Implementation of Prolog Database System

SHU-MIN KUo,* Yukio KANEDA** and SADAO MAEKAWA**

A predicate logic programming language system that can be used both as a problem-solver and as a relational
database system is implemented on NEC PC-9801F MS/DOS system in C. With this system, the relational
database system functions are built in the Prolog language system. Therefore relational database query
statements can be simply embedded in the Prolog program in the first order predicate logic formula. Interpreter
approach, backtracking and unification are operated on IDB (Intensional DataBase) goals. While set operations
are applied on EDB (Extensional DataBase) goals and system output predicates. Thus variables may be bound
by a single term or a set of terms. At each node of a proof tree, the binding environments are placed on the
variable stack for single terms and on the table stack for sets. The table stack contains some temporary binding
tables in which each column represents a set of terms for a bound variable. The binding tables are generated at
each EDB goal call and registered in the database dictionary. Once backtracking occurs the table stack is pop-
ped and the binding tables are dropped from the database dictionary. The variable stack resides in main
memory while the table stack resides in secondary memory. In executing a goal statement the search is based on

a simple left-to-right and depth-first strategy.

1. Introduction

It has been recognized that the relation between
predicate logic and relational databases is very close {1,
2]. Current implementations of predicate logic language
such as Prolog assume that all general rules and facts
reside in primary memory. However, the memory
capacity is limit. It is impossible to place a large volume
of facts in main memory. On the other hand, current im-
plementations of relational database system provide op-
timal operations for very large databases but lack in-
ference ability. Therefore, connecting predicate logic
language with relational database becomes an impor-
tant theme. Two approaches to this interface have been
discussed by Chakravarthy [3]-—the compiled approach
and the interpretive approach. In the compiled ap-
proach the deductive portion is separate from the
database portion. One can apply general rules until all
goal statements consist of relations which are base
tables in the relational database then transmit to a
RDBMS (Relational DataBase Management System) to
obtain the answers. Implementations with a compiled
approach have also been represented by Li [4] and by
Yokota [S]. In the interpretive approach the set-
oriented approach is introduced. The set operations are
applied on each node of the search tree. Variables are
bound by sets. The binding environments are placed on
tables.

Both approaches above assume that general rules are

*Division of System Science, Graduate School of Science and
Technology, Kobe University, Rokkodai, Nada, Kobe 657 Japan.

**Department of Systems Engineering, Faculty of Engineering,
Kobe University, Rokkodai, Nada, Kobe 657 Japan.

Journal of Information Processing, Vol. 10, No. 2, 1987

not recursive and the objective focuses on database
retrieval. Thus some efforts [5] must be made on recur-
sive cases and on the combination of database query
statements and a logic program.

In this paper a system which combines the Prolog
language system and the relational database system is
represented. This system is implemented on NEC PC-
9801F MS/DOS system in C. The relational database
functions are built in the Prolog language system.
Therefore, relational database query statements can be
elegantly embedded in the Prolog program in the first
order predicate logic formula. By interpretive ap-
proach, backtracking and unification are operated on
user defined IDB (intensional database) goals while set
operations are applied on EDB (extensional database)
goals and system output predicates.

2. The Architecture of the Prolog Database System

The architecture of the Prolog database system con-
sists of four principal components—the Prolog inter-
preter, the Prolog-DBMS interface, the RDBMS and
the database dictionary. (Fig. 1)

The Intensional Database contains general rules and
exceptions in horn clauses. Once a goal statement is ex-
ecuted it will be loaded into main memory throughout
the execution time.

The Extensional Database (abbreviated as database)
contains only facts in tables. It always resides in the
secondary memory. A table is loaded into main
memory only when it is needed for current operation.
Once the operation is finished the memory space for this
table is immediately free for other operations.

82

H goal H
\ statement ;
+ 1
e 4ommmmm + T b4
H ! Prolog R] [ntensional;
iData-1iInterpreteri «---- | Database 1

ibase +--------=-- +
H {Prolog-DBMS!
iDict-i Interface !

. 7
i Extensional/
\ Database

>

Fig. 1 The architecture of Prolog database system.

The Prolog interpreter performs the deduction of a
goal statement and separates IDB goals from EDB
goals. When an EDB goal or an output predicate is en-
countered it passes the control to the Prolog-DBMS in-
terface.

The Prolog-DBMS interface generates set operation
commands to the RDBMS and enables the RDBMS.

The RDBMS performs the set operation and pro-
duces the result in the table stack which is one of the bind-
ing environments of variables then returns control to
the Prolog-DBMS interface. The Prolog-DBMS inter-
face checks whether the result is empty then returns suc-
cess or failure to the Prolog interpreter.

The Database Dictionary provides extensional
database information and acts as a bridge among the
three components above.

