Invited Paper

Efficient Stream Processing in GHC
and Its Evaluation on a Parallel Inference Machine

NorivosHi ITo*, Etn Kuno* and TERUHIKO OOHARA*

A set of primitives to implement efficient stream processing in GHC, Guarded Horn Clauses, and its evalua-
tion results on PIM-D, Parallel Inference Machine based on the Dataflow model, are presented. The language is
efficient as the conventional procedural languages, because stream processing, the basic operation in GHC, is im-
plemented as machine primitives rather than creating enormous merge processes. In order to support such

”

primitives with preserving ‘‘logically correctness,

only one extra bit shared flag added to every pointer is

sufficient. The evaluation results show that performance is improved by introducing such primitives.

1. Introduction

The authors are investigating a parallel inference
machine aiming at the Fifth Generation Computers.
The target language is called KL.1, Kernel Language ver-
sion one, whose basis is on a stream AND-parallel logic
language called GHC (Guarded Horn Clauses) [14].
GHC provides powerful description power and has
clear semantics. In the GHC programs, goal activation
is assumed as process invocation. Communication be-
tween these processes is performed via unification on
logical variables shared among the processes. The pro-
cesses invoked by the goal attempt to unify the shared
variables with sequences of messages (streams) to be
sent or received.

The typical applications of the parallel inference
machine include generate-and-test problems. In these
problems, a producer process generates a stream of can-
didate solutions, while a consumer process gets the can-
didates via the stream and tests if they satisfy the
specified conditions. Again, new generate-and-test
phases may be initiated using these solutions until the
final solutions are obtained. Here, we can initiate multi-
ple producer processes in parallel if possible; the solu-
tions generated by these processes are merged into a
single stream in nondeterminate manner and then sent
to the consumer.

In GHC, such stream merging is logically performed
by creating perpetual processes; a stream merge process
is created when two or more streams are merged. The
merge process waits for solutions from the multiple pro-
ducers and produce a merged stream to send to the con-
sumer. If such stream merging is implemented directly
as the perpetual processes, heavy overhead to create
and manage the merge processes may degrade system
performance.

The proposed stream primitives can support efficient
stream processing as in the conventional procedural

*OKI Electric Industry Co., Ltd.

Journal of Information Processing, Vol. 10, No. 4, 1987

languages, such as FORTRAN or C language. In order
to support such primitives with preserving ‘‘logically
correctness,’”’ only one extra bit shared flag added to
every pointer is sufficient [9].

As the first step of the project, we developed an ex-
perimental machine called PIM-D (Parallel Inference
Machine based on the Dataflow model) [10]. Programs
in the dataflow model are represented by dataflow
graphs, where nodes correspond to operators and
directed arcs correspond to data paths along which
operands are sent. Execution of the graphs is performed
in a data driven manner. That is, each node becomes ex-
ecutable only when all the operands have arrived on its
input arcs; it performs the operation and puts the
results on its output arcs without side-effect. This func-
tionality of the operators assures independent execution
of the operators whose operands are ready; they are ex-
ecuted in parallel without affecting the other active
operators [1] [2] [6]. The machine, therefore, can easily
exploit the parallelism in the programs.

The machine is constructed from multiple processing
element module and structure memory modules inter-
connected by a network. Each processing element
module interprets the data flow graphs in parallel and
transfers packets to/from other processing element
modules or the structure memory modules. Each struc-
ture memory module stores structured data and is
responsible to the structure accessing command packets
from the processing element modules. The evaluation
results of the stream merging primitives on PIM-D
show that performance is significantly improved.

The informal semantics of GHC and stream process-
ing in GHC are outlined in Section 2, and the efficient
stream primitives are proposed in Section 3. Section 4
shows a brief description of PIM-D machine architec-
ture, and the evaluation results of the stream processing
are described in Section 5.

238

2. Semantics of GHC

GHC is a basic language of KL1, which is a machine-
independent language of the parallel inference machine.
GHC is one of AND-parallel logic languages, such as
PARLOG [5] or Concurrent Prolog [13]. Of these,
GHC is simplest because it is a minimum extension of
Horn Clauses; only the guards are added to Horn
Clauses. In full GHC which allows any user-defined
predicates in the guards, compile-time detection of
suspensive unification is difficult; the compiler must
generate codes so that unification operations to unify
unbound guard variables with non-variable terms are
suspended until the guard variables are instantiated.
Therefore, flat GHC, which allows only built-in
predicates in the guards, was selected as the basic
language of KL1 [11].

