Branch and Bound Algorithm for
Phrase Level Pattern Matching By Using
Deterministic Context-Free Grammar

TAKAHISA KIMURA®

We have been developing a personal speech understanding system by using a pattern maching method. In this
paper, we deal with a phrase-level pattern matching algorithm where LR(1)-syntax is processed. We propose a
pairwise Markov model (PMM) which is a system to compute likelyhood of an interpretation for an input
speech. A PMM has the same syntactic structure as the finite state sequential decision process (fsdp), and is
characterized by its base-automaton which is composed through a Cartesian product of two automata. We
derive a recurrence equation of a finite state PMM which represents matching of patterns in normal-syntax. We
also derive a pattern matching procedure which processes a higher-than-the-normal syntax by using an infinite
state PMM (a full PMM). Because of the syntactic equality between a full PMM and an fsdp, we apply the
Ibaraki’s construction method for an fsdp extensively so that we obtain the pattern matching procedure as a
branch-and-bound procedure (named B & B). We construct a pattern matching algotithm which processes an
LR(1)-syntax by using the procedure B & B and a given LR(1) parser.

1. Introduction

For installing speech-perception abilities into
machines, many researchers have been investigating con-
tinuous speech recognition [1, 2, 3, 4] and speech under-
standing [S, 6, 7]. We can find recent advances in these
fields in [8]; some speaker-independent continuous-
word recognizers for large vocabularies are reported.
They seem to achieve an automatic transcription of
speeches, i.e., an automatic conversion of speeches into
its character-representations.

In this research, we have investigated a personal
speech understanding system (personal SUS) whose
typical task is a voice-control of a personal computer
(or a work station) rather than the voice-transcription.
We have assumed that almost all sentences in the task
obey a predetermined set of syntactic and semantic
rules, and that the task required of the personal SUS is
a correct extraction of syntactic and semantic informa-
tion from input speeches. For developing the personal
SUS, we have enhanced a dynamic programming pro-
cedure which is used for phrase-level pattern matching
[9].

For modeling the pattern matching, we introduce a
pairwise Markov model (PMM) which is a system to
compute likelyhood of an interpretation for an input
speech. PMM consists of a composite automaton (ca), a
cost function associated with each state transition of the
ca, and an initial cost. A ca of the PMM is constructed

*International Institute for Advanced Study of Social Information
Science, FUJITSU Ltd.
140 Miyamoto, Numazu-shi, Shizuoka 410-03, Japan.

Journal of Information Processing, Vol. 10, No. 3, 1987

through a Cartesian product of two automata: one
represents a connectivity of speech-segments which are
taken from the input speech; the other represents order
of reference-words which is identified with syntax of in-
put speeches. Syntactic (and further semantic) informa-
tion is extracted from the optimum sequence of states
of the ca.

In order to represent the pa-ttern matching by
PMM'’s, we use an infinite state automaton (ifsa)
originally proposed by Ginsburg and Glushkov [15] as a
ca. The Ginsburg-Glushkov ifsa (G & G-ifsa) M has the
Markovian feature (i.e., M=4.(Q, I, qo, T, OF)).
Hence, similar to the fsdp [10, 11], we can apply no-
tions of the dynamic programming to the PMM’s. In ad-
dition, for any syntax, there exists a G & G-ifsa which
represents it. Hence, syntax of common programming
languages (note that they are in higher-than-the-normal
syntax) can be represented by the PMM’s. G & G-ifsa is
descriminated from the fsa by its infinite set of states,
and G & G-ifsa of a finite set of states is reduced to an
ordinary fsa. Hence, we can represent the PMM as an
infinite state sequential decision process (isdp) whose
base-automaton is composed by two ifsa’s through a
Cartesian product.

Concerning the recognition algorithm, we consider
both finite and infinite state PMM in this paper (called a
restricted PMM and a full PMM respectively).

Restricted PMM is a finite state sequential decision
process (fsdp). Hence, we can solve the optimization
problem represented by the restricted PMM through ap-
plying a dynamic programming method proposed by
Karp and Held [10] and Ibaraki [11]. By using Ibaraki’s

Branch and Bound Algorithm for Phrase Level Pattern Matching by Using Deterministic Context-Free Grammar 147

method, we derive a recurrence equation of a restricted
PMM. The recurrence equation then derived is
equivalent to the Sakoe’s recurrence equation of the
G2DP algorithm (the generalized two-level DP-match-
ing algorithm [1]), and this result shows the effec-
tiveness of the restricted PMM for representing a con-
tinuous-word recognition.

Full PMM is an isdp, and it can represent higher-
than-the-normal syntax. Because of the syntactic equali-
ty between fsa and ifsa, we apply extensively Ibaraki’s
construction method for an fsdp [12] so that we obtain
the pattern matching procedure (named B & B) as form
of the branch-and-bound procedure.

For an LR(1)-syntax (i.e., the syntax which is
specified by a deterministic context-free grammar [13]),
we construct a pattern matching algorithm by using the
procedure B & B through the following steps. We find
heuristically a conversion method of an LR(1) parser
[14] into a G & G-ifsa, and we produce an instance of a
G & G-ifsa which describes connectivity of speech-
segments. As the result, we obtain a full PMM for the
LR(1)-syntax. Finally, we derive the pattern matching
algorithm for the LR(1)-syntax by applying the pro-
cedure B & B to the resultant full PMM.

