PANEL SESSION:

Parallelism: Are We Still Interested?

Moderator: Mario Tokoro

Associate Professor of Department of Electrical Engineering at Keio University.
Computer architecture, knowledge representation languages and distributed systems.

Panelists: Charles Forgy

Research Computer Scientist at Carnegie-Mellon University and the President of Production System

Technologies.

The Co-principal Investigator with Dr. Alan Newell of the Production System Machine, PSM Project

at CMU.

Developing efficient parallel interpreters for production systems.

John Gurd

Professor of Computer Science at the University of Manchester.
Parallel computation, data flow computers, single assignment languages, program transformation,

and formal methods of hardware design.
Randy Katz

Associate Professor at the University of California Berkeley.
VLSI processor architecture, CAD tools, and data base systems.

H.T. Kung

The Shell Distinguished Chair in computer science at Carnegie-Mellon University.

Parallel architecture and computations.
Hidehiko Tanaka

Associate Professor of Department of Electrical Engineering at the University of Tokyo.
Computer architecture, inference machines, knowledge base systems and distributed processing.

Moderator: Good evening. Let us start the Panel Ses-
sion titled ‘‘Parallelism: Are We Still Interested?’’,
such a very controversial topic.

I would like to run this session so that each of the
panelists will first give a position statement and then we
will invite questions and comments from the audience.

First of all, I would like to clarify what the panel’s ti-
tle means. When we talk about parellelism, first, we
have to think its granularity in a problem domain at
both representation and execution levels. If we have
very large parallelism in the problem domain, we need
and maybe we can employ all kinds of parallelism at the
execution level. To do so we have to represent such
parallelism in terms of some representation languages.
Otherwise, parallelism has to be automatically detected
and mapped onto executing processors.

The second thing we have to think about is whether
parallelism is static or dynamic. ‘‘Static’’ means the
parallelism is predictable before execution. And we just
need static mapping for this parallelism. But for the
dynamic case, it is unpredictable before execution, and
the parallelism could be finite or infinite. And we need
dynamic mapping.

The last thing about parallelism is the order of

This manuscript was transcribed by Mario Tokoro and Yumiko
Okada from a recording of a panel session held during the 13th Inter-
national Symposium on Computer Architecture at the Sunshine
Prince Hotel in Tokyo on June 3, 1986. Editing has reduced the con-
tent by about 40%.

magnitude. The panelists are requested to define
parallelism on the order of 1, or 10, or 100, or 1,000 or
10,000, or one-million. And they should specify when it
will be available: 3 years later, 10 years later, or 20 years
later. Now, let us start.

C.L. Forgy: What we have been doing at Carnegie-
Mellon for the last couple of years is to speed up the
class of programming that we call a production system.

In the production system, a rule is basically laid,
which says: ‘‘If a certain condition is obtained in the
data at this given instant, then it is appropriate to per-
form this set of actions.”’

The parallelism in production systems is of very large
grain and it is on the order of a few tens of processors.
It is very dynamic. Everything has to be assigned at run
time but it is predictable. We know that parallelism
never gets very high though I won’t be entirely
pessimistic here.

I want to mention that there are some avenues open
to increasing the amount of available parallelism. The
most important thing at this time seems to be making
parallelism explicitly available to the users of the pro-
duction system.

All the work I have been talking about so far is just
making an ordinary OPS-5 like production system. It
means that we are presenting the standard sequential
semantics to programmers. And if we actually make it
apparent to the programmer that he is fronting a
parallel machine, and allow him to have multiple



56 Parallelism: Are We Still Interested?

threads of computation running on in his production
system, then we expect we can get some useful amount
of speedup.