But flat GHC still provides powerful description
power and has clear semantics. In the GHC programs,
goal activation is assumed as process invocation. Com-
munication between these processes is performed via
unification on logical variables shared among the pro-
cesses. The processes invoked by the goal attempt to
unify the shared variables with sequences of messages
(streams) to be sent or received.

A simple producer / consumer problem is described as
follows:

?7—p(, S), q(S). ... Goal
PN, §):—N<100|S=[N!S1], NI:=N+1, p(N1, S1).

... Cl1
PN, 8):—N=1001S=[]. ...C2
q(S):—S=[NIS1]Iprint(N), g(S1). ...C3
q(S):—S=[]ltrue. ...C4

The first statement is a goal to be solved. When the goal
is invoked it activates subgoals p(1, S) and g(S). Each
subgoal consists of a predicate (‘p’ or ‘q’) and zero or
more arguments. Here note that an unbound variable §
is shared among these subgoals. GHC has no sequential
semantics; the subgoals p(1, S) and ¢(S) can be ac-
tivated in parallel.

The second through fifth statements (C1 through C4)
are called clauses. The symbol ‘:—" specifies implica-
tion, and the left side of this symbol is called a clause
head. Each clause consists of a guard and body
separated by a symbol ‘|’, which is called a commit
operators. The commit operator plays a role of the
guarded command [7]; when a subgoal is given, the
clauses whose head predicates are matched with the
subgoal are invoked, and only one clause whose guard
succeeds can proceed to its body. Execution of the other
clauses may be terminated.

Another role of the commit operator is that it con-
trols the direction of unification. A clause which at-
tempts to unify the goal variable with an instance in its
body can instantiate the variable, while a clause which

N. Ito, E. Kuno and T. OOHARA

attempts to unify the goal variable with a non-variable
term or other goal variable in its guard will be sus-
pended until the variable is instantiated.

In the above example, the subgoal p(1, S) will invoke
the clauses with head predicate ‘p’ (i.e., C1 and C2). Of
these, only the guard of C1 succeeds for the given
subgoal because the first argument of the subgoal is a
number less than 100. Clause C1, therefore, proceeds to
its body and instantiates the shared variable to a list
[11S1). The body of clause C1 also activates a new
subgoal p(2, S1) recursively, which then instantiates the
new shared variable S1 to a list [2|S2]. This recursion is
repeated until the first argument of the subgoal becomes
100. The clauses with head predicate ‘g’ (C3 and C4),
on the other hand, will be suspended until the variable S
is instantiated to a list or nil by clauses C1 or C2. If the
variable S is instantiated to a list, the clause C3 prints
the list elements.

Here, the clauses activated by the subgoal p(1, S) and
q(S) play a role of a producer and consumer, respec-
tively, of a sequence of messages which consists of a list
[1,2,3,...]. The messages are sent from the pro-
ducer to the consumer each time the partial solutions
are obtained. As the messages are asynchronously sent
from the producer to the consumer, the sequence of the
messages is said to be a stream. The streams play a role
of I-structures (incremental structures) [3], where the
elements of the stream are incrementally produced or
consumed.

Stream merging, which is often used for parallel
search, is written as follows:

?—merge(S, T, U), pI(S), p2AT), g(U).
where the definition of the merge predicate is given as:
merge(S, 7, U):—S=[E|S1}I
U=[E|U1], merge(S1, T, Ul).
merge(S, T, U):— T=[EIT1]|
U=[EIU1], merge(S, T1, Ul).
merge(S, T, U):—S=[]IU=T.
merge(S, T, U):—T=[]IU=S.
The goal activates four subgoals; a merge process in-
voked by the subgoal merge(S, 7, U) consumes two
streams S and T produced by processes invoked by the
subgoals p1(S) and p2(T), respectively, and generates a
new stream U which is then consumed by a process in-
voked by the subgoal g(U). The streams, here, are

represented by a list and have only one producer and
one consumer.