The result in this paper is a refinement of the previous
work [9] where we proposed a phrase-level patern
matching algorithm which processes discrete-word
sentences. In this paper, we improve it so that we obtain
a pattern matching procedure which processes con-
tinuous-word sentences.

This paper consists of five sections. Section 2 presents
a definition of the restricted PMM and its effectiveness
to represent a continuous-word recognition. Section 3
contains an extension of the restricced PMM for
representing syntax of all types. Section 4 contains a pat-
tern matching algorithm which processes an LR(1)-syn-
tax.

2. A Continuous-word Recognition by Restricted
PMM

In this section, we provide a definition of the pairwise
Markov model (PMM) of a restricted form. We derive a
restricted PMM recurrence equation, and show that it is
equivalent to the recurrence equation of Sakoe’s
generalized two-level DP-matching (G2DP) algorithm

[1].
2.1 Restricted PMM

Restricted PMM is an fsdp (finite state sequential deci-
sion process) IT whose base-automaton M is composed
from two fsa’s through a kind of Cartesian product. At
first, we define a Cartesian product of two fsa’s.

Def. 1. Cartesian product of two fsa’s

An fsa M=(Q, I, qo, T, Qf) is composed through a
Cartesian product of two fsa’s M,=(Q,, I, qu, T, Qr1)
and M,=(Q», L, g0z, T, Qr,) iff the following equalities
are satisfied, and is denoted by M, % M,: Q=0Q, X Q»;

I=1 X b; go=Xqo1, qoz>; T: QxI-Q, T(Kqi, g, <ai,
a)=<{T\(q1, a1), TGz, @2)>; Qr=Q0r X Qr. Xdenotes
the Cartesian product of sets. O

We then introduce a notion of a sub-automaton in
order to deal with a constraint condition similar to the
alignment-window of the discrete word recognition [2].
Def. 2. Sub-automaton

An fsa M,=(Q, I\, g, T\, Qr:) is called a sub-
automaton of another fsa M,=(Q,, I, g2, T2, Qr2) iff
the following condition is satisfied, and is denoted by
M <M,.

Condition: Q]QQz & Ilglz & qdor=qgo2 & T]QTZ &
QS 0rn, where ASB represents either that A4 is a
subset of B for a pair of sets A and B, or (VgeQ,)
(Vpe@:)(Vael)(T\(q, a)=pA\p#qa=T:(q, a)=p) for a
pair of transition functions 7,and 7, O
We may use X and < instead of % and < respectively
without any confusion.

Now, we define the restricted PMM.

Def. 3. Restricted PMM

Restricted PMM is an fsdp II whose base-automaton
M is composed from the fsa’s M, and m,, and satisfies
MCM XM, O
In this paper, we consider only a monotonous sdp
(msdp) as the PMM. Therefore, the cost function of the
PMM satisfies the following monotone-conditions: (D
&E=&=h(g, g,)= h(E, q, a), and @ &Li<&=h, q,
a)< h(&, q, @), for any &, &el{cost value}, geQ, and
ael.

The notion of the restricted PMM is shown in Fig. 1.
PMM accepts both input speech and its interpretation,
and outputs likelyhood of the interpretation for the in-
put speech and a string as a subsidery output. In this
figure, PMM consists of a composite fsa and a cost func-
tion. The cost function is computed from the input
speech and a set of reference patterns, and is updated as
each state transition of the fsa. An input string of the
fsa, i.e. the interpretation, represents a syntactically
legal combinations of virtual and reference words. It
specifies a matching of speech segments and reference
word patterns, and its cost represents adequacy of the
interpretation.

PMM starts its action after reading an input speech
pattern. During reading the interpretation, each state
transition of the fsa makes update the cost function by
causing to cumulate the word-distance which is
specified by the input symbol. After completing the
read the interpretation, PMM outputs the likelyhood of
the interpretation for the input speech.

This system is a Markov model because both an fsa is
used and the cost function is independent from its past
states. Related with the combination of the input and
reference patterns, a composite fsa in a PMM is decom-
posed into a pair of two fsa’s. In addition, the cost func-
tion depends upon the pair of states of both fsa’s, as
well as the initial cost. Denoting the pairwise structure,
we call this system the pairwise Markov model.

148

PMM
X m—t—— | M e »y
M : M
...... h . — h(x)
A —t—| IP RP

{B1,B2,..., Bk}

Notion of the PMM where x: an interpretation; A: an in-
put speech; Bi: a reference word pattern; M: a finite (or in-
finite) state automaton satisfying MSM, X M,; h: a cost
function; y: a subsidery output string; IP: an input pat-
tern; RP: a reference-pattern set.

Fig. 1

2.2 PMM representation of the G2DP scheme

We show that we can derive a PMM recurrence equa-
tion comparative with the one of the G2DP algorithm.
First, we review the form of the recurrence equation of
the G2DP method.