Well, we are getting here a multiplicative effect,
perhaps a factor-of-ten parallelism inside the inter-
preter. Of course, it’s highly application dependent.
That’s where we had an application which permitted an
average of four threads to be active at any time. Then,
we get a further factor-of-four parallelism at that level.
And in total, we get a factor-of-forty parallelism.
J.R. Gurd: Of course I am still interested in
parallelism. I have my list of possible reasons. Top
amongst them is that we want to do big computations in
as little time as possible. Next, it may be more cost effec-
tive to build a particular powered machine out of a
limited number of lower power machines that are cost
effective. Also, manufacturers might be interested in the
concept of extensibility of the computer architecture,
i.e., the idea of having a building block computer which
is extensible.

And lastly, it might be able to achieve higher reliabil-
ity in systems by essentially having redundant devices in
your system. I feel it will become more and more impor-
tant in the long term. Because it seems clear that you
can’t have reliability by redundancy unless you can take
parts of the system out and still have a working system.
And essentially, that’s the extensibility property being
applied in reverse.

I think that there is a need to go towards multiple in-
struction stream machines which probably weren’t
there previously. So, it seems that the computer architec-
ture world is arguing about the detail of machine
design, not whether you actually want parallelism. I
think that’s an indicator that everybody is willing to go
in this direction rather than just a few weird academics.

These are unresolved issues: whether we should go
into fine grain or coarse grain at the machine level.
What I strongly suspect is that we will find that there are
different application areas that are suited to different
paradigms. But, at least in the fine grain machine that
we’ve been looking at, we are not worrying about
finding parallelism; we are worrying about finding too
much of it. And it is a practical problem for us to keep
parallelism under control.

I think that the sort of areas we are looking at are on
the order of ten to a hundred-fold hardware
parallelism. And in order to keep that active, we need
software parallelism of the order of about ten to a thou-
sand fold. I think anybody who tells you that you can
look at bigger parallelism than that within the next five
years is kidding you. I think we have got to learn to
walk before we can run. And this is about the limit of
our achievable sight at the moment.

R.H. Katz: To the question of ‘“‘parallelism: do we
care?’’, obviously my answer is yes. The observations
are that uniprocessor performance is topping out. Most
of the speedups have been coming from device
technology, not from new things in architecture. And

we are going to reach some point, and I think it is now,
where it’s just going to be cheaper for you to add more
processors to your system than trying to make the
uniprocessor goal a lot faster. So, we are going to have
multiprocessors.

For me, systems with a small number of processors
are interesting, rather than having millions of millions
of processors, since I have been working on such
systems. So the questions are how do I harness
parallelism for general purpose computation and what
is the cost of such systems. I agree with the previous
speaker; we should start with small scale
multiprocessors since we need to learn how to walk
before we can run.

Now the processor that we are working on is in the
range of hopefully not one to ten but nearer ten than
one. It’s called ‘‘Super Symbolic Processing Using
LISPs’. It’s a workstation sized shared memory
multiprocessor. And the motivation for it is to provide
a test bed for developing multiprocessor applications.
The configuration is very simple. And even this machine
has parallelism at many levels. The processor, of
course, is pipelined, so there is some parallelism at that
level. We have multiple co-processors, and functional
units associated with each processor if you want. We
also have multiple processors in the system. So, there
are many different levels of parallelism, even in such a
simple multiprocessor as this. And we have a lot of
work to do to handle all that.

So, the questions I would like to leave you with are:

for general purpose computation how do you harness
parallelism? How do you parallelize a text editor? How
are you going to do that on your connection machine?
And how are you going to parallelize the compiler? Yes,
there is some parallelism that can go on in a compiler,
some functional partitioning in pipelining of the com-
piler. But it’s not on the order of tens of thousands. It’s
maybe less than ten processes that could go into that.
So, the bottom line is that even small-scale
multiprocessors are interesting.
H.T. Kung: I was asked to talk about why are we in-
terested in parallelism. The very fact that this question
was asked surprised me. But, then I started thinking:
‘‘probably the organizer of this session had some more
profound reasons behind the question.”” And I realize
the answer is not so obvious.

