Invited Paper

Dataflow Computer DFNDR-2 and its Extension

MASAHIRO SOWA*

Dataflow processing has the special advantages of freedom from side-effect and the optimal exploitation of
the inherent parallelism of programs. It also has shortcomings such as poor efficiency in executing serial pro-
grams, non-compatibility with conventional computers, non-flexibility and poor efficiency in manipulating data
structures. To avoid these shortcomings, a program counter, the mechanism of von Neumann processing and
the mechanism of parallel control flow processing are introduced to dataflow computers. This paper describes
methods of introducing such mechanisms into the dataflow computers. This introduction could be done with

almost no increase in the hardware cost.

1. Introduction

Recently dataflow computers have attracted many
researchers because they exhibit some desirable features
which von Neumann computers lack. Basic studies of
dataflow schemes have been promoted by many
research organizations and some have been built or are
currently under construction (e.g. [1-11]). Pure
dataflow processing has the special advantages of
freedom from side-effects and the optimal exploitation
of the inherent parallelism of programs.

On the other hand, the dataflow system suffers short-
comings such as poor efficiency in performing serial pro-
cessing, low-ability to execute von Neumann process-
ing, non-flexibility resulting from performing programs
only in accordance with direct dependence among data
[17], poor efficiency in manipulating the data structure
[13], etc. There is always a certain amount of serial pro-
cessing in a dataflow program. In serial processing,
dataflow performance remains unequal to that of von
Neumann computers. The data structure should be
treated in serial because of the unsynchrony principle
[12]. In this case the relatively slower execution of the
serial part(s) of a dataflow program may negate the
speed-up obtained in the execution of the concurrent
parts(s). In programs like, for example, searching, sor-
ting and serial I/O processing, serial processing may be
preferred for simplification or high speed processing.
But it is almost impossible to rewrite a parallel program
into a serial one.

Although the control flow processing has a drawback
in which it suffers side effects, it has great flexibility such
as ability of writing many kind of programs to solve one
problem, and capability of manipulating data struc-
tures in parallel. This is because the processing

*Department of Electrical Engineering and Computer Science
Nagoya Institute of Technology, Gokiso, Syouwaku 466, Nagoya,
Japan.

Journal of Information Processing, Vol. 10, No. 4, 1987

mechanism is not directly affected by the dependency ex-
isting among data. The principle underlying the cur-
rently most popular von Neumann computer system is
based on the concept of control flow processing [12].
That is, it is a serial control flow processing by means of
a program counter. The great flexibility is one of
reasons why a von Neumann computer is so popular in
spite of its serial processing property.

To avoid the shortcomings, mentioned above, of
data flow computers, we proposed to introduce a pro-
gram counter to speed up its serial processing. Von
Neumann processing is introduced mainly to get com-
patibility with conventional computers and also to
speed up its serial processing, and parallel control flow
computation mechanism to increase flexibility into
dataflow computers.

This paper describes how to introduce them into a
dataflow computer.

2. Datafiow Computer DFNDR-2

In a dataflow computer DFNDR-2, which is a virtual
machine derived from DFNDR-1, built in our univer-
sity on an experimental basis [10], an actor or instruc-
tion is constructed as an actor packet and a token or
data is constructed as a token packet (TP). To represent
these in detail, BNF syntax is used with brackets [] in-
dicating one or more repetitions of enclosed item(s).
The actor packet consists of a function and one or more
output arcs. The output arc also serves as the input arc
of the destination actor.

<actor packet) :: ={function)[{output arc)]

{output arc):: =<{destination actor name)
{destination actor input arc
number)

The {destination actor name) (DNA) is the name of the
actor to which the resultant data or token is to be sent.

Dataflow Computer DFNDR-2 and its Extension

It is therefore the address in memory where the actor is
to be stored. The {destination actor input arc number)
identifies which input arc of the destination actor
receives the token. The resultant token is sent to a so
called token memory as a {resultant token packet),
which consists of one resultant token, a color and an
output arc.

{resultant token packet) :: ={output arc)
{color){token)

The color shows the instance of its program.

In the token memory, the token packet is constructed
from (resultant token packet)>s which have the same
{destination actor name) and {color). Thus, the token
packet consists of a {destination actor name), <{color>
and one or more tokens.