We denote the input speech 4 as a sequence of
feature vectors a,, @, . . . a;, a virtual word A(/, m) as
aa+, . . . an—; which is a segment of the input speech
A, a reference word pattern B" as a sequence of another
feature vectors b}bj7 . . . b}, which is matched to a vir-
tual word. D(/, m, n) represents a distance between a vir-
tual word A(/, m) and a reference word pattern B, and
is computed by applying a DP-matching procedure
similar to the scheme of the discrete word recognition
[2}.

G2DP algorithm tries to find the best interpretation
for the given input speech A. For deriving the G2DP
recurrence equation, the following optimization pro-
blem is dealt with [1]: find min [Z,D(/,-, {, n)| L, n},
mn;y . .. meF(M;))], where M; is an fsa for syntax con-
trol, and F(M,) is its acceptable set, and k is a number
of words contained in a sentence mn, ... ni. Let
G(m, q) be an optimum cost for the time m and the
state ¢, and the initial condition be G(0, 0)=0. The
recurrence equation of the G2DP method has been ob-
tained in the following form; G(m, g)=min {G(/, p)
+D(l, m, m) |1, p, nli<m, g=T,(p, n)}, where T is a
state transition function of the fsa M;. O

In order to obtain a comparative PMM recurrence
equation with the above one, we consider a restricted
PMM defined by the following msdp 7;: msdp I7,=(M,
h,&), where M: an fsa (Q,1, g, T, Qr), where
o=, ql, g>lqell, 2, ..., I}, ¢€Q:} U [1,
0}, g2} U {Kga, gd}; I= Kl jl, ap |1si<jE1,
@mel}; go= K1, 0], g} ; TKIL, @ul, g2, <[, j1, a)
=<1, ¢:+j1, Tiqz, @)> (for i=q+1); Qr=I1, 1],
a1 @:€0r}; Ma=(Q2 b, g, Tr, Q) is an fsa

T. KIMURA

equivalent to the syntax control fsa M;; A: cost function
h(¢, g, a)=¢(+d(q, a); d is a non-negative function; &p:
an initial cost & =0. / is a number of feature vectors con-
tained in an input speech. O

Note that 7 is a fixed integer because we consider
merely one input speech pattern A4. In this case, the fol-
lowing S-tuple M,=(Q\ I, qui, T1, Qr) also specifies an
fsa, where Q= {[1,qllq:ie{1,2,...,I}} U{[1, 0]}
Ulgal; L={li,j1I1SiSj<I}; gn=1{[1,01}; Tu(1,
al, (L, iD=01, ¢ +j]1 (for i=q+1); Qn={[1,1]}.
Hence, the fsa M is decomposed into two fsa’s M, and
M,.

The composite fsa M defined above accepts a finite
language under the assumption that 7 is finite. An msdp
IT=(M, h, &) is called an Imsdp (sequential decision pro-
cess of the loop-free strictly monotonous type, [11]) if
its acceptable set (i.e., the acceptable set of the fsa M) is
a finite language. Hence, the restricted PMM for G2DP
is an Imsdp and the following recurrence equation is ap-
plicable to it: let G(q)=ay min {h(&, go, X)| T(go, X)
=g} and the initial condition G(go;)=0. Hence, the
PMM recurrence equation is provided for G2DP in the
following form: G(g')=min {G(q)+D(q, a)|qg'=T(q,
a)}. O

By substituting each elements of the msdp /7; into the
above PMM recurrence equation, we rewrite the above
PMM recurrence equation into the following form. Let
G([1, g1, g2) be the optimum cost for both of the state
¢ and @, and initial cost G([1, 0], gn:) =0. Recurrence
equation is derived in the following form: G([1, qil, g2)
=min {G([1, qil, ¢2)+D(Kig: +1, qil, @) T(I1, q1l,
aw, lgi+1, qil, a)=<[1, qi], g>}, where g;=Txqy,
a). O

Comparing above PMM recurrence equation of the
rewritten form with the G2DP recurrence equation, we
can easily show their equivalence. Differences are
caused by merely the redundant constant 1 and paren-
thesis [and] in the PMM recurrence equation, and
different notations of elements of both fsa’s. Conse-
quently, we obtain a restricted PMM recurrence equa-
tion for representing a continuous-word recognition.

The fsa of the restricted PMM is composed through a
Cartesian product of the fsa’s M, and M,. In the PMM
recurrence equation which represents the G2DP
algorithm, M, specifies the connectivity of segments and
M, specifies syntax of sentences. Therefore, also in the
later part of this paper, we call M, a segment automaton
and M, a syntax automaton.

In this section, we assume that the PMM accepts only
one input speech pattern. But, in order to regard the
PMM as an acceptor of input speeches, we have to con-
sider all possible input speeches and all their possible in-
terpretation as input of the PMM. A way to incorporate
them with PMM’s is to introduce an infinite state seg-
ment automaton where Qr = 4. {[1, 1] | 1€ {all possible
I's}}. Moreover, by introducing an infinite state syntax
automaton, we can gain a PMM which represents any
syntax. In the next section, we will extend the PMM by

Branch and Bound Algorithm for Phrase Level Pattern Matching by Using Deterministic Context-Free Grammar 149

generalizing both M, and M, (hence, M itself) into an in-
finite state automata (ifsa’s) so that we obtain the full
PMM.