3. Efficient Stream Primitives

As mentioned above, many GHC programs can be
considered as producer-consumer problems, where pro-
ducer processes produce streams of messages and con-
sumer processes receive the messages from them. GHC

Efficient Stream Processing in GHC and Its Evaluation on a Parallel Inference Machine 239

Stream Buffer

| _element

Buffer Pointer element
element

| __element

"undefined”_

Fundefined”

Buffer Pointer
Buffer Pointer

Fig. 1 Representation of A Packed Stream.

programs use logical variables for message passing.
Each logical variable can be bound to only one instance
and may be immediately discarded after the consumers
read the instance from it. That is, the life span of each
logical variable is very short and frequent memory
allocation and deallocation for the logical variables are
necessary.

The main idea of this section is to hide the detailed
structure of the stream from the programmer’s point of
view and to develop a more efficient stream structure
and primitives instead of using logical variables di-
rectly. An efficient stream, which is called a packed
stream, is represented by pointers and a buffer as shown
in Fig. 1. Each pointer points to a stream buffer entry to
be accessed and the stream elements are stored in the
stream buffer. The streams here are ‘‘packed’’ into the
stream buffers (i.e., CDR parts of the lists are omitted)
by using the CDR coding scheme [12].

3.1 Stream Creation

When a new stream is created, a create$stream
primitive is executed which initializes a stream buffer
and returns two or more pointers pointing to the buffer.
Usually, one of the pointers is used in the producer to
append stream elements to the buffer and the others are
used in the consumers to get the elements.

The following goal shows an example:

?—create$stream(S, 7'), p(S), ¢(T').
p(S):—truel . .., put$stream(S, E, S1), p(S1).
q(S): —get$stream(S, E, S1)| . . ., g(S1).
Logically, the create$stream predicate unifies its first
argument with the second argument as defined:
create$stream(S, T): —truelS=T.

Actual implementation of the create$stream primitive
forces the variable S and T to be instantiated to two in-
dependent buffer pointers. They are initialized to point
to the head of the buffer. The processes activated by
p(S) and g(T) will execute put$stream or get$stream
primitives. Logically, these primitives are defined as:

put$stream(S, E, S1): —truel S=[E/S1].

get$stream(S, E, S1): —truel S=[E/S1].
Actually, each put$stream primitive unifies the argu-
ment E with a stream element pointed to by the buffer

pointer S; if the stream element is undefined, F is stored
to the entry. Then the pointer is incremented to point to

the next entry. The incremented pointer is unified with
the variable S1. Each get$stream primitive gets a
stream element from the stream buffer and also in-
crements the pointer when the stream element is defined
(i.e., if the element is already defined). If the element is
undefined, the get$stream primitive will be suspended
(hooked to the buffer entry) until the element is written
by a put$stream primitive; the put$stream primitive ac-
tivates the suspended get$stream primitive before it
writes the element.

A special symbol ‘EOS’ (end-of-stream) is used to
signal the end of a stream; the producer processes put
the ‘EOS’ symbol when no more stream elements are
sent to the consumer processes. This will be done by ex-
ecuting a put$stream(S, ‘EOS’, S1), or a special
primitive put$EOS(S), where S and S1 are streams.

3.2 Stream Sharing

When a stream is shared among processes, each pro-
cess should have independent buffer pointers; the
original buffer pointer is copied and distributed to these
processes. The following clause shows an example when
a variable is shared among processes.

p(S): —truel p1(S), pAS).

To ensure this pointer copying, share$stream primitive
is used in machine language:

p(S): —truelshare$stream(S, S1, $2), p1(S1), p2(S2).

The stream pointer S is copied to S1 and S2, which is
then used as the arguments of the subgoals p1(S1) and
p2(S2), respectively. To be noted here is that the
share$stream primitive simply copies (passes) its first
argument to its second and third arguments when the
first argument is a stream pointer or an atomic value,
but copying will be deferred until the object pointed to
by the pointer is referred when its first argument is a
reference pointer to an unbound variable or structure.
In order to support such deferred pointer copying, the
shared flag scheme is introduced.

3.3 Shared Flag Scheme

When a structure is shared among multiple processes,
it is sufficient to copy its reference pointers to these pro-
cesses. A problem, however, is caused when a structure
including streams or unbound variables is passed
among the subgoals. The following goal shows an exam-

ple where a structure f(... S...) which includes a
stream S is shared among subgoals.
?7=p(S), 4(5).

p(S)i—truel T=f(...S...),p(T), p2(T).
Here, we can rewrite this program by using the stream
primitives:
? —create$stream(S1, S2), p(S1), g(S2).
p(S):—truel T=f(...S1...),

240
share$stream(7, T1, T2), pI(T1), p2(T2).