3. The Usage of the Prolog Database System

In addition to except, the well-known pure Prolog
language, the relational database language is also
represented in predicate logic. In this system we unify
the data description language and data manipulation
language. Some additional built-in predicates are
necessary for organizing a database.

The predicate ‘‘db__init’’ is defined to create a new
database. It requires a database name as its single argu-
ment.

db__init(database__name).

The predicate ‘‘invoke” enables the system to load
the indicated database dictionary into main memory.
The indicated database name is required as its single
argument.

invoke(database__name).

The predicate ‘‘define”’ defines a table in the current-
ly invoked database. Two arguments are required—a
table name and the number of columns of the table.
Differring from the conventional way it need not define
attribute name, data type and data length for each col-
umn. Instead of the attribute name, the column number
is used to recognize the data field by the set operation

SHU-MIN Kuo, Y. KANEDA and S. MAEKAWA

command. Furthermore the system classifies data types
automatically so that a structure may be matched in pat-
tern.

define(table__name, no.__of__columns).

The predicate ‘‘input’’ enables the system to accept
data from a terminal in batch and store them to the in-
dicated table. The indicated table name is required as its
single argument.

input(table__name).

The predicate ‘‘drop’’ causes the indicated table to be
erased from the current database. Its single argument is
a table name which has been defined by the ‘‘define”’
predicate.

drop(table__name).

As to the database retrieval language, it is well-
known that set operations can be represented in PRO-
LOG easily [4]. The operator ‘‘union”’ is equivalent to
the disjunction of goals. The ‘‘intersection,’’ ‘‘Carte-
sian product’’ and ‘‘join’’ operators can be expressed
by the conjunction of goals. The ‘‘projection’’ operator
is equivalent to the single goal. The ‘‘selection’
operator can be represented by an EDB goal with some
logic expressions as its conditions. The ‘‘difference’’
operator is equivalent to the ‘‘not’’ predicate. For exam-
ple, suppose p is a table then p(X, Y) represents that
table p has two columns. Both columns have their do-
mains, say X and Y respectively. Thus the difference of
table p(X, Y) minus table g(X, Y) can be represented
as:

ans(X, Y):—p(X, Y), not(q(X, Y)).

and table (X, Y, A, B) divided by table s(4, B) may be
represented as:

anS(X, Y):—V(X, Y, —_ !—)’ n0t(r(X’ Y, —_ ,—))
s(A4, B), not(r(X, Y, A, B))).

To update a database, the predicate ‘‘insert’’ and the
predicate ‘‘delete’”’ are provided. The formats are

insert(assertion).
delete(assertion).

The single argument is an assertion which consists of an
EDB predicate with its arguments. Both predicates can
handle a set of tuples which are represented in the bind-
ing environment. Thus we can save the result in a new
table, named r(X, Y), after the join of table p(X, Z)
and table g(Z, Y). The expression is shown below.

?— define(r, 2), p(X, Z), q(Z, Y), insert(r(X, Y)).

Predicate logic can also be used to express integrity
and security constraints. Both are not discussed at this
stage. In the following example we will reveal how easy
it is to use the system.

Let’s consider a family system. The lineage is drawn

Implementation of Prolog Database System

(john, mary)
(bob, "nancy) (tom, lucy?
(albert, sarah) daniel

Jerry
Fig. 2 The lineage.

as Fig. 2. A pair closed in a parentheses represents a cou-
ple. Names with underline represent children. The
database ‘‘family’’ includes two tables—table ‘‘father”’
and table ‘““mother.” By the Prolog database system,
we may create the database ‘‘family’’ and define some
general rules as below.

7— db__
YES
?— invoke(family).

init(family). /* create database
“family”’

/+ load the database
dictionary ‘‘family”’

YES into main memory

?— define(father, 2). /* define table ‘‘father’’

with two columns

YES in the database
“family”’
?— input(father). /* cause data input for

table ‘‘father”’
ACCEPT DATA READY, NO. OF COLUMNS=2

0: (john, bob). /» john is bob’s father
1: (john, lucy). and so on

2: (bob, sarah).

3: (tom, daniel).

4: (albert, jerry).

5:

YES /+ data have been stored

in table “‘father”’
/* define table ‘““mother’’
with two columns
in the database
‘“family”’
/+ cause data input for
table ‘‘mother”’
ACCEPT DATA READY, NO. OF COLUMNS=2
0: (mary, bob). /* mary is bob’s mother

7— define(mother, 2).
YES

?7— input(mother).

1: (mary, lucy). and so on
2: (nancy, sarah).

3: (lucy, daniel).
4:
5

(sarah, jerry).