3. Pattern Matching Scheme

In this section, we present a pattern matching pro-
cedure which is applicable to arbitrary syntax.

We first define the full PMM. Full PMM is an infinite
state msdp (imsdp) derived from the restricted PMM by
replacing its fsa with an infinite state automaton (ifsa).
In order that the full PMM retains the syntactic struc-
ture of the fsdp, we employ the ifsa originally proposed
by Ginburg and Glushkov [15] which has the same syn-
tactic structure as the ordinary fsa (i.e., ifsa M= ,4,(Q,
I, qo, T, Or)). Consequently, by reading the composite
fsa as the composite ifsa (i.e. both segment and syntax
automata are replaced by ifsa’s), we can consider that
Fig. 1 also represents the full PMM.

The restricted PMM recurrence equation is also ex-
tended to the full PMM recurrence equation. The pro-
cedure to solve the full PMM recurrence equation,
however, is inadmissible to compute because the full
PMM has an infinite set of states. Because of the inad-
missibility of the full PMM recurrence equations, we
abandon the use of recurrence equations and concern
with a branch-and-bound method in order to derive the
pattern matching procedure; we apply Ibaraki’s con-
struction method for fsdp’s [12] to the full PMM exten-
sively. Ibaraki’s construction method requires the cost
function to satisfy the monotone-condition already
mentioned as well as the inequality #(&, q, a)=¢&. The
msdp /7 having the cost function of this type is called a
psmsdp (positively and strictly monotonous msdp [12]).
In both PMM and G2DP recurrence equations, the ad-
ditive cost function # also satisfies the above inequality.
In the latter part of this paper, we also apply the notion
of the psmsdp to the imsdp and we deal only with the
msdp /7 or imsdp I7 of the type of psmsdp as the PMM.

3.1 Full PMM

An ifsa for the full PMM is defined below.
Def. 4. G & G-ifsa [15]

G & G-ifsa is defined by the following S-tuple:
M=4s(0, 1, qo, T, Qr), where Q: a non-empty set of
states; I a finite alphabet; go: an initial state; goeQ; 7: a
state transition function, T: Q X I-Q; Qr: a set of final
states, @QrC Q. O
Following facts are presented in the reference [15]. The
G & G-ifsa M=(I*, 1, ¢, T, L), where T(x, a)=xa, ac-
cepts L and L may belong to any classes. If Q is a finite
set, G & G-ifsa is reduced to the ordinary fsa. T is ex-
tended to Q x I*— Q similar to the ordinary fsa. A G &
G-ifsa is called free iff x*y implies 7(qo, X)# T(qo, ¥)
for any x, yel*.

The name G & G-ifsa is due to its proposers Ginsburg
and Glushkov. However, later it may be called merely
an ifsa for simplicity.

We define the full PMM as an imsdp IT=(M, h, &)
whose ifsa M is composd through the Cartesian product
of two ifsa’s M, and M,. Similar to the restricted PMM,
we consider that M, is a segment automaton and M, is a
syntax automaton. Since an imsdp /7 has the same syn-
tactic structure as an fmsdp, every formuli defined by us-
ing an fmsdp are immediately extended to the corre-
sponding imsdp as well as the extended formuli has the
same syntactic structure as the original ones. This fact is
used for the derivation of the pattern matching pro-
cedure as its basis in the next section.

3.2 Pattern matching procedure

In this section, we provide a pattern matching pro-
cedure for an arbitrary full PMM as a branch-and-
bound proceudre.

Assume that the ipsmsdp IT=(M, h, &) (i.e. imsdp I1
of the psmsdp type) is given, where M=(Q, I, q,, T,
QOr) is an ifsa composed through the Cartesian product
of the two ifsa’s M, and M,. By applying Ibaraki’s con-
struction scheme [12] to the ipsmsdp 77, we derive the
pattern matching procedure as the following branch-
and-bound procedure, and name it B & B.

Def. 5. Procedure B & B

For a given full PMM represented by the ipsmsdp
=M, h, &), we specify a branch-and-bound pro-
cedure B & B=(ddp Y, D, EQ, g, s) by the followings
for an arbitrary search function s:

Let M=(Q, I, qo, T, Qf) be an ifsa, L be an accept-
able set of M, and ddp Y=(, L, f), where f(x)=h(&,
qo, x) for any xeL. For any x, yel™, the dominance rela-
tion D is defined by xDy= 4or.(x#y) A\ [xDapyV xDg, y1,
where XDapy= aer {(T(qo, X)=T(qo, I (h(&o, qo, X)
<h(&o, G0, YNs XDygr Y= 4es [T(qo» X) # qa/\ T(qo, ¥)=4q4l,
where g, is the dead state of the M; the equivalence rela-
tion EQ is defined by xEQy= ar.[(T(qo, X)=T(go, ¥))
A (h(&o, go, X)=h(&o, Go, ¥))); and the lower binding
Sfunction g is defined by g(x)= s (&0, go, X). O

The computation procedure is explicitly described as
the following.

Def. 6. The procedural form of the B & B

LetB & B=(ddp Y, D, EQ, g, s), and symbols of
ddp Y, D, EQ, g and s have the same definition of those
in the Def. 5 respectively.