When an eager pointer copying scheme is used, the
whole structure of f(... S1...) should be copied
before activation of two subgoals p1(7'1) and p2(T2), in
order to create copies of the stream pointer S1. Thus,
variables T'1 and T2 will be instantiated to copied struc-
tures f(...S1’...)and f(...S81”...), respec-
tively, where S1’ and S1” are copied buffer pointer of
S1. If the following definitions are given, the invoked
clauses pl or p2 may put the stream elements to or get
the stream elements from the stream buffer pointed to
by the stream pointers S1’ or S1” included in the copied
structures.

pl(T1):—Ti=f(...S...)|put$stream(S, E, U), ...
p2AT2):—T2=f(...S...)lget$stream(S, E, U), ...

This eager copying may waste the processing time if
structures to be copied is very large or if they are fre-
quently shared among processes. Furthermore, the
copying will cause heavy communication traffic in the
network, because the substructures may be distributed
among many storage units in a parallel machine such as
PIM-D.

The deferred pointer copying can be implemented by
adding an extra bit to each pointer, which is called a
shared flag; the shared flag is implemented by extending
the tag field to specify the data type. The share$stream
primitive in the above case will only set the shared flag
of the reference pointer to f(...S1...), which is
passed to the processes. This shared flag is inherited to
its substructures; unification to decompose the shared
structure into the substructures is extended to:

(1) create copies if the substructures are stream
buffer pointers,

(2) set shared flags of the substructures on if they
are reference pointers,

(3) perform normal unification if the substructures
are atomic values.

Thus, if the clause pl is defined as:

pl(T):—T1=f(...S.. .)iput$stream(S, E, U), . . .

andifits given goalargumentisastructuref(. .. S1...),
where S1 is a stream buffer pointer, copy of the buffer
pointer S1 is created and instantiated to the variable S
on its guard’s unification between the original structure
f(...S1...) and the structure f(...S...) in
the guard.

3.4 Nondeterminate Stream Merging

Stream merging is performed by sharing the stream
pointers. The following goal shows an example of
stream merging, where two subgoals, p1(S) and p2(T),
generate two independent streams S and 7 consisting of
lists [al, @2, . . .] and [bl, b2, . . .], respectively, that
are merged into a single stream U consumed by two in-
dependent subgoals g1 and 2.

N. Ito, E. KuNno and T. OOHARA

q
[al,a2,...

1

&)

[al,bl,b2,a2,...]

“Ib1,b2,...]

Fig. 2 Stream Merging Schema.

©

Stream Buffer

put$stream getS$stream
MSD —ar 1
bl
b2
DRC a2
"undefined"
put$stream e getSstream

p2

)
O

MSD: Merged Stream Descriptor
SBP: Stream Buffer Pointer
DRC: Descriptor Reference Count

Fig. 3 Stream Merging by A Packed Stream.

?—merge(S, T, U), pI(S), p2AT), q1(U), g2(V).

Figure 2 shows a direct implementation schema of this
goal. The producer processes create lists containing the
stream elements which may be immediately discarded
after the merge process consumes them and creates a
new list for the merged stream. In this implementation,
the memory manager may suffer from heavy list cell
allocation or reclamation overhead and stream merging
is very expensive because it is performed by an independ-
ent process.

The efficient stream merging is implemented by the
packed stream primitives depicted in Fig. 3. This figure
shows that every producer process shares an indirect
stream pointer cell and appends new stream elements to
the stream buffer. In order to create the indirect stream
pointer cell, which is called a merged stream descriptor,
a merge$stream primitive is executed instead of the
merge predicate as:

?—merge$stream(S, T, U), pl(S), p2(T),
share$stream(U, U1, U2), ql(U1), q2(U2).

The put$stream and get$stream primitives are extended
to handle both non-merged stream pointers and merged
stream descriptors; they are identified by their tag field.
The merge$stream primitive creates a stream buffer and
a merged stream descriptor which will be unified with
the first and second arguments (S and T), if its third
argument U is undefined. If U is already instantiated to
a descriptor, S and T are unified with the descriptor;
processes referring S and 7 will share the descriptor.

Efficient Stream Processing in GHC and Its Evaluation on a Parallel Inference Machine

This merge$stream primitive is also used for consumer
processes; the consumers sharing the stream descriptor
will obtain independent stream elements from the
stream in a nondeterminate manner.