YES

/+ data have been stored
in table ‘‘mother”’
?7— [user]. /+ transfer mode to

user for defining
general rules

/= if X is Z’s father
and Y is Z’s mother
then X and Y are
a couple

| couple(X, Y):—
father(X, Z),
mother(Y, Z).

| parent(X, Y):— /[
father(X, Y);
mother(X, Y).

| offspring(X, Y, 1):— /=
parent(Y, X).

| offspring(X, Y, N):— /*
parent(Y, Z),
offspring(X, Z, M),
Nis M+1.

|
USER CONSULTED

?— couple(X, Y). /*

{(X, Y)} = {(john, mary),
(john, mary),
(bob, nancy),
(tom, lucy),

83

if X is Y’s father

or X is Y’s mother
then X is Y’s parent
if Y is X’s parent
then X is Y’s first
generation offspring.
if Y is Z’s parent,
X is Z’s Mth generation
offspring and N is
M+1then Xis Y’s
Nth generation
offspring

this query causes the
join operation of
table ‘‘father’’ and
table ““mother”’

(albert, sarah)}

YES
more?(y/n)y
NO
?7— offspring /+ fine john’s Nth
(X, john, N). generation offsprings
{(X, N)} = {(bob, 1),
(lucy, 1))
YES
more?(y/n)y
{(X, N)} = {(sarah, 2)}
YES
more?(y/n)y
{(X, N)} = {(daniel, 2)}
YES
more?(y/n)y
{(x, M)} = {(jerry, 3)}
YES
more?(y/n)y
NO

4. The Implementation

4.1 The Data Structure

In the Prolog database system, a term may be an in-
teger, an atom, a variable, or a structure. The data for-
mat for a term is shown as below.

The tag represents the data type and the value
represents an integer value or a pointer.

A compound term consists of three terms—a functor
and two arguments as shown below. The functor is an
atom and the argument may be any term.

i

{ functor
R

—————— pomm

argl I arg2 |
____________ +

+ -+

84

example: The structure
maxi(X,Y.,Y) - X<Y,!.
is represented as
R il it Satatd 3
R ! i
B el B ntatad + D e S

Fig. 3 Compound terms.

A structure can be represented by compound terms. An
example is illustrated in Fig. 3. This data structure
causes the garbage collection and the implementation
ease.

4.2 The Binding Environments of Variables

In this system backtracking and unification are
operated on IDB goal calls while set operations are ap-
plied on EDB goal calls. Therefore, a variable may be
bound by a single term or a set of terms. The single term
is placed on the variable stack which resides in main
memory and the set of terms without variables is placed
on the table stack which resides in secondary memory.
The table stack is a stack of binding tables in which
each column represents a set of terms for a bound
variable. The binding tables are generated at each EDB
goal call and registered in the database dictionary. Once
the backtracking occurs the variable stack is popped.
Similarly, the table stack is popped too and the binding
tables are dropped from the database dictionary. These
two stacks represents a set of substitutions.

In a program, each variable has its location in the
variable stack. Once a variable is bound by a single term
it can’t be modified again until backtracking occurs.
However, if a variable has been bound by a set after an
EDB goal call it may be rebound by a single term after a
successful IDB goal call again. In this case, if the rebind-
ing term is not a variable the Prolog-DBMS interface
will generate a condition for the next set operation. This
condition will cause the bound variable to disappear
from the binding table after the execution of the next
set operation. An example is illustrated in Fig. 4. Once
the query statement is evaluated the locations are
reserved for variables X, Y and Z in the variable stack.
The first goal is an EDB goal call. Hence the Prolog-
DBMS interface generates a set operation command to
RDBMS. After the execution of the set operation a bind-
ing table 1 is produced by RDBMS in the table stack.
The variables X and Y are bound by a set at this time.
The second goal is an IDB goal call. After the unifica-

SHU-MIN Kuo, Y. KANEDA and S. MAEKAWA

Example:
Suppose that table p and table q have been defined in the
database “exampl", whose contents are shown as below.

Pil11i0213103)% qill)if2]:
i_a d_i lg i b}

i ifict
ig i e

A general rule

r(5,Ww.

is defined as Intensional database. After the evaluation of goal
?-invoke(exampl).
the database “"exampl® is available for the following query
?2-p(a,.X,Y).r(X,2y,q(Y,2).
The answers will be ((X,Y,Z2)}={(5,9.b).(5.9,e)} which are stored
in the binding environment.
The proof tree followed by the set operation commands and

the binding environments at each node is shown below.

Pla.X,Y)
variable X171
stack Yi

Zy_ %
set select p[21,p(3] select t1021.q(2)
command from p to tl from tl.q to t2
tn SQL- where plll=a where t1011=5
like and t102)=q(1]

120 ¥ L Z %

binding lg i b i
tables Lg i el

Fig. 4 An Example for Binding Environments and Set operation
commands at each node of proof tree.

tion operation the variable X is rebound by an integer.
This will cause the Prolog-DBMS interface to generate
a condition X=5 for the third goal which is an EDB
goal call. The variable X disappear from the current
binding table ¢2 after the third goal call.