At each instant of computation of the following pro-
cedure, z denotes the smallest cost of xeL obtained by
then, A denotes a set of policies which have been
generated but neigther decomposed nor terminated, N
denotes the set of policies which have been generated,
N—A denotes a set of policies which have been
generated and either decomposed or terminated.

At the termination of the procedure B & B, z holds
the optimum cost and x denotes the optimum sequence
of pairs of the reference and virtual words.

Procedure B & B:

step 1; z+o0, A~ (e}, N (e} .

step 2; if A=¢, terminate the procedure; else xs(4)
and go to step 3.

150

Branching tree B

Seernernersennad 4 Serensenenassees ‘-"..‘ xi b(x)

@ X =Xi,Xig...Xin€Ls

Fig. 2 Pattern matching scheme based on the PMM Input speech
A for each PMM is omitted in the figure. Branching tree
structure B enumerates all the possible interpretations of
an input speech A. Branch-and bound procedure B & B ap-
plies the PMM patralelly through each branches of the tree
B. At every node x_L, matching cost h(x) is obtained.

step 3; if xeL, let z+min {z, f(x)}. Go to step 4.

step 4; if g(x)>z, go to step 8; else go to step 5.

step 5; if yDx for some y(#x)elV, go to step 8; else go
to step 6.

step 6; if yEQx for some y(#x)eN—A, go to step 8;
else go to step 7.

step 7; A—AU {xalael} — {x}, N«~NU (xa|ael}, and
return to step 2.

step 8; A—A— {x} and return to step 2. O

Fig. 2 represents the behavior of the procedure B & B.
By specifying a set of interpretations, we can construct
a branching tree structure B which enumerates all the
possible interpretations of an input speech A. Through
applying the PMM parallelly to each nodes on the bran-
ching tree B, we can evaluate the cost function for each
possible interpretation xeL and find the optimum inter-
pretation in all legal interpretations in L.

In this section, we provide an extension of the
restricted PMM, and a branch-and-bound formaliza-
tion of the optimization procedure which is an alter-
native of the recurrence equation formalization. Note
that until now the functions to compute both of the
state transition function 7 and the judgement geQr in
Def. 5 and not determined yet. Hence, the procedure in
Def. 6 represents a procedure rather than an algorithm,
however it is applicable to any syntax. In the next sec-
tion, we provide an algorithm for an arbitrary LR(1)-
syntax so that we accomplish the construction of a
pattern matching algorithm which processes a higher-
than-the-normal syntax.

T. KIMURA

4. Pattern matching algorithm for LR(1)-syntax

Now, we present a pattern matching algorithm for
LR(1)-syntax. We derive first a syntax automaton by
converting an LR(1) parser [14]} to an ifsa and then pro-
vide a segment automaton so that we obtain an PMM
which accepts an LR(1)-syntax.

4.1 Syntax automaton from an LR(1) parser

We derive algorithms to compute both the state transi-
tion function 7 and the judgement geQr by using an
LR(1) parser.

LR(1) parser P, is specified by a S-tuple (T, D,
Lp, Ou, W), where T, is a parsing table, D,, is a driver
routine, /,, is a input tape and contains a sequence of in-
put symbols, O, is an output tape and contains a resul-
tant parse-tree, W is a working area called a stack and
contains a part of the parse-tree as intermediate infor-
mation. W is modeled by a tape of semi-infinite length.

First, we define the configuration that is used to
define a state of the syntax automation in later.

Def. 7. Configuration [14]

Let (/,,) be contents of the input tape /,,, and (W) be
contents of the stack W. Configuration of an LR(1)
parser is denoted by C and is defined by C= 4, {(W),
). ©

Followings claims summerizes the feature of the con-
figuration of the LR(1) parser [14].

Claim 1. At each instant of parsing, LR(1) parser com-
putes a configuration in a finite time by looking one in-
put symbol ahead and then the current stack-contents.
The whole sequence of configurations finally obtained
specifies the whole parsing process of the input
sentence. O

Claim 2. At each instant of parsing, LR(1) parser pro-
duces some configurations from one input symbol.
Thus, one of the following formuli is satisfied by every
consecutive configuration indexed by i and i+ 1: |(Z,,)
=) is1, OF |Tnp) i1 +1. O

Claim 3. For the given LR(l) parser, (W), can be
taken in common for all the input sentences x$e/*$.
u]

Claim 4. After finishing all parsing processes, LR(1)
parser completes to generate the sequence of configura-
tions C,C, . . . Cyand, by using a contents of the stack
in the last configuration Cy, determines in a finite time
whether it accepts the input sentence x$€I*$ or not.
o

Let a sequence of configurations by CoC; . . . C; .
Cy which, generated by an LR(1) parser, discriminates a
parsing process for a sentence x$. This sequence is first
determined, and then transformed into a sequence of
states of the syntax automaton.

First, we define a transition-time when the syntax
automaton transites its state. Based on the claim 2, we
determine the transition-time as the time when the
length of the input tape changes.