First of all, we have to find out what we mean by
‘“‘we’’. There are at least four kinds of people I can
think of. First, researchers in computer architecture.
They are interested in parallelism. Then, maybe, the
funding agencies are not interested in parallelism. The
third kind of people must be the people in computer in-
dustry. If you look at the new computers, they are all
parallel computers one way or the other. You can hard-
ly find any respectable new machines that are not
parallel machines.

It is very hard to find those who do not like
parallelism. How about users? Every user wants more



Parallelism: Are We Still Interested? 57

computer power, a factor of ten to fourth or ten to fifth
speed can be given by using parallelism. So, users can-
not be the ones. They love it. So, everybody likes
parallelism. I don’t know why we have this panel.

So, I started realizing; probably I was thinking about
something wrong. Maybe the word “‘parallelism’’ has
to be defined more carefully. But there is nothing wrong
with it. So, I started thinking again. And I realize there
must be a group of people who are not happy with it.

There indeed are a group of people who had high
hopes for parallelism and have been waiting for the last
fifteen years. They haven’t seen much coming. I started
to realize they asked the question. It’s the people who
are losing patience. They say, ‘“You people have been
talking about this for so many years without any real
machines coming out.”” Then, the problem is not
parallelism at all. But it’s about a new kind of architec-
ture.

Any new architecture would take a number of years
of development. You just cannot get anything done
very quickly. Parallel machines have not been used so
rapidly in a popular way because we are building new
machines. Any new machines take time to mature. I
don’t know any reasonable machine that can be built in
less than five years. Five years is just one cycle. You pro-
bably have to take two or three cycles before the
machine becomes reasonable.

Now, I'll answer the questions. One question is
parallelism: why we talk about parallelism. The other
one is when. We are talking about parallelism because
we believe we can build the machine cost-effectively.
There are people who build thousands and thousands
of processors all the time. The questions are how you
can use them cost-effectively and how you can build the
machine cost-effectively to be competitive with other
kinds of machines that people can get access to.

One area definitely, I believe, where we are going to
make it is not the general purpose area. The general pur-
pose area probably could get ten-fold speed up in 5
years, but that is not going to solve all the problems
many people are interested in. We have to work on
special purpose machines, where you can have the op-
portunities to make parallel machines to be cost effec-
tive. For example, all the signal processing machines are
parallel machines. The people who deal with signal pro-
cessing are all building parallel machines using
thousands and thousands of processors working in
parallel.

So, special purpose areas definitely will employ more
and more parallelism, and we are going to move toward
the more general, more flexible areas by having better
building block chips for them or you can buy those
chips from radio shops. We can buy nice buses on
which we can hook them to make highly parallel ar-
chitectures. We can have better compilers that can use
those special purpose engines. So, we can move from
very special purpose to less and less special purpose. We
hope we are eventually going to do more in general pur-

pose area as well.

H. Tanaka: My position is we should go in the direc-
tion of general purpose machines of highly parallel ar-
chitecture. Why general? In case of special purpose
machines, the organization methodology has been
almost established. Application analysis and architec-
ture design have been tuned to the applications.

And why highly parallel? Multiprocessor technology
of small scale parallelism is practical and very nice. But
it’s not attractive as the research theme of a longer
term. As a university person, I must research this highly
parallel architecture.

Applications are transformed into programs using
some algorithms and languages. And the programs are
transformed into computation models. An example is
dataflow or reduction or imperatives. Then the model is
transformed into the execution model and after that the
execution model is executed on the hardware. Hard-
ware is implemented using some VLSI. So, many kinds
of parallelism are available: task level, computation
models level, logical operation level, and circuit level.

For the task level parallelism, an object model is very
good. And for the computation model level parallelism,
a logic model will be very nice. And at the logical opera-
tions level of parallelism, we must use pipelines, and at
the circuit level, we will have high speed devices such as
gallium arsenide.

My focal points are in computation models and execu-
tion models. In the computation models, the concept of
granularity is very important. However, it is not
enough. We must focus our attention on what kind of
granule is used as well as the size of the granule.

