Invited Paper

Data Length Independent Real Number
Representation Based on
Double Exponential Cut

Hozumi Hamapa®

A new internal representation is proposed for real numbers. It has been named URR for Universal Represen-
tation of Real numbers. This approach is based on a bisection method which is applied to real number intervals.
With this method, the point of division increases or decreases in a double exponential manner in the global

range.

The main characteristics of the method are as follows. First, overflow/underflow does not, in practice, occur.
Second, since the data format does not depend on the length but on the value of the data, a transformation
operation is virtually not needed between systems of long and short data. Finally, only one bit of resolution is
lost compared with the fixed point form. In addition, arithmetic operations are slightly complicated compared
with conventional representation, but they present no special difficulties.

This new method is thus the most suitable internal form as an interface not only between computers but also
between computers and digital systems which deal with real numbers or physical (scalar) values.

1. Introduction

Some important shortcomings in the floating point
form of internal representation for real values in com-
puters have been pointed out. For instance, overflows
and underflows cause problems for programmers. In ad-
dition, because of the variety of data format standards,
there is no compatibility between computers having
differing data formats.

W. Kahan and J. Palmer[3] have proposed one for-
mat as an IEEE standard to avoid the latter problem.
However, their format does not conclusively solve the
first problem.

R. Morris[2] has proposed a system which ensures
data precision by shortening the length of the exponent
part when the absolute value of the exponent is small.
S. Matsui and M. Iri[5] have extended this concept.
They proposed a system whereby overflow/underflow
does not occur in practice. Their method extends the ex-
ponent to the entire data word, if necessary, using an ad-
ditional field that specifies the length of the exponent
part. The method has its significant merits, but the con-
version from one type of data to another is quite com-
plicated if the lengths are different. This paper gives an
improved description of a new system called URR(for
Universal Representation of Real numbers), originally
reported in[6], which is free from all the drawbacks de-
scribed above.

*Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo
185, Japan.

Journal of Information Processing, Vol. 10, No. 1, 1986

2. Motivation

Consider a program in Pascal, which is supposed to
calculate the absolute value of a complex number. Sup-
pose that type identifier complex is defined as follows:

type complex=record re, im:real end.
A first cut might be:

function absolute (z: complex):real;

begin absolute: =sqrt(sqr(z.re) +sqr(z.im)) end.

However, this program is unacceptable in conven-
tional computers, because an overflow or underflow
may occur. Thus, for example, if the real part z.re of z,
is the order of magnitude 10*, the square of z.re
overflows in IBM S/360[4] or equivalent, even though
the result can be represented. To prevent an overflow,
the program must be modified as follows:

function absolute (z: complex):real;

begin if abs(z.re)>abs(z.im)

then absolute: =abs(z.re)*sqrt(1 +sqr(z.im/z.re))
else absolute: =abs(z.im)*sqrt(1+sqr(z.re/z.im))
end.

This program is, even at the expense of the
undesirable divisions, still unacceptable because either
z.im/z.re, z.re/z.im, or their square might underflow.
One acceptable program is as follows:

function absolute(z: complex):real;

const ¢c=4096;
var b: Boolean; x, y: real;
begin if abs(z.re) >abs(z.im)
then begin x: =abs(z.re); y: =abs(z.im) end
else begin x: =abs(z.im); y: =abs(z.re) end;

if x<1 then b:=x<cxy else b:=x/c<y;
if b then absolute: =x#*sqrt(1 +sqr(y/x))
else absolute: =x end.

The constant ¢ in this program is a special number
such that, if x/y is greater than c, the 1 +sqr(y/x) can
not be distinguished from 1 in single-precision floating-
point representation.

In conventional computers, the program must be this
complicated. In contrast, the first simple program
would be acceptable, if an overflow/underflow-free
computer existed. Programming would become easier if
we could use such a computer.

3. Design Criteria

In a system of the representation of real numbers, the
following three conditions appears to be mandatory:
—1It should be quite easy to convert from the exponent

and mantissa as binary numbers to this form, and

vice versa. This condition means that complicated
means, such as logarithmic functions, should not be
used.

—Overflows and underflows should rarely, if at all, oc-
cur.

—Format specifications shoul not depend on the data
length.

Additionally, the following three conditions are
desirable:

—The format should be as ‘‘natural’’ as possible. Ar-
bitrary arrangements should be avoided.

—Every bit pattern should correspond to a different
value.

—The order of data in this format should be the same
as the order in the fixed point form.