The sequence of configurations is divided into sub-se-

Branch and Bound Algorithm for Phrase Level Pattern Matching by Using Deterministic Context-Free Grammar 151

quences at each transition-time. Each sub-sequence of
configurations, derived by the division, is called the ag-
gregation of configurations and is denoted by A;;.». For-

mally, A;.» is defined by the following; Ajm
=dej.[CiCi+1 e Ci+j]s where ‘(Inp)|i= |(1np)|l+k for
k=1, e ey j, '(Inp)|i¢ |(Inp)|i—ly and |(1np)|i;é I(Irvp)

li+;+1 (each {(I,,)|; contained by C)), and m indicates an
input symbol which is removed from the input tape
when C; is generated.

By the claim 1, we can state that for any input
sentence x,x; . . . X,$ (Vx€l), the aggregation of con-
figurations A, is reconstructed if the top configuration
C,; of the A, is kept for every x., i,j. Moreover, this
reconstruction requires only one input symbol x,, for
every m-th step. Hence, we choose the lookahead sym-
bol x., instead of the input tape (I,,) itself and combine
it with the stack content (W), in order to obtain the
representative element of the aggregation of configura-
tions A;;,.. Moreover, by the claim 1, we can state that
the production of the sequence of configurations ter-
minates in a finite time and that the whole parsing pro-
cess of the input sentence terminates in a finite time.
Hence, all the representative elements in a sequence of
configurations are generated by the LR(1) parser within
a finite time. Due to the above consideration, we
employ the stack content (W); in the top configuration
of the A, as the state descriptor of the LR(1) parser
for an input symbol x,, in a sentence x;x; . . . x,3.

The set of states of the syntax automaton M, consists
of all of the state descriptors. Based on the claim 3, we
may take (W), in common for all of the input sentence
x$el*$. We take it as the initial state go of the syntax
automaton M,. A final state of the syntax automaton
M, is defined by a stack content (W)y contained in the
last configuration Cy of the sequence C,C,. .. Cn.
Then, the judgement geQr is computable by the Claim
4,

Due to the above consideration, we construct the
state transition function 7 for the syntax automaton M,
by the following.

Def. 8. State transition function T

For the given LR(1) parser, let go be (W), and let g,
be (W).. The stack contents (W), is contained by the
top configuration C; in the aggregation of configura-
tions A,;», and is generated when the m-th input symbol
Xm is just input. Then, the state transition function 7 is
defined by T(gm-1, Xm)=qm for every positive integer m
inductively. O
This state transition function 7 is computable because
of the claim 1. The cardinality of the set of states com-
puted by the above 7 may surely be infinite because the
capacity of the stack is unlimited.

With each state descriptors, we can associate contents
of the output tape generated by then. They represent a
partial parse-tree (i.e. syntactic information) and are
used for the subsidery output string of a PMM.

We must remark the following notice. If the above
definition of the state transition function 7 implies for

any LR(1) parser that T(q, x)=T7(q, y)=x=y for any
x, yeI* and geQ, the effect of the D,, appearing in the
def. 6 vanishes effectively. In this case, the computa-
tional efficiency of the procedure B & B is reduced to
one of the simple enumeration procedure. We can pro-
ve that this case can not happen but the proof is left for
another place because it requires some complicated pro-
cesses.

4.2 Segment language and segment automaton

In this section, we provide an instance of a segment
automaton M, and its special case M. Since we will
treat the length of input sentences as being unlimited,
we use another segment language L, different from the
one that appeared in Section 2. First, we define it.
Def. 9. Segment language Ls

Let a be an arbitrary reference word, the length of the

template pattern associated with it be In (a), and o4, 0,,
A, A, be finite integers respectively. The alphabet I, for
the segment language L, is defined below: I,;= 4, {{In
@, i, j, alael, ielo, a+1, . .., 0}, je{d, A+1, ...,
A}, where I is the vocabulary for the conversation.
Then, the segment language L, is defined below:
Ls=def,(ls)*~ 8]
The segment language L, consists of sequences of sym-
bols each of which is in a form of {In (a), i, J, @); each
of the elements In (a), i, j, and a is regarded as a mere
sub-symbol.

By the following reasons, I; is a finite set. Hence, the
segment language L, is a normal language. Since In (@) is
a length of the template pattern associated with the
reference word a, it is a finite integer and is determined
when the pattern is registered. The integer / represents a
measurement of overlapping segments which is defined
by a juncture of virtual words each of which is located
on the input speech consecutively. Integers o, &, are
finite constants to limit to lower and upper bound of the
overlapping patterns respectively, and their values are
determined empirically based on the preliminary study
of speeches to be recognized. The integer j represents a
measurement of the fluctuation in the length of
template patterns which compensates the fluctuations in
the length of input speeches. Integers 4,, 4, represent a
lower and upper bound of such the measurement respec-
tively and are determined by an algorithm which is in-
herent to the method to match the reference and the vir-
tual word. As is shown above, parameter o, 0, A4, and
A, can be determined when a registration of all the
reference words has finished and are of finite values.
Therefore, the vocabulary I; is determined as a finite set
before recognition computation starts.

The above segment language L, is accepted by the
following ifsa M,, and it defines the segment
automaton.