{token packet) :: ={destination actor name)
{color)
[{destination actor input arc number)
{token)]

A (token packet) is said to be completed when it
receives all the necessary token(s) for firing its associ-
ated actor. It is then called a complete token packet
(CTP).

The DFNDR-2 dataflow computer consists of five ma-
jor components: 1) a token memory(TM), 2) processing
units(PU’s), 3) an arbitration network(ARN), 4) a
memory(M) and 5) broadcast bus(BB) as shown in
Figure 1.

Token memory (TM) is a relatively small multiport
and associative memory which stores {token packet)s.
Memory (M) is an interleaved multiport memory which
holds data structures and the dataflow program in the
form of <{actor packet)s. Arbitration network (ARN)
resolves memory contentions and connects processing
units to the memory. A broadcast bus(BB) drown in
broken lines is used in section 4.

An actor is executed by one processing unit as
follows. An available processing unit fetches a complete
token packet(CTP) from the token memory (CTP fetch
cycle). Then, using the {destination actor name) of the
complete token packet, it fetches an appropriate {actor
packet) from the memory (Actor packet fetch cycle)
and executes the specified {function) on the data in the

PU ARN M

™
P [DARCITH 8
T?z —1

P
P
e csce

Fig. 1 Structure of the computer.

253

complete taken packet. (Execution cycle). After execu-
tion, resultant tokens are sent to the token memory as
the {resultant token packet)s. {resultant token packet)
s with the same {destination actor name) and {color)
are combined and stored in the one word of the token
memory. This will become a complete token packet (up-
date cycle). This combination is determined by the
associative function of the token memory. And its pro-
cess is similar in concept to the matching of tokens in
other dataflow computers. The 7; in Figure 1 is the
token which is to be sent to the ‘‘’’th input arc of the
destination actor. As described earlier, in this architec-
ture all data items are passed to the actors via the token
memory, and the actor is allocated dynamically to the
processing unit. So no concern is needed for allocating
a program when loading it.

3. Introduction of a Program Counter into the
Dataflow Computer

Even in serial execution in dataflow computers, ex-
plicit expressions are required to be used for transferr-
ing data between instructions and for link manipula-
tion, which makes serial processing in a dataflow com-
puter slower. In serial processing, however, the order of
execution is deterministic because only one actor is
firable at any given time. It is possible, therefore, to
simplify the operations by introducing two additional
features into the dataflow computer: a) The exclusive
allocation of one processing unit to each serial part of a
dataflow program, b) The storage of actors in execution
order in the memory.

From a), one of the resultant tokens can now be
passed to the next actor via the processing unit rather
than the token memory. This can result in faster token

-exchange. From b) which is popular in von Neumann

computer, the memory address of the next actor, the
{destination actor name), can be calculated by adding
the word length of the executing actor to its {destina-
tion actor name) (except for a BRANCH-like-instruc-
tion). This permits the omission of one of the arcs be-
tween the actors. An increase in speed is highly pro-
bable because one of the link manipulations is now
dispensable.

To implement this mechanism, it is necessary to add a
program counter and an accumulator to each process-
ing unit, and to store the actors of the serial parts of the
programs in execution order in the memory. This makes
it possible to send one of the resultant tokens to the
next firable actor via the accumulator. The next firable
actor is found by the program counter as in a von
Neumann computer. The fetching of an {actor packet)
moves the program counter on by the appropriate
number of increments. It should be emphasized here
that a datafiow computer, even with a program counter
and accumulator, is nevertheless distinct from a von
Neumann computer. While a dataflow computer with a
program counter executes serial dataflow programs on a

254

data driven principle, a von Neumann computer ex-
ecutes serial control flow programs. That is, their execu-
tion model is the same but computation model is
different. The former has no side effect, but the later
has.

The choice of the next firable actor is determined by
the program counter, in contrast to the complete token
packet method shown in section 2. In effect, the addi-
tion of the program counter update operation allows
the omission of the operation fetching {destination ac-
tor name). The number of iteration required for token
fetch, output arc fetch and <resultant token packet)
storage is decreased by one.