When a stream is merged by multiple producer pro-
cesses, the ‘EOS’ symbol should be put into the buffer
when all the producer processes sharing the merged
stream descriptor have executed the put$EOS
primitives. To detect this situation, a reference count
scheme is used; a reference count field, which is called
the descriptor reference count, to maintain the number
of pointers pointing to the merged stream descriptor is
stored with the indirect stream pointer as shown in Fig.
3. The descriptor reference count is

(1) incremented when a merge$stream primitive is
executed (i.e., when a new process to merge the stream
is created), and

(2) decremented when a put$EOS primitive is ex-
ecuted (i.e., when a process merging the stream is ter-
minated, or when it no longer refers to the stream).
Note that updating of the reference count is only
necessary in the above cases and the ordinal put$stream
or get$stream primitives don’t affect the reference
count. The ‘EOS’ symbol is stored into the stream
buffer when the reference count is reached to zero. As
the stream descriptor is no longer referred, it will be
reclaimed.

3.5 Stream Buffer Management

Because almost all the process communication is per-
formed via streams in GHC, frequent stream buffer
allocation or reclamation will be necessary. A simple
but inefficient solution is to leave the garbage collector
to reclaim of such stream buffers. In this case, however,
the garbage collector will suffer from exhaustive
memory consumption.

Real-time garbage collection can be implemented us-
ing the reference count scheme; another reference count
field, which is called a buffer reference count, is added
to each stream buffer as shown in Fig. 4. The buffer
reference count is

(1) incremented when a share$stream is executed,
and

(2) decremented when the stream buffer pointer ex-
ceeds the tail buffer address by executing a put$stream
or get$stream primitive, or when a process no longer
refers to the stream.

When the buffer pointer exceeds the buffer, a new
buffer is allocated if the buffer reference count of the
old buffer is not zero, and the allocated buffer is
chained to the old buffer as shown by a broken line in
Fig. 4. Other processes referring the old buffer will
follow the new buffer chain if their stream pointers ex-
ceed the old buffer. If the buffer reference count of the
old buffer is zero, it is reused.

To ensure that the stream primitives can update the
buffer reference count, the stream pointer may be ex-
tended to another stream descriptor as shown in Fig. 5,

241

0ld stream Buffer

BRC
lement
ement
ement
ement

Buffer Pointer——

(0|0

Buffer Pointer ———>

elemen [
TNBC Ao

)

¢” New Stream Buffer

'
\

> BRC
element
Buffer Pointer ————={ "undefined"

"updefined”

BRC: Buffer Reference Count
NBC: New Buffer Chain

Fig. 4 Representation of A Packed Stream.

Stream Buffer

NSD BRC
—element T
SBP % element !
BRP element N
N "undefined” l

BRC: Buffer Reference Count

NSD: Non-merged Stream Descriptor
SBP: Stream Buffer Pointer

BRP: Buffer Reference Count Pointer
N: Buffer Size

Fig. 5 Stream Descriptor of the Non-merged Stream.

that holds the pointer to the buffer reference count
field, the buffer size, as well as the buffer pointer; in this
case, each process has a reference pointer to the descrip-
tor. This scheme, however, needs an extra indirect
memory access to put or get a stream element.

Therefore, we introduced an optimized version of
packed streams called standard streams, that have
fixed-sized buffers. The standard stream buffers are
aligned to N-word address, where N is a buffer size, and
the reference count field is located at the head of the
buffer. Because the address of reference count field is
easily obtained by the stream buffer pointer, no stream
descriptor as shown in Fig. 5 is necessary for non-
merged streams. Furthermore, memory management of
the standard stream buffers is easily implemented
because every buffer is fixed-sized and a simple free list
management scheme can be used; buffers whose buffer
reference counts are decremented to zero and chained
to a free list, and new buffers are allocated from the free
list.