The candidates are the functional model and the logic
model. The functional model is well matched to the
data driven mechanism, and the logic model has a good
correspondence to the semantics. It has a nice feature,
that is, easy derivation of parallelism.

Then, there is another issue: the problem of
allocating activity to the hardware. Each primitive of
the computation model is broken into activities which
are allocated to the hardware elements such as process-
ing elements and structure memories. There are several
algorithms for allocations.

In case of static allocations, there are two kinds. One
is the designation by a programmer and the other is the
program analysis by compiler. Designation by the pro-
grammer is explicit but program analysis is implicit
from the user’s point of view.

For the dynamic allocation, we must rely on real time
monitoring. Using real time monitoring, we can achieve
this kind of allocation. And all three types of allocation
must be used and implemented.

Moderator: Thank you very much. I would like to in-
vite some comments or questions from the floor.

Audience: I want to say that we shouldn’t rush to get
answers to how much parallelism and when it will be
achieved. What we should be doing is analyzing the
question of what is a parallel machine. And that ques-



58 Parallelism: Are We Still Interested?

tion should be answered over a long period of time.

One of the things that I did not hear among the
panelists and I would like to raise is the notion of space
sharing. Look at your time sharing computers. There
are usually forty different users that are given time using
part to the machine, using time slices.

The reason that time sharing makes sense is that from
time to time you can use it to solve large problems such
as weather prediction, but it pays for itself because a lot
of small problems are run on it for a long time.

What we need is an analogous situation in space shar-

ing. The resources of the machine can be partitioned
into small parts. Each part can support a user. And
then, from time to time, you can run a real big problem
on it and it is useful sharing a computer, as opposed to
having a lot of personal computers. We must remember
space sharing in parallel computing.
Audience: If I look at the past of parallelism, I see two
kinds of things. I see computer architects going into
very interesting architectures without really wondering
so much about languages. And I will put Cm*, C.mmp,
and many others in that bucket.

And I see people going after very interesting,
stimulating models and taking dataflow as one of the
models. I see none of these approaches are really going
somewhere. And I haven’t heard the panelists mention
that a good, well-specified, meaningful extension to a
language can make parallelism possible. And I see a lot
of nice practical, meaningful and usable languages com-
ing into play, and Multi-Lisp might be one of them.

I see computer architects doing a good job in helping

these efforts, rather than going off and inventing yet
another structure or trying to tackle fancy models,
which are very interesting, but may be not what users
would want to use.
J. Gurd: Well, I am inclined to agree, so I am not going
to argue the case. It seems to me that the problem at the
moment is one of finding our feet. And the research
community is engaged in any way it can, getting a han-
dle on dealing with parallelism more complex than the
four-fold that’s being offered in the marketplace at the
morment.

Presumably, when they feel they understand hund-
red-fold parallelism, the research community can come
back and say how do you want to approach this
language with at least some guidelines about how you
can. My feeling is that there would be restrictions to
your approach to hundred-fold parallel machines. And
it’s a question of finding out what the nature of those
restrictions are and coming back to you and telling you
about how to provide these systems.

But I think an extension to C or Lisp or whatever
else your favorite language is probably not the best way
of approaching problem at the moment.

H.T. Kung: I fully agree with what you said. The big-
gest problem of all is the model of computation. It sur-
prises me once every three month that there is yet
another model that we think should implement. But

even for small scale multiprocessors, we don’t really
know what we are to do in general, for even very basic
things.

R.H. Katz: I think that’s a very good point. It’s only
recently that we have been able to envision even small
scale multiprocessors that can be generally distributed.
And those machines have terrible software en-
vironments and no one really knows how to program
them yet or how to harness the parallelism that is made
available. Software is the major stumbling block allow-
ing development of small scale multiprocessors as com-
mercial products.

So, when people start working on applications, I
think we will learn a lot more about how to program
software for multiprocessor systems.

Audience: What I want to ask is about languages: is it
really a matter of tiddles on new facilities on original ex-
isting languages, or should we try analyzing the bottom
line out of existing languages, or really must we start
from new languages? If I may express my own point of
view, may be what we should be looking for this time
around are languages with sound mathematical founda-
tion.