Switching between the conventional and modified ex-
ecution modes occurs when the code is interpreted, in ac-
cordance with information embedded in the {function)
code.

Simple analysis based on the constant values actually
obtained from the dataflow computer DFNDR-1
machine, which was built from TTL with MOS
memory, says that this method accelerates the execution
of serial processing by as much as 20-50% [11].

4. Introduction of von Neumann Processing

By adding von Neumann processing ability to the
dataflow computer, the computer will have great flex-
ibility, compatibility with current computers and the
ability to execute serial programs at high speed. It im-
plies that together with dataflow processing, the com-
puter can execute a large number of von Neumann pro-
grams which have been developed.

In order to implement the von Neumann mechanism,
a program counter and accumulator A, B and C are
added to each processing unit.

(o]

=

"o
HCTH
eerie D

N3 N-begin
Neumann
- program
(2]
w STB DATA (C)
2 LOOP ADDA #2
- CMPA DATA (C)
o BLO LOOP
-
C Hmend D
3
Ns Ne

Fig. 2 Date flow program including von Neumann one.

MASAHIRO SOWA

Figure 2 shows an example program where both von
Neumann and dataflow processing exist, where a com-
plete token packet(CTP) is superimposed. N-begin in
the figure is an instruction indicating that after this in-
struction, von Neumann program should be executed.
That is, when the processing unit fetches an <actor
packet) from the memory and its function is N-begin,
the processing unit puts the {(destination actor name) of
the {output arc) into the program counter, then begins
von Neumann processing. While N-end is an instruc-
tion to indicate the end of execution of a von Neumann
program. When N-end instruction is fetched, the pro-
cessing unit begins dataflow processing by using data in
the accumulator and output arc(s) of N-end. In this pro-
gram, the input data to the left input arc of N-begin is
given to accumulator A and the input data from the
right is given to accumulator B. The content of ac-
cumulator A is output to the output arcs of N-end. To
calculate the minimum value of x+y+2n not less than
x?, the LOOP body of the von Neumann program is
repeated n times. It is sure that the needed data are
fetched and stored from/to the memory(M) during von
Neumann execution.

In the dataflow processing, color is used to show the
instance of its program. Coloring is performed when
the procedure is called. When the execution of the pro-
cedure is completed, coloring in the reverse direction is
performed.

In the case where the procedure contains a von
Neumann program, there must be prepared a
mechanism to handle the coloring for von Neumann
program. That is, a certain work memory area for the
von Neumann program must be prepared for each call.
In other word, a work memory area must be prepared
for each instance of the von Neumann program. The
work memory area, which stores the data of the pro-
gram, is provided for each token color given in the com-
plete token packet to the N-begin actor. In other words,
when the complete token packet is input to N-begin ac-
tor, a work memory area(WMA) correspond to the col-
or of the complete token packet is given by the memory
manager and the beginning address of the work
memory area is put into the accumulator C, then the
processing unit begin executing von Neumann program
by using accumulator C as a base register, which is
popular in, for example, the IBM 370 computer. The
work memory areas is released when N-end instruction
is executed.

This introduction makes it possible for the computer
to do parallel processing together with von Neumann
processing. A simple analysis says that the serial process-
ing of von Neumann computers is about 3.4 times faster
than that of dataflow computers with no program
counter [12]. In general, with VLSI technology, it also
seems unlikely that cost would be prohibitive.

Dataflow Computer DFNDR-2 and its Extension
5. Parallel Control Flow Processing

In the dataflow processing, data flows in a program.
In contrast, in the control flow processing, the token in-
dicating ‘‘control of execution’’ which is termed con-
trol token flows in the program. With the phrase ‘‘con-
trol of execution,”’ it is intended to mean ‘‘permission
of execution for an instruction or an actor’’ so that only
upon arrival of the control token(s) at a instruction, the
associated execution is allowed to be initiated. It should
be noted that in case of data flow processing, data
represents value to be processed and at the same time
serves for the function of the control token.