4. Formal Definition

The following notations and procedures are provided
for definition of URR. An arbitrary bit string, S cor-
responds to the semi-closed real number interval. That
is,

S: {xla=x<b}.

If U(S) is an arbitrary value in the interval corre-
sponding to bit string S, the following relationship
holds,

asU(S)<b.

Let SO denote a bit string S followed by a ‘0’ bit.
Likewise, S1 is a bit string S followed by a ¢‘1”’ bit. The
interval is then divided by a third value, ¢, which is de-
termined by the form of S and the value of a and of b.
Using ¢, we have:

a=U(S0)<c and c=USI)<Db.

Let 0* and 1* denote a concatenation of k *“0”’ bits
and k ‘“1”’ bits, respectively. Intervals are then cut by
the following four steps.

H. HAMADA

(a) Rough cut
First, these relationships arise:
—oo=U(1)<0 and
0=U0)< +oo.
Here, the equality and the inequality to the infinite
terms are given to assure formal uniformity. If these

intervals are partitioned at —1 and 1, then, the
following relationships can be derived.

—=U10)< -1,
—-1=U(11)<0,
0=U(00)<1 and
1=SU@01)< + oo,
Moreover, if these intervals are further partitioned at
—2, —0.5, 0.5 and 2, then the following relation-
ships occur.
—0o=U((100)< -2,
—2=U10H< —1,
—1=2U110)< —0.5,
=-0.5=U111)<0,
0=U(000)<0.5,
0.5=U(001)<1,
1=U(010)<2 and
22U(011)< + oo,
In these eight relationships, the procedure progresses
to step(b) for those in which the 2nd bit is equal to
the 3rd bit(counting from left to right). Otherwise, it
proceeds directly to an equal-difference cut(step(d)).
(b) Double-exponential cut
Let p*(m) and p~(m) denote 2*" and 27", respec-
tively. If m =0, the interval is partitioned recursively,
as follows.
—ZU(10"*H)< —p*(m) at —p*t(m+1),
—-p~(M=2UN1"H<K0 at —p~(m+1),

OS U0)< +p~(m) at +p~(m+1)
and
+pH (M= UO1")< + o at +p*(m+1).

Then, the following relationships are arrived at,
where the run of Os or 1s is broken from the 2nd bit to
the right.
=p*(m+1)=UA0")< —p*(m),
—-p - (M=EUALI™0)< —p~(m+1),
+p~(m+1)=U00"*21)< +p~(m) and
+pt(M)SUEI™0)< +pt(m+1).
(c) Equal-ratio cut
The following cut is performed m times in the above

case. If the relationship is < U(S)< b, then each in-
terval is divided at avb/a. The following relation-

Data Length Independent Real Number Representation Based on Double Exponential Cut 3

ships are then obtained:
as=U(SO)<avb/a and avb/azxU(S1)<b.

(d) Equal-difference cut

The following cut is performed an arbitrary number
of times. Each interval is divided at (¢+5)/2 under
the same conditions as above. The following relation-
ships are consequently obtained:

asU(S0)<(a+b)/2 and (a+b)/2=US1)<b.

Since these processes show the generating rule for a
bit string, they do not necessarily present the entire pro-
cess of cutting. It is permissible to stop cutting when the
desired bit string is arrived at. In addition, since reduc-
tion of the interval is performed by a non-fixed of cuts,
it is obvious that U(S0) at k— o converges to the lower
limit of the coresponding interval. This is denoted by
V(S). That is, if the relationship is a< U(S)<b, then

V(S)=ll(iﬂr‘r,1° U(S0h=a.

For example the representation of 37 using this
method is as follows.
—rough cut

22U)< + o,
—double-exponential cut
4=U(0111)< + oo,
16=U01111)< + oo,
16=U(011110)< 256,
—equal-ratio cut
16=U(0111100)< 64,
32=U(01111001)< 64,

—equal-difference cut

32 U(011110010)< 48,
325 U(0111100100)< 40,
36< U(01111001001)< 40,
36 U(011110010010)< 38,
37 U(0111100100101)< 38.

Consequently, ¥ (0111100100101) is equal to 37.
5. Conventional Explanation

The format defined above can be understood more
conventionally in terms of the exponent and the mantis-
sa parts.

(@) The sign bit

The first bit corresponds to the sign of the number in

the first step of the rough cut. Therefore, the first bit

is considered to be a sign bit.

(b) Mantissa part

An equal-difference cut starts with the interval for

which the ratio of the limits equals 2. The bit string

for this process is equal to the bit string in which the

left-most redundant bit is removed from the bit string
generated by the mantissa value. Thus, the bit string
generated by the equal-difference cut may be con-
sidered to be the mantissa part.