Audience: I think one of the problems that we face is a
chicken and egg problem and involves three actors.

First of all, we wish to build parallel computers so
that we can get applications to run on them, and we
design languages for the applications. Then, we design
new languages for the parallel machines. And then we
get applications on them, and we build better architec-
tures and we build better languages, and we build better
applications. It’s a chicken and egg cycle.

Where do we start, though? My conjecture is that the
weak link is the languages. The languages are way
behind the hardware and in fact even behind the applica-
tions. I think that in this round of improving things we
need to go through, we have to realize that languages
are the weak link. It’s been the tradition of computer ar-
chitects to start with languages. That’s how Bob Burton
designed the Burroughs Family machines. He started
with ALGOL and Beta machine to handle ALGOL.

But I think in parallel processing, that is the weak
link, but perhaps it is the wrong place to satrt.
Audience: First, I would like to rephrase the chicken
and egg question in a slightly different way. I will make
this point, that it seems to me that quite a lot of pro-
posals for parallel computers are solutions in search of
problems.

Now I will make a real point, which was to respond
to something H.T. said. He sait it’s the users that want
the parallelism. I don’t think that’s true at all. The users
want high performance and low cost and that their pro-
gram should continue to run. And you can sacrifice that
last one only if you make great strides in one of the first
two. I think that’s the challenge.

H.T. Kung: That’s the one with the difficulties here.
You recommend this, however, I have not yet seen one
user who is not willing to change his cult, in case you



Parallelism: Are We Still Interested? 59

give him one hundred-fold speed up over VAX-780. 1
haven’t just seen one user who is not willing to change.
So, the only problem we have is to give him a hundred-
fold speedup. That has been tough.

Audience: I think programmability is absolutely essen-
tial. And in the long term, it’s far more important than
small factors in efficiency and speed. So, one of the
things is that the programming language people and the
parallel computer people have to talk to each other.
And that should happen in many places.

Audience: What encourages me to get up and speak is
that I was impressed by a lecture several years ago by a
gentleman who unfortunately is not here today but
should be. My ramblings here are simply to say that I
believe the evolutionary approach will in fact be the
path by which we go through this random walk of the
search space that will eventually lead to machines ten or
a hundred or a thousand times more powerful.

1 do not want parallelism. What I want is perform-
ance, low cost, reliability and so forth. If parallelism
can get us there, that’s great. If not, then, may be we
will find another way.

Audience: I really agree with the statements that you
have made, and I think that a lot of us are working on
evolutionary approaches to parallelism. And the idea is
to give a guy a very high performance processor within
your multiprocessor, and when he saturates on one of
them, give another, and if he can’t figure out how to use
the other ones, then there is no hope for conquering
parallelism.

Audience: I have to disagree with the statements. I
think what we have here is a random walk which will
lead us nowhere. If you are going to make your first
step, you look at the plan you have and you decide
where you are going, and make your step intelligently,
SO you won’t waste your steps.

Suppose we decide to build programs for a machine
with a shared memory for ten processors. Then, five
years from now we have to throw those away because
shared memory doesn’t expand from ten processors to a
hundred processors. And if we do that, we have to
rewrite all our programs again.

I agree with making the first step. We have to pro-
duce machines that have ten-fold parallelism before we
can go to tens of thousands. But I think we ought to do
it in a way where we do not have to throw away all the
codes we have written and start over again every five
years. We should be able to use principles and use
techniques that are expandable, at least architecturally.
So that when we get better technologies, we can expand
to larger and larger machines without having to discard
our software.

Audience: I just want to ask one simple question to
Professor Gurd. Could you tell us a little bit about what
kind of software tools or software technology is quite
effective to implement a parallel system with tens of
thousands of processors?