Figure 3(a) illustrates a control flow program for
calculating d=(ab+ bc)(a—b). At each of the actors,
the function or instruction described in the actor is ex-
ecuted upon arrival of the control token at the associ-
ated input arc. Upon completion of the execution, the
control token is output on the associated output arc(s).
In Figure 3(a), it is assumed that executions at the ac-
tors N3, N4 are in the state available for execution. Sym-
bols M, S and A represent, respectively, multiplication,
subtraction and addition, and x, y, z, a, b, ¢ and d repre-
sent variables. Values of the variables are stored in the
memory the same as in von Neumann computers. The
instruction M b, ¢, y in actor N2, for example, means
that data stored in the memory at the addresses b and ¢
are to be read out and to be multiplied with each other,
then the resultant data is to be stored in address y of the
memory. In its expression, the control flow program
differs from the dataflow program in that an instruction
contains designators or addresses for the data. The il-
lustrated program suggests the possibility of the process-
ing at the actors N1, N2 and N3 being executed in
paraliel.

(a) Control flow

program

Fig. 3

(h)Control filow

255

In dataflow processing, the data must necessarily be
prepared by the immediately preceding actor. In con-
trast, in case of the control flow processing, data may
be prepared at any actor so far as they are located
upstream of the actor whose content is to be executed.
In this sense, it can be said that the control flow process-
ing has no direct dependence on the data. This is the
main reason why the control flow processing has great
flexibility. Since the control flow processing has no
direct data dependency, the program in Figure 3(a) can
be rewritten as shown in Figure 3(b) or Figure 3(c). It is
noted that the program in Figure 3(c) is a serial control
flow program which is very similar to the von Neumann
one. In fact, if the program would be rewritten again so
as to be executed by using a program counter and ac-
cumulators, it becomes a von Neumann program.

The <actor packet) of the datafiow computer is
modified to execute the control flow programs as
follows.

{actor packet) :: ={function){operandl)
{operand2){operand3)
{# of arcs)[<output arc)]

where {operand1), {operand2), {operand3) represent
the memory address or data and {# of arcs) represents
the number of {output arc)s. Since the control token is
used for indicating its ‘‘presence’” or ‘‘absence’’, each
token of the {token packet) may be of a single bit. That
is, just one bit of the {token) in the {token packet) is
used for the control token.

The control flow processing begins when the {func-
tion) of an <actor packet) is for the control processing.
In the control flow processing, only the operation of the
Execution cycle is different from a dataflow one. In the

LN

Ny

~{HHEH

(c)Serial control
program with flow program

reduced parallelism

Control flow programs d=(ab+bc)(a—b).

256

execution cycle, the processor reads out the data
designated by the effective address made from the
{operand1) and <operand2) from the memory and ex-
ecutes the function on the data. After completion of the
execution, the resultant data is stored at the memory
designated by the effective address of {operand3).

The work memory area should be prepared for the
control flow processing by the similar reason in the von
Neumann one. To prepare work memory areas for the
control flow processing, a work-memory-area
table(WMT) and a broadcast bus(BB) are added to the
architecture of the dataflow computer. The work-
memory area table is added in each processing unit and
it consists of color(C) and work-memory-area
pointer(WMP).

{work-memory-area table) :: ={color>

{work-memory-area
pointer)

The broadcast bus is connected to each processing unit
as shown in Figure 1. When a procedure including the
control flow processing is called, a new color and the
work memory area are given to the procedure instance.
Then this new color and the beginning address of the
work memory area are sent to all processing units via
the broadcast bus. The color is stored in the {color)
part of the {work-memory-area table> of each process-
ing unit and the beginning address is stored in the
{work-memory-area pointer) part. The effective ad-
dress is determined by adding the content of the {work-
memory-area pointer) to {operand1), {operand2) or
{operand3). The color and work memory area are
released when the procedure execution is completed. A
simple analysis says that the speed of the parallel con-
trol flow processing is 32% slower than that of the
dataflow one [17].

6. Conclusion

To overcome the shortcomings of the dataflow com-
puter, the methods to implement a program counter,
von Neumann processing and parallel control flow pro-
cessing have been described based on the DFNDR-2.

It has been shown that by introducing a program
counter and an accumulator, the execution time of the
serial part of a dataflow program can be reduced by be-
tween 20-50%. It can be seen that the von Neumann
concepts of a program counter and an accumulator
could be usefully employed, even in a dataflow com-
puter, to speed up serial processing.