(c) Exponent part

It is assumed that the exponent part is to the right of
the sign bit and to the left of the mantissa part. This
is that part of the bit string obtained from the last
two steps of the rough cut, the double-exponential
cut, and the equal-ratio cut. The exponent part is a
variable length. If only the rough cut takes place, the
exponent part will be 2 bits long. Otherwise, it is
2m+ 3 bits long. If the value x is positive, the relation-
ship between the range of the value, the binary form
of the exponent value, e, and the bit pattern of the ex-
ponent part are as follows:

m
P m+1D)=x<p (m) 1—I104—% 0"+215%

P~ @Q)=x<p=(1) 111—110% 0001%

p~()=x<p~(0) 111—1110 001
p (0)=x<1 111—1111 01

1=x<p*(0) 000—0000 10
PHO)=x<p*(1) 000-0001 110

pr(H=x<p*(Q2) 000-001* 1110«

m m
prm)=x<p*(m+1) 0—01%—% 17+20f—%.

Furthermore, the mantissa value, f, can be expressed
as:

—2=f<—1, 1= f<2.
6. Not-A-Number

Consider 0, +0, o or * oo as not-a-number. For n
bits per word, the following two are special cases:

V(00"~)=0 and

V(10")= — oo,
The values represented by neighboring cyclic bit pat-
terns are as follows:

V1")= —p~(n-3),

V(00 21)=+p~(n—3),

V(O1"21)=+p*(n—3) and

V(or)y=—-p*(n-3).

With every system, if should be determined whether
to give special meaning to these bit patterns or not.

4

However, when the patterns are used as quantities for
computation, it is convenient for them to be —0, +0,
+o0 and — oo, respectively. For this reason, infinity is
redefined without using a sign as:

V(10") =oo.

The +0 and * oo are symbols for values in the direction
of 0 or infinity. They are representations of conven-
tional values that replace an underflow or overflow.
However, due to the magnitude in this case, these
values virtually do not occur. Note that, p*(29), which
represents +oo for a 32-bit data length, has the power
value of 161,614,249, whereas the power value would
be 39 in the IEEE standard(4].

7. Evaluation of Errors

Here, characteristics obtained directly from the
representation rule will be evaluated through applica-
tion of the URR method to a fixed data length word.
The system of this paper was compared with several
typical applications of 64-bit data. (Note that a 64-bit
data length is typical with numerical computations)
With limited length data, it is impossible to represent all
the real values. Errors can occur since real values which
bit patterns exactly represent are discrete. The error is
the difference between the value intended for the
representation, and the value corresponding to the bit
pattern. This error is evaluated where the value cor-
responds to the mid-point between two discrete points.

-52

* \\\\\\“-‘\ \\\\ NN \\\\\\\\\\t\\\\\\\;\\\\\\\‘\:\\\\\
* \\ ~, ~ N,
NNAAANAN SEERNENNNKN\N
. A= N . " O
E“ N\\\ N
tixed point
) N
N\ s IBM $/360
\ “\ IEEB
N \\ URR
-64
2-16 2-12 278 P 20 24 28 212 916

= -32 1BM S/360 o
o / (=]
=] -36 {221 IEEE =}

[==]

) -40 O URR O
o = [=]
[=] _a4 i@ =]

a .t.\l (e}
o -4849 =]

e aaid 10°1°° 107 —6¢ 10 10'%° 1619900
N N " s ~ N

265536 2—4096 2-256 2-16 271 20 51 216 2256 54096 ,65536

Fig.2 Br over wide range.

H. HamMADA

Relative error characteristics for several methods are
shown in Figure 1. Both axes are logarithmic. Here, at a
range of —2=x<2, there are errors when an IBM S/
360[4] is used, and with the fixed point form. This
shows that URR has less precisions in only three cases
when compared with the fixed point form. Moreover,
the loss of precision is only 1 bit. Fig. 1 can be
simplified. The slanted lines standing at the same level
can be replaced by the squares which include these lines.

Next, the horizontal axis can be replaced by a double
logarithmic scale so as to be able to observe neighbors
in infinite and infinitesimal regions. Such a case is
shown in Fig. 2. This figure also shows the following
three characteristics:

—Region A is a neighbor of 1, and URR is superior
to the conventional method in regard to precision.

—In region B, URR is not superior.

—In region C, URR can represent real values, but the
conventional method cannot.