J.R. Gurd: We are in a terrible shape about providing

some sort of systematic way of approaching parallel
systems, so that we can extract parallelism from the ap-
plications and see what’s happened when we try and ex-
ploit that parallelism. But apart from the actual
mechanical process of trying to extract parallelism and
see what happens when you use it, I think you are ask-
ing a question about how, as an end user, do you go
about getting that parallelism in first place. I think this
is your question.

1 think this is all tied together with the language prob-
lem. And we have already discussed the possible ways
that might exist. One is to put some sort of analyzer
into FORTRAN programs and explicitly to unravel the
parallelism for the FORTRAN codes. And as I have in-
dicated, I have a skeptical view of whether that’s possi-
ble to the same extent as starting with a non-sequential
language and using that as a means of expressing the
problem.

And I should say that there are some languages in
wich you don’t have to express sequence. They range
from the very high level languages that have been dis-
cussed here: the functional and logic languages, in
which we have to note at the moment there are sequen-
tial mechanisms built in. So, for example, Prolog pro-
grams that do interesting and big jobs are full of cut
statements, which actually make it very difficult to turn
the codes parallel; and similarly with Lisp programs in
the functional word, they are full of prog features,
which essentially re-introduce sequentiality. So, even
though those languages look neat from a mathematical
point of view, you would still have to turn to a FOR-
TRAN style analyzer on most of the real big programs
in order to extract large amounts of parallelism.

So, it seems that on the one side the research groups
are currently investigating new functional and logic
languages which still maintain the higher level
mathematical aspirations of the declarative languages
but which allow some scope for parallel execution. And
on the other side, there are people who are essentially
building imperative parallel languages. Perhaps it’s safe
to call them ‘‘non-sequential languages’’, which is the
sort of approach that we have taken on the dataflow pro-
ject with the sizable language. I think the interesting
thing is that there is a bit of convergence in that the
non-sequential imperative languages look very similar
to the declarative, at least the functional ones.

But there is still a lot of work to be done before those
notations have worked out sufficiently well that we can
guarantee:

(a) Their mathematical cleanliness in transformabil-
ity and so on, and

(b) Their implementability in a parallel environ-
ment.

Moderator: Thank you. Does anyone like to add
something to their statement?

C.L. Forgy: Well, one thing that has surprised me at
the panel was the degree of consensus rates here. I have
really expected that I was going to be the only one argu-



60 Parallelism: Are We Still Interested?

ing for low levels of parallelism. So, 1 went to some
pains to explain why we had to have that in our applica-
tion.

But since it didn’t hapen, let me argue the other side
now. I think these kinds of arguments are made before
we really apply to the sort of high level cognitive func-
tions that we are going to try to put in computers. But
there are plenty of other things that people do and we
want to put in computers, which are inherently highly
parallel. Perceptual tasks, speech recognition to some
degree, and vision of course to much higher degree are
inherently highly parallel. And we will have machines
that use, you know, and enormous mass of parallelism
to do those kinds of tasks.

Moderator: Before concluding this panel, let me give a
brief explanation of my view.

We have to think about the performance of parallel
processing. I would like to define it by 70 and 7. ““@”’ is
process execution time, and ‘b’ is communication or
synchronization time. This is a very simple calculation.
Performance is:

e _ 1 <£,)
o atb 1+p a p

This is something like the efficiency of each processor,

and to get the total performance of the system, it should
be multiplied by n. This comes to be:

n
P = n=—
o=1o 1+p
And this happens when each processor has a fixed
number of neighboring processors.
But if each processor would like to communicate with
all the other processors, this becomes like this:

——a __1 (£_>
m a+b-n l+pn a—p

P=n-n=

1+p-n

And then if “n”’ is going up; then n, is also going up.
But for this #, it’s questionable, not linear. If we cannot
specify a problem, which means a general purpose, then
we must admit some drawbacks or need some balance.
And it’s not so easy to obtain a big parallelism of thou-
sand, ten-thousand, million, or something like that,
with this formula.

So what I would like to say is that we need revolu-
tionary change in the architecture and language. Now, I
would like to close this session. Thank you very much.