In fact, the table stack need not hold all binding
tables which are produced at all EDB goal calls. From
Fig. 4, after finishing the evaluation of the third goal
the results are stored in the variable stack and the bind-
ing table 2. If there is no backtracking, the binding
table #1 is not used any more and may be dropped from
the table stack immediately. However, if there are alter-
natives for goal r(X, Z), the binding table 71 can’t be
erased. Once the backtracking occurs, the binding table
12 is popped and the current binding table changes from
12 to 1. Of course, the variable stack is popped too.

4.3 The Set Operation Commands

Executing a goal statement the search is based on sim-
ple left-to-right and depth-first strategy. When an EDB
goal or an output predicate is encountered the Prolog in-
terpreter transfers control to the Prolog-DBMS inter-
face. The Prolog-DBMS interface then generates set
operation commands to the RDBMS.

In set operations, the operator ‘‘union’’ is equivalent
to the operator ““or”’ (;) in Prolog which causes the

Implementation of Prolog Database System

pommmmmmm o m tommmmm e R ettt tommmmmmmm D +
| set ! source | source idestinationiconditioni! action |
| operatori table 1i table 2i table t pointer | pointer
dmmmmmm——— pommm———— Fomm e ——— Fmmmm—————— R D +

(a)

Fig. 5(a) The Set Operation Command Format.

__ +
operand 2 i

table id | col. #

---------- Fmmmmmm——— 4

tlog./arit
i operato

EE-4
+ -
=}

o
@
=
o
3
2
+ .-

(b)
Fig. 5(b) The Condition/Action Command Format.

system to backtrack to the alternative. Except ‘‘union’’
operation, each non-procedure set operation can be con-
verted into set operation commands as shown in Fig. 5.
This command format may be explained as

“‘Operate table 1 and table 2. For each tuple if the
condition is (not) satisfied then do the action and store
the result in the destination table”’

In the condition/action command, the column
number is used to recognize the data field in a table
rather than the attribute name. For example, a join
operation as shown in Fig. 4

select ¢1[2], ql2]
from 1, g to 12
where ¢1[1]=5

and t1[2]=g¢4[1]

can be represented as

In this system, the set operation commands produce
results with duplicate tuples. The set operators include:
Selection

This operation selects only one table to operate. The
conventional selection and projection operations can be
converted into this command.

Product

This operation concatenates two tables to operate.

The conventional intersection, cartesian product and

85

join operations belong to this command.
Difference

This operation produces a result table which is the
difference of table 1 minus table 2.

The other additional operators (such as deletion, in-
sertion etc.) can also be implemented easily in this for-
mat.

5. The Conclusion

In the conventional database management system,
the data definition language is separate from the data
manipulation language. Furthermore a host language
(such as FORTRAN, COBOL, PL/1) is required in
order to solve more complicated problems. Users have
to take considerable time to learn these languages. In
contrast, predicate logic serves as a single uniform
language. The distinction between programs and data
disappears. In addition, predicate logic has been
recognized to be an effective language for representing
knowledge. It also has ‘‘self-maintain’’ capability.
Thus Prolog is the best choice to be a problem solver
and relational database management language.

In our approach, we combine the Prolog programm-
ing language and the relational database system in a
single Prolog database system. The binding en-
vironments consist of a variable stack and a table stack.
Set operations are invisibly built in the system.
Therefore, it facilitates the program/data description.
The processing of a large volume of databases is not a
problem any more. We believe that this system will pro-
vide a higher availability in future knowledge base
researches.

References

1. KowaLski, R. (1978), Logic for Data Description. In: Logic and
Data Bases (eds. Gallaire, H. and Minker, J.), Plenum Press, New
York, pp. 77-103.

2. PArsaYi, K. (1983), Database Management, Knowledge Base
Management and Expert System Development in PROLOG.
Databases for Business & Office Applications. Proc. of Annual
Meeting, ACM, pp. 159-178.

3. CHAKRAVARTHY, U. S., MINKER, J. and TrAN, D. (1982), Inter-
facing Predicate Logic Languages and Relational Databases. In Pro-
ceedings of the first Int. Logic Programming Conf., Faculte des
Sciences de Luminy Marseilles, France, Sept. 14-17th (1982), pp. 91-
98.

4. Li, D. (1984), A PROLOG Database System, Research Studies
Press Ltd.

5. Yokora, H., KuniFus, S., Kakuta, T., Mivazaki, N.,
SHIBAYAMA, S., Murakami, K. (1984), An Enhanced Inference
Mechanism for Generating Relational Algebra Queries. Proc. of the
Third ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, April 2-4 (1984), pp. 229-238.

(Received October 9, 1985)