4. The Machine Architecture

The machine is constructed of multiple processing ele-
ment modules and multiple structure memory modules
connected by a hierarchical network as shown in Fig. 6.
Each processing element module consists of a packet

242

PE :Processing Element
PQU : Packet Queue Unit
ICU :Instruction Control Unit
APU : Atomic Processing Unit
LMU : Local Memory Unit
SM : Structure Memory
SPU : Structure Processing Unit
SMU : Structure Memory Unit
NN : Network Node
BA :Bus Arbiter
FIFO : First-In First-Out Memory

N. ITto, E. KuNo and T. OOHARA

C

Cluster # O NN

i (g g g g ITEEITETS

4 T-BUS

PR

'
'
'
'
)
'
'
'
'
'
'
'
'
'
'
‘

Fig. 6 Machine Architecture of PIM-D.

queue unit, an instruction control unit, two atomic pro-
cessing units, and a network interface unit; these units
operate independently and construct a pipeline architec-
ture. The programs, represented by dataflow graphs,
are stored in the instruction control unit, which receives
the packets from the packet queue unit, detects the
readiness of the operands, and sends the executable in-
struction to one of the atomic processing units if all the
operands of the instructions are ready.

The atomic processing units interpret the executable
instructions, access the local memory unit if necessary,
generate new results packets, which are again sent to the
instruction control unit via the packet queue unit, and
generate structure command packets sent to the struc-
ture memory modules.

The local memory unit is used to store the local infor-
mation such as process control blocks or remote
resource management tables; in order to perform
remote resource allocation quickly, each local memory
unit has a process management table containing re-
served process identifiers of the other processing ele-
ment modules, and a structure management table con-
taining the reserved structure cell addresses of the whole
structure memory modules. When a new process which
should be distributed to other module is created, a pro-
cess identifier of the other processing element module is
obtained from the remote process management table;
the packets for the new process are sent to the process-
ing element module specified by the process identifier
via the network. The structure memory allocation is per-
formed in the same manner.

The structure memory modules are responsible to the
structure command packets from the atomic processing
units and used to store structure data. Current version

of packed stream implementation uses local memories
to allocate stream buffers, because locality can be ex-
ploited to access the stream buffers; if many producer
and consumer processes are created and there is locality
in communication among these processes, the processes
can be allocated to the local processing element
modules so that most stream accesses can be performed
on the local memories. To control such allocation, local
process invocation primitives are introduced [10].
When a create$stream primitive is executed in an
atomic processing unit, a new stream buffer is allocated
and all the buffer entries are initialized to be undefined.
The stream buffer pointer is sent to the next instructions
to perform put or get stream elements. If the
put$stream or get $stream primitives are executed and if
the stream buffers are not resident in its own local
memory, they are sent to the processing element
modules designated by their operands (stream pointers).

5. Evaluation Results

Two versions of simple GHC benchmark programs
are examined. The first one is a non-packed version,
where all the streams are represented by lists and stream
merging to collect every solution is performed by
perpetual merge processes. The other is a packed stream
version, where stream processing is performed by the
stream primitives described in Section 3. The ben-
chmark programs include 6-queens and prime number
generator up to number 500.

Because only the top level stream is used to merge all
final solutions in the 6-queens program, the packed
stream version of this program uses the packed stream
primitives to merge the top level solutions, in order to

Efficient Stream Processing in GHC and Its Evaluation on a Parallel Inference Machine 243

Performance

s packed primes
packed 6-queens

6
non-packed 6-queens

Al
non-packed primes

2+

0 1 1 — 1

0 2 A 6 8

Number of Modules

Fig. 7 Performance Comparison between Non-packed and
Packed Streams.

examine effectiveness of packed stream merging; all the
other streams are implemented by non-packed streams.
In the packed stream version of the prime number
generator, on the other hand, no stream merging is per-
formed and all the streams are implemented by packed
streams; it is used to examine effectiveness of the
put$stream or get$stream primitives.

Figure 7 shows performance comparison of these pro-
grams. In this figure, performance is given by T1/1,
where #i is the execution time needed to search all solu-
tions when the number of both modules (the processing
elements and structure memories) is i (i=1, 2, 4, 8), and
T1 is the execution time of the non-packed stream ver-
sion when the number of modules is one. Because each
cluster has up to four processing elements and also up
to four structure memories, only one cluster is used
when the number of modules is less than or equal to
four, and two clusters are used when it is eight.

For all these programs, performance is significantly
improved when the number of the modules is increased
from one to four, but shows a tendency to be saturated
when the number of modules is eight because
parallelism inherent in these programs is not so large.
Compared with the non-packed 6-queens program, per-
formance of the packed 6-queens program is sixteen to
forty percent higher, even though only ten percent of
the total executed instructions are reduced than that of
the non-packed version; only the stream merge pro-
cesses are replaced by the stream merging primitives.