8. Elementary Operations

For URR, the elementary operations below should be
provided. Using a software simulator, it has been
verified that these operations are appropriate.
—Changing the sign and obtaining the absolute value
—Addition, subtraction, multiplication and division
—Extracting the exponent value and operation of this

item
—Conversion from/to integer type data
—Conversion from/to a decimal value.

The following are specific to this method and its
elementary operations. Mathematical elementary func-
tions and the more complicated operations are not ex-
plained.

(i) Changing the sign and obtaining the absolute
value

Becausé URR uses 2’s complement representation for
negative values, the operation for changing the sign is
slightly complicated compared with the one using a sign
and magnitude. However, because the relation of
representation between the original data and its
negative is in 2’s complement as an integer value, chang-
ing the sign can then be performed using the operation
for changing the sign of an integer. Obtaining the ab-
solute value is performed using the operation for chang-
ing the sign, if the given value is negative.

(ii) Addition, subtraction, multiplication and divi-
sion

Unfortunately, a method to directly operate with
URR data has not yet been found. The exponent part is
variable length, so the operation can be simplified by
clearly separating the mantissa part. Supposing a data
length of n bits, storages holding exponent and man-
tissa must both be n—1 bits long if no information is
to be lost. This means that 2 words must be provided to
separate exponent and mantissa values contained in one
word. The method for separating URR data into expo-

Data Length Independent Real Number Representation Based on Double Exponential Cut 5

nent and mantissa is as follows. If the leftmost 3 bits are
110, 101, 010 or 001,

that is, the 2nd and 3rd bits are different, separation
may be done specifically. In all other cases, the border
of the exponent and the mantissa part is determined by
counting the run of 0’s or 1’s from the 2nd bit to the
right. When the count is n, the exponent part is 2n—1
bits from the 2nd bit to the right. Because the conven-
tional floating point operation does not require this pro-
cess, the operation speed of this separation is an impor-
tant consideration.

The operation for the separated exponent and man-
tissa is performed in a conventional way. The result also
consists of the separated exponent and mantissa, which
must then be combined into URR form. This process is
also slightly complicated compared with the conven-
tional floating point operation. At first, the mantissa
value is normalized and the exponent value is adjusted.
If the value of the exponent is equal to 0 or — 1, the com-
bining process may be done specifically. But for the
other cases, the number of exponent bits is counted,
which is done by finding the transition point, 0to 1 or 1
to 0, from the sign bit to the right. In this case, a
negative integer is expressed by 2’s complement; this
needs a similar process as in the case of the system with
a sign and magnitude. For either the separating or com-
bining process, the position of the transition from 0 to 1
or 1 to 0, must be determined; it is hoped that special
hardware can be provided for performing this deter-
mination.

When the operand has a special value such as 0 or in-
finity, these separating/combining processes can be
omitted by pre-examining for such a value. Moreover,
even when the given value is none of these, if it is ex-
treme, for instance, far from the exponent value, it can
be considered that these processes can also be ommit-
ted.

(iii) Extracting and operating on the exponent value

It is recommended by the IEEE standard regarding
floating point representation that a function logb
should be provided. This function returns the value n
satisfying

2= xf <2m!

by calling logb (x). In the case of IEEE representation
which belongs to the system of sign and magnitude, the
relation is as above. Thus, in the case of URR, the same
function should be fundamentaly provided.

The exponent value is obtained by this function logb,
while the mantissa value is obtained by the function
scalb, which is described in the following paragraph.
Because the mantissa value is obtained simultaneously
by hardware with the exponent value, it is recommend-
ed that the mantissa value also be returned in a specified
register as x. This is described as follows in Pascal.

function logb (var x: real):integer;

Another function scalb which is recommended by the
IEEE standard is useful, and should also be provided.
Function call scalb(x, —n) returns the value in URR
form, but depending on some conditions, the fixed
point form may be required. In such case, we can use
the fact that if the value x is in either interval

0.25= x| =1,

the bit patterns are completely the same between the
URR form and fixed point representation. In order for
the exponent value to become a round number at large
exponent values, the function must return the integral
value and the mantissa value such that

0.5< x| =1.

As the result, the exponent integer which the function
returns satisfies the relation

277 x| =20

(iv) Conversion from/to integer type data

The standard method for separating the exponent
and mantissa will use the function logb described
above, in which the mantissa is converted to an integer
value by bit shifting. In addition, there is a simplified
method for some situations. An example is given here
for the case of a 64-bit data length. A positive value m,
whose decimal point is understood to be located at the
right-end of its URR representation, is in the range of

205 m <25,
If a number x satisfies the condition
—2¥=x<2%,
when a constant ¢ is equal to 2 +2%, the relation
20 x+c<2M

holds, so the decimal point of x+c is always located at
the right-end of its representation. In this case, the left-
most 15 bits are,

0111111110101 at x=0, and

0111111110100 at x<0.
Because the URR representation of ¢ is

01111111101010---0,

the following algorithm is obtained:

(a) add cis URR form to x

(b) subtract ¢ as an integer from this result.

