledge
added to “‘wife_of”’:

(5) IfY is a husband of X, X is a wife of Y.

But, there are many other relations which have similar
natures as (5), and it is too troublesome to add such a
rule to all of them. In the above example, however, the
simple declaration of (7-7) about ‘right_of’’ and
““left_of’’ makes it possible for the system to reply as
(7-9) from the assertion (7-8).

7. Discussion and Conclusion

In this paper, a new approach to the usage of seman-
tic networks was described and the knowledge represen-
tation language IXL was proposed.

The network itself does not attempt to force a reduc-
tion in the semantic gap between the simple structure of
the network and natural language in human thinking,
but rather is organized at a low abstraction level. Since
programmers can operate the network freely just as a
data structure, they can describe semantics of relational
concepts themselves in detail. This is because IXL is
designed to describe semantic network applications.
The applications are what reduce the gap mentioned
above.

The multiple use of the knowledge once added is an
especially important faculty of knowledge representa-
tion languages. It can be said that the number of
different responses induced from one input is the
criterion of such languages or systems. This require-
ment depends on how generally programmers can con-
struct knowledge.

In order to do so, we must, first, consider what is the
basic element of the knowledge. Before entering some
knowledge, it must be sufficiently considered whether
or not the knowledge can be easily inferred from other
elemental knowledge, and whether or not a more
general concept holds such a knowledge.

We believe that this method to construct a knowledge
base gains in importance hereafter in knowledge
representation, and we hope IXL will be a useful tool to
meet the needs for this consideration.

All of the IX projects are now proceeding in parallel,
on the hardware of SMU [Higuchi 85], on IXL, on the
graphical user interface of IXL, and on the application
program written in IXL. This program is a knowledge
base for French wines.

Since IXL is now implemented, temporarily, with
Prolog on DEC-2060, the memory size and the execu-




Flexible Semantic Networks for Knowledge Representation

tion speed are not sufficient for large practical applica-
tion programs. This lower speed is mainly due to the
process that checks the exclusiveness of concepts.
However, this process has high and simple parallelism
potentially, and the SMU will surely solve this problem.

The approach of SMU is to map the semantic net-
work directly onto the collections of processing
elements. Execution of all IXL query commands (i.e.
isa, prop, and so on) may be performed within the in-
struction cycles proportional to the depth of the net-
work (i.e. the link counts from the top-most class to its
instance) even in the case of large networks [Higuchi 85].
This means that we do not have to care about a size of a
network and a sequence of creating a network any more
for efficiency. So, we can concentrate on the crucial
thing, describing precise knowledge.

Problems still exist with IXL such as how to treat
sets, quantification, and grouping of knowledge. These
are problems not only with IXL but with any other
knowledge representing languages. Further research is

19
required on these subjects.

References

[Brachman 78] BRACHMAN, R. J. On the Epistemological Status of
Semantic Networks, In ‘‘Associative Networks’’ (Findler ed),
Academic Press, New York, 3-50.

[Brachman 83] BRrRAcHMAN, R. J., FikEs, R. E. and LEVESQUE, H. J.
Krypton: A Functional Approach to Knowledge Representation,
Computer 16, 10 (1983), 67-74.

[Fahlman 80] FAHLMAN, S. E. Design sketch for a million-element
NETL machine, Proc. of First Annual National Conf. on Al (August
1980).

[Higuchi 85] HicucHI, T. A Semantic Network Language Machine,
Proc. of Euromicro ’85.

[Hillis 81] HiLuis, G. E. ““The connection machine,’’ TR-646, Cam-
bridge, Mass. MIT Al Lab.

[Levesque 77] LEVESQUE, H. J. ‘A Procedural Approach to Seman-
tic Networks,”” Technical Report, 105, Department of Computer
Science, Univ. of Toronto.

[Quillian 66] QuiLLIAN, M. R. ‘‘Semantic Memory,”’ Report AF-
CRL-66-189, BBN, Cambridge, Mass., (1966).

[Woods 75] Woobs, W. A. What’s in a link? Foundations for
semantic networks, In Representation and Understanding (Bobrow
and Collins eds), Academic Press, New York 35-82.

(Received December 13, 1985; revised December 11, 1986)