Performance of the packed prime number program
(packed primes) is significantly increased; it is more
than twice that of the non-packed version (non-packed
primes), independent of the number of modules. This
improvement is achieved mainly by the reduction of the
structure memory commands, that is about one third of
that of the non-packed version.

6. Conclusion
A set of primitives to support efficient stream process-

ing in GHC is presented. The detailed structure of the
streams is hidden from the programmers and a more

efficient stream structure and primitives are provided in-
stead of using logical variables directly. An efficient
stream, which is called a packed stream, is represented
by pointers and a buffer. Each pointer points to a
stream buffer entry to be accessed and the stream
elements are stored in the stream buffer.

The language is efficient as the conventional pro-
cedural languages, because stream processing, the basic
operation in the AND-parallel logic language, is im-
plemented as machine primitives rather than creating
enormous merge processes. In order to support such
primitives while preserving ‘‘logically correctness,’’
only one extra bit shared flag added to every pointer is
sufficient. This shared flag scheme is currently extended
to the multiple reference bit to reclaim structure cells [4].
The evaluation results on PIM-D show that perfor-
mance is improved about ten to forty percent by in-
troducing such primitives.

Acknowledgments

The authors extend their thanks to Director Kazuhiro
Fuchi at ICOT, who afforded them the opportunity to
pursue this research. Also much appreciated are Dr.
Shun-ichi Uchida, Chief of the Fourth Research
Laboratory, and Dr. Atsuhiro Goto (ICOT) for their
valuable advice and comments, Masasuke Kishi and
Masayuki Tomisawa (OKI) for their hardware im-
plementation of PIM-D, and other ICOT research
members for their fruitful discussion.

References

1. AMAMIYA, M., HASEGAWA R., NAKAMURA, O. and Mikami, H. A
List-processing oriented Data Flow Architecture, National Computer
Conference 1982, pp. 143-151 (June 1982).

2. ARrvIND, GosTerow, K. P. and PLourre, W. E. An Asyn-
chronous Programming Language and Computing Machine, TR-
114a, Dept. of ICS, University of California, Irvine, Dec. (1978).
3. ARvVIND and THoMaAs, R. E. I-Structures: An Efficient Data Type
for Functional Languages, TM-118, Laboratory of Computer
Science, MIT (1980).

4. CHIkAYAMA, T. and KIMURA, Y. Multiple Reference Manage-
ment in Flat GHC, Proc. of 4th Int’l Conf. on Logic Programming
(May 1987).

5. CLARK, K. and GREGORY, S. PARLOG: Parallel Programming in
Prolog, Research Report DOC 84/4, Imperial College of Science and
Technology (April 1984).

6. DennIs, J. B. and Misnus, D. P. A Preliminary Architecture for
A Basic Data Flow Processor, Proc. of 2nd Symp. on Computer Ar-
chitecture (Jan. 1975).

7. DukstrA, E. M. A Discipline of Programming, Prentice-Hall
(1976).

8. Iro, N., SHimizu, H., KisHI, M., KuNo, E. and Rokusawa, K.
Data-flow Based Execution Mechanisms of Parallel and Concurrent
Prolog, New Generation Comput., 3, 1 (1985).

9. Irvo, N., KisHi, M., Kuno, E. and Rokusawa, K. The Dataflow-
Based Parallel Inference Machine To Support Two Basic Languages
in KL1, Proc. of IFIP TC-10 Working Conference on Fifth Genera-
tion Computer Architecture, UMIST (Manchester) (July 1985).

10. Ito, N., SaTo, M., Kuno, E. and Rokusawa, K. The Architec-
ture and Preliminary Evaluation Results of the Experimental Parallel
Inference Machine, Proc. of 13th Annual Int’l Symp. on Computer
Architecture (Jun. 1986).

11. KIMURA, Y. and CHIKAYAMA, T. An Abstract KL1 Machine and
Its Instruction Set, Proc. of 4th Symposium on Logic Programming
(Aug. 1987).

244 N. Ito, E. KuNo and T. OOHARA

12. KnicHT, T., CONS, MIT Al Working Paper 80 (1984). 14. Uepa, K. Guarded Horn Clauses, TR-103, Institute for New
13. SHAPIRO, E. Y. A Subset of Concurrent Prolog and its Inter- Generation Computer Technology, Tokyo, Japan (1985).
preter, TR-003, Institute for New Generation Computer Technology,

Tokyo, Japan (Jan. 1983). (Received November 2, 1987)