Def. 10. Segment automaton M,

The segment automaton M, is defined as the follow-
ing ifsa which accepts the language L,: ifsa M1=(Q, I,
qoi, Ti, Or), where Q= {[1, 0} U {[1, gq]IgeK} (Kis a

152

set of positive integers); I,= {{In (@), i, j, @) |In (@) is an
integer constant. / and j are integer variables.} ; go=[1,
0, Ti: Qqxh—=0, Til,q], {n(a),ij,a)=[1,
g+(n (@ +i+))]; On=1{[1, L}|Le{all possible I's}},
where 7 is the number of feature vectors contained in
the input speech A. o
Although L, is a normal language, we use an ifsa
rather than an fsa as its acceptor because we consider all
possible input speeches (note that Q= {[1, L] | Le{all
possible I's}}). We assume that every input speech is of
infinite length, and in order to extend the input speech
virtually, we consider than a particular feature vector
denoted by a., is added for infinite times to the actual in-
put speech. This vector a,; matches only to a particular
reference word pattern $ which represents an end-
marker of a sentence and, for any other reference
words, takes an infinite value of a distance function.
Hence, the procedure B & B processes only an actual in-
put speech A=aya; . . . a;during the optimization com-
putation if it uses a best-bound search function.

4.3 PMM for given LR(1)-syntax

During the above discussions, we have determined a
pair of ifsa’s M| and M,. Now, we can determine a base-
automaton M <M, X M, so as to obtain a PMM for a
given LR(1)-parser. We here provide an example of the
base-automaton M and then its variation.

We derive a syntax automaton M, by applying Def. 8
to the given LR(1)-parser P,,. We then obtain the seg-
ment automaton M, by using the ifsa defined by Def.
10. Consequently, a base-automaton M of the PMM is
obtained as the following form:

Def. 11. A base-automaton M for an LR(1)-syntax

Let M\=(Q, I, go1, T\, Qr) be a segment automaton
having a form defined by Def. 10, and M,=(Qz, L, qo,
T,, Q) be a syntax automaton having another form de-
fined by Def. 8. Base-automaton MCM, XM, is
defined by the ifsa of the following form: M=(Q, I, g,
T, Qr), where Q=0 x Qs I=IiXDL; qo=<qo, go:);
Or=0r X OF2; TKq, g, KIn (@), i, j, a, a)
=<{T(g:, {In (@), i, j, @), To(qz, @)>. O
In the above definition, only the symbol of the form
In (a3), i, j, @), @) is used for the argument of the
state transition function 7. This is because of the defini-
tion of the In (@), and is a realization of TST,x T,
rather than 7=T7, X T>.

Though we have already studied a discrete-word
recognition in the previous paper [9], it can be con-
sidered as a special case of the above matching scheme.
Discrete-word sentence is a spoken sentence and, for
every words contained in such the sentence, its beginn-
ing and ending points are assumed to be already ob-
served. In other words, it means that virtual words
composing the input speech pattern are uniquely
determined before starting the recognition process.
Therefore, we can assign an index number for each vir-
tual word and it can be used for the state of the segment
automaton.

T. KIMURA

Def. 12. Segment automaton M; for discrete-word
sentences

Let M| be an ifsa defined below: M;=(Q;}, I}, go:,
T\, Or), where Q1'= {g|geK U {0} } (X is the set of all
positive integers); I1={1}; ¢o=0; grn= {grlgrelall
possible number of virtual words contained in the given
sentence} } ; Ti(q, a)=q+1 for YgeQ), Yael,. O
The ifsa called a matching automaton in [9] is obviously
derived by using the pair of M; and M,.

Finally, we present a form of the cost function and
obtain an PMM by combining it with the base-
automaton M.

Def. 13. Cost function 4

Let a base-automaton be M=(Q, 1, qo, T, O5), and a
non negative function d. The cost function 4 is defined
as the following form:

h¢, q, a)=¢+d(q, a),

h(&o, qo, xa)=h(&o, go, X) +d(T(qo,), @). O
This form is common in the field of speech recognition
where one uses a distance function as the function d.
Hence, we can verify easily that it satisfies the positive
and strict monotonousness conditions of the im-
smsdp’s.

Since ifsa M, and M, (as well as M;) are composed by
the set of computable functions, we have finished
presenting algorithms to compute both of the state tran-
sition function T and the judgement geQr for the PMM
of the given LR(1)-syntax. Therefore, all of the steps in
the pattern matching procedure B & B become admissi-
ble to compute for the given LR(1)-syntax. Conse-
quently, we obtain a pattern matching algorithm which
accepts an LR(1)-syntax.

We finally note that the result in this section is also a
new result in the field of combinatorial optimizatin
because it supplies a dynamic programming algorithm
for a class of set of policies belonging to the class of the
LR(1)-languages, i.e., higher-than-the-normal lan-
guages.