Introducing von Neumann processing into the
dataflow computer increases the flexibility of the pro-
cessing and speed-up of serial processing. By this in-
troduction, it becomes possible to execute tremendous
number of conventional programs by this computer.
This will realize a mixed processing of dataflow and von
Neumann.

Since execution order of actors of the control flow

MASAHIRO Sowa

processing does not directly depend on the data
dependency, the control flow processing can enjoy cor-
respondingly increased flexibility as compared with the
data flow processing. Due to this flexibility, the data
structure can be processed easily in parallel. Of course,
the enhanced flexibility in turn may bring a side effect to
the processing itself. Such influence, however, could be
evaded by executing the control flow program
translated from the dataflow program [15]. The point is
that with almost no increase of the hardware cost, the
computer will obtain flexibility, compatibility, and
speed-up of serial processing.

To confirm the proposals experimentally, the
mechanisms without the introduction of a program
counter have been implemented in the real data flow
computer DFNDR-1.

References

1. DeNNis, J. B. First version of a data flow procedure language,
Proceedings of the Symposium on Programming, University of Paris
(April 1974).

2. ARVIND, GostELOw, K. P. Some relationship between asyn-
chronous interpreters of data flow languages, Formal Description of
Program Languages, E. J. Neuhoid, Ed., North-Holland, New York
1977).

3. WATOsON, I., GURD, A. A prototype data flow computer with
token labeling, Proceedings of the AFIPS Conference, 25 (1982).

4. Sowa, M., MuURATA, T. A data flow computer architecture with
program and token memories, /JEEE Trans. on Computers, C-31, 9
(Sep. 1982).

5. AMAMIYA, M., HASEGAwWA, R., NAKAMURA, O. and Mikami, H.
A list processing oriented data flow machine architecture, Pro-
ceedings of National Computer Conference, AFIPS, 143-151 (1982).
6. Hiraki, K., SHIMADA, T. and NisHIDA, K. A hardware design of
the SIGMA-1—A data flow computer for scientific computations,
Proceedings of International Conference on Parallel Processing,
IEEE, (1984).

7. Suzuki, T., KURIHARA, K., TANAKA, H. and MoTtooka, T. Pro-
cedure level data flow processing on dynamic multimicroprocessors,
Journal of IPS Japan, 1.5, 1, 11-16 (1982).

8. NisHikawa, H., Asapa, K. and Terada, H. A centralized con-
trolled multi-processor system based on the data-driven scheme, Pro-
ceedings of 3rd International Conference on Distributed Computing
Systems, 639-644 (1982).

9. Gauskl, D. D., Pabua, D. A., Kuck, D. J. A second opinion on
data flow machines and languages, Computer, 15, 2, (Feb. 1982).
10. Sowa, M., Ramos, F. D., MuraTta, T. Construction and struc-
ture of prototype data flow computer DFNDR-1 and subroutine im-
plementation, Proc. of IEEE the First International Conference on
Computers and Applications, Beijing China, pp. 490-497 (June 1984).
11. Sowa, M. An effect of introducing program counter into a
dataflow computer, JECE Japan, Proceedings of 1986 Dataflow
Work shop, pp. 33-38 (May 1986).

12. Sowa, M. Execution mechanism of von Neumann program in
dataflow computer, JECE Japan, Tras. J-67, 5 (May 1984).

13. Sowa, M. Control flow parallel computer architecture, IPS
Japan, Report of Computer Architecture Study Group, 45-1, (March
1982).

14. TRrELEAVEN, P. C., HoPkins, R. P. RANLENBACH, P. W. Com-
bining data flow and control flow computings, The Comput. J., 25, 2
(1982).

15. Sowa, M. Universal flow computer, IPS Japan, Proceedings on
Computer Architecture Work Shop in Japan’ 84, pp. 113-121 (Nov.
1984).

16. Sowa, M. and Aok, T. Realization result of prototype control
flow computer, Annual convention IECE Japan, 7, pp. 1714 (March
1985).

17. Sowa, M., WATANABE, Y. Performance evaluation of parallel
computer with cache memory and pipeline processing, JECE Japan,
Report of Computer Architecture Study Group, EC85-36 (October
1985).

(Received November 2, 1987)