This algorithm is correct if —2%=<x<2%.

The method to convert from integer n to URR is the
reverse of the above.

(a) add c as an integer to n

(b) subtract ¢ in URR form from this result.

Thus, this conversion method is valid only if the in-
teger to be converted can be expressed within 50 bits. If
not, conversion should be done in accordance with the
standard method. This simplified method can also be
effectively performed in the conventional representa-

6

tion.

Hence, URR does not present any disadvantages in
this regard.

(v) Conversion from/to a decimal value

Practically speaking, it is impossible to store the
values of 10 to all powers such as the conventional
method does, because the number of integers to be rais-
ed to 10 is by far too many to construct an internal
table.

In the case of conversion from decimal to URR, the
exponentiation operation is employed as usual. That is,
by providing the table of 10?, only necessary factors are
multiplied. The value of 10 to an arbitrary power is ob-
tained by this method. As the number of multiplica-
tions increases, the error increases; however, the result
is so distant from 1 that the length of the mantissa is
shorter in this case, which it is not actually disadvan-
tageous.

Using another method, the exponent value can be
evaluated directly without a table. In this case, the
number is normalized within 0.5 and 2 so as to adjust
the range. Although the program becomes more com-
plex, the error becomes smaller than the previous
method. The capability of choosing either the simple
method or the small-error method is a key feature of
URR.

In the case of conversion from URR to decimal, the
conversion process is almost the same as above. The
numbers to be provided are the exponent and mantissa
value of 2% as decimal instead of 10*. In addition, nor-
malizing the mantissa and adjusting the exponent
should be performed for every multiplication. For out-
putting decimal numbers for a fixed width format, it
should be noted that because of the characteristics of
URR, it is appropriate for a fewer number of digits to
be output for the mantissa when a greater number of
digits are output for the exponent.

In any case, there are no special difficulties with these
conversion processes.

9. Conclusion

The URR method described here satisfies all the
design criteria raised in Chapter 3. Incorporating these

H. HAMADA

criteria, URR has eight major characteristics:

—It is quite easy to convert from an exponent and a
mantissa in binary to this form, and vice versa.

—Overflows/underflows do not occur in practice.

—Specifications do not depend on data length.

—No fixed arrangements are needed regarding format.

—In terms of fixed length data, every bit pattern cor-
responds to a different value.

—Data order is the same as the fixed point form.

—Absolute error is at most only 1 bit worse than the
fixed point form.

—By simply extending data length, arbitrary real values
can be infinitely approximated.

Moreover, it has become clear that arithmetic opera-
tions are slightly complicated compared with conven-
tional representation, but there are no special
difficulties.

We have also tested this method by numerical com-
putation using a trial processer coupled with a personal
computer. Results showed a reasonable level of error in
estimating the length of the mantissa[1], which is depen-
dent on the value.

Acknowledgements

The author wishes to thank Profs. Sin Hitotumatu of
the University of Kyoto and Katuya Nakasima of
Waseda University for their fruitful suggestions, and
Dr. Yasutsugu Takeda, General Manager of the Central
Research Laboratory, Hitachi Ltd., for his support of
our research activities.

References

1. WILKINSON, J. H. Rounding Errors in Algebraic Processes, Pren-
tice-Hall, Englewood Cliffs, NJ (1963).

2. Morris, R. Tapered Floating Point: A New Floating-Point
Representation. IEEE Trans. Comput., C-20, 6, June 1971, 1578~
1579.

3. KAHAN, W. and PALMER, Jr. On a Proposed Floating-Point Stan-
dard, ACM SIGNUM Newsl. Special Issue, (Oct. 1979), 13-21.

4. IBM: IBM System/370 Principles of Operation, GA22-7000-
8(Oct. 1981).

5. Martsul, S. and IR, M. An Overflow/Underflow-Free Floating-
Point Representation of Numbers, J. Inf. Process., 4, (Nov. 1983),
123-133.

6. HaMADA, H. Data Length Independent Real Number Representa-
tion Based on Double Exponential Cut 11, Trans. IPS Japan, 24, 2,
(Mar. 1983) 149-156 {in Japanese].

(Received October 1, 1986; revised February 3, 1987)