5. Conclusion

We have presented a pairwise Markov model (PMM)
for deriving a new phrase-level pattern matching
algorithm and obtained an algorithm which processes
an LR(1)-syntax. This algorithm is usable to describe a
conceptual behavior of a continuous-word recognizer
which accepts an LR(1)-syntax. PMM is an acceptor of
an input speech and its interpretation, and outputs
likelyhood of the interpretation for the input speech.
PMM has formalized as an infinite state sequential deci-
sion process (isdp) whose base-automaton is composed
through a Cartesian product of two infinite state
automata (ifsa’s). The syntactic structure of the PMM
is the same as a finite state sequential decision process
(fsdp), and a finite state PMM is reduced to an fsdp.
Concerning the pattern matching algorithm, we have
considered both finite and infinite state PMM’s (called a
restricted PMM and a full PMM respectively). We have

-

Branch and Bound Algorithm for Phrase Level Pattern Matching by Using Deterministic Context-Free Grammar 153

shown a restricted PMM recurrence equation and its
equivalence to the Sakoe’s G2DP (generalized two-level
DP-matching algorithm [1]) recurrence equation. By us-
ing a full PMM, we construct a new pattern matching
algorithm which processes an LR(1)-syntax.

We are investigating a further improvement of the
PMM. In order to approach the personal speech under-
standing system (personal SUS), we must combine the
semantic information processing scheme with the
PMM. We now consider that the Marcus grammar [16]
suggests a method for the combination of them. Marcus
grammar specifies a subset of natural English in which
each sentence can be parsed deterministically similar to
the LR(1)-grammar. Semantic information is used to
enhance the applicability of the deterministic parsing
scheme to the sentences to be parsed. If a grammar of
the Marcus’ type could be combined with the PMM, we
would obtain an improved B & B procedure on the view-
point of the semantic information processing. Further-
more, we would use a probabilitic PMM on the view-
point of the pragmatic information processing (which
may appear in the adaptation of the recognizer to the
talker as is mentioned in {17]). In this case, we may use
a probabilitic automaton within the PMM instead of
the deterministic ifsa.

We consider that we can approach a personal SUS by
using a pattern matching method. PMM and branch-
and-bound method provide conceptual frameworks of
the personal SUS.

Acknowledgement

The author conveys sincere thanks to Dr. Tosio
Kitagawa, president of the International Institute for
Advanced Study of Social Information Science, for giv-
ing him a chance for the present study and continual
guidances. The author also thanks heartfully Dr. Mit-
suo Komura for his eager discussions, worthfull direc-
tions of this work, continuous encouragements and sup-

ports during this study. The author also acknowledges
Dr. Toru Nakagawa for his help to reorganize and
rewrite this paper, and critical readings of this
manuscript. The author thanks to members of the pat-
tern recognition project for their helpful advises.

References

1. Sakog, H. A Generalized Two-Level DP-Matching Algorithm
for Continuous Speech Recognition, The Transactions of the IECE
of Japan, E 65, (1982).

2, SAKOE, H. and CHiBA, S. Dynamic programming algorithm op-
timization for spoken word recognition, JEEE Trans. Acoust.,
Speech, Signal Processing, ASSP-26-1 (1978).

3. Lowerrg, B. The Harpy Speech Understanding System, in
TRENDS IN SPEECH RECOGNITION, W. Lea (ed.), Prentice-
Hall, Inc. (1980).

4. JeLnek, F. Continuous speech recognition by statistical
methods, Proc. IEEE, 64 (1976), 532-556.

5. ERrRMaN, L. D. and LESSER, V. R. The Hearsay-11 Speech Under-
standing System: A Tutorial, in TRENDS IN SPEECH RECOGNI-
TION, W. Lea (ed.), Prentice-Hall, Inc. (1980).

6. WaLKER, D. E. SRI Research on Speech Understanding, in
TRENDS IN SPEECH RECOGNITION, W. Lea (ed.), Prentice-
Hall, Inc. (1980).

7. WoLF, J. J. and Woop, W. A. The HWIM Speech Under-
standing System, ibid. (1980).

8. Proceedings of ICASSP (1986).

9. KIMURA, T. Branch and Bound Algorithm for Phrase Level Pat-
tern Matching By Using Deterministic Context-Free Grammar,
Research Report 60, 11AS-SIS (1986).

10. Kare, R. M. and HELD, M. Finite-state processes and dynamic
programming, SIAM J. Applied Mathematics, 15 (1967), 693-718.
11, IBARAKI, T. Solvable Classes of Discrete Dynamic Programm-
ing, J. Mathematical Analysis and Applications, 43 (1973), 642-693.
12. IBARAKI, T. Branch-and-bound procedures and state space
representation of combinatorial optimization problems, Information
and Control, 36 (1978), 1-27.

13. Hopcrorr, J. E. and ULLMAN, J. D. Formal Languages and
Their Relation to Automata, Addison-Wesley Publishing Company,
Inc. (1966).

14. AHo, A. V. and ULLMAN, J. D. The Theory of Parsing Transla-
tion and Compiling, 1: Parsing, Prentice-Hall Inc., Englewood Cliffs
(1972).

15. SaLomaa, A. Theory of Automata, Pergamon Press Lid.,
(1969), Chapter 4, Section 8.

16. MaRcus, M. P. A Theory of Syntactic Recognition for Natural
Language, The MIT Press (1980).

17. CoHEN, P. S. and MERCER, R. L. The Phonological Component
of an Automatic Speech-Recognition System in Speech Recognition,
Reddy, R. (ed.), Academic Press Inc. (1975).

(Received January 24, 1986; revised June 10, 1987)

