Invited Paper

Hyperplane vs. Multicolor Vectorization
of Incomplete LU Preconditioning
for the Wilson Fermion on the Lattice

YosHI0 OYANAGI*

We compare the hyperplane and 16-color vectorizations of minimal residual and conjugate residual methods
with an incomplete LU preconditioning to solve the lattice Dirac equation in the Wilson formulation. The per-
formance was assessed in terms of the Euclidean distance from the true solution for various hopping parameters
on a quenched gauge configuration at §= 5.5 on an 8¢ lattice. The 16-color vectorization requires 2~ 4 times
more iterations than the hyperplane vectorization. Even with the best choice of the acceleration parameter, the
latter method is preferable to the former unless the computing time for one iteration of the latter differs with

that of the former by a factor of two or more.

1. Introduction

The numerical simulations of the lattice gauge
theory, the quantum chromodynamics on the lattice[1],
has proven to be useful for extracting quantitative
predictions about the hadron physics from the first prin-
ciples. The lattice gauge theory is formulated on a
four-dimensional hypercubic lattice. In the Wilson for-
mulation[1], the formion (quark) field wi,(x) is a 12 com-
ponent complex quantity allocated on a lattice site and
has two indices: one for the Dirac index (i=1, 2, 3, 4),
the other for the color (@=1, 2, 3). On the other hand,
the gauge (gluon) field U(x, y) is a 3 X 3 unitary matrix
with unit determinant and is defined on a link, i.e. the
side between the nearest neighbor lattice sites, x and y.
The rows and columns correspond to the color indices.
The reciplocity requires U(y, x)=U(x, .

In the numerical simulation of the lattice gauge
theory, most of the computer time is spent in solving
the Dirac equation on the lattice,

Ay=b 1

where A is a large sparse non-Hermitian matrix which
depends on the background gauge field U and a
parameter k called ‘‘hopping parameter’’ as described
in the following section. The hopping parameter is a
measure of coupling between the quark field com-
ponents at the nearest neighbor sites and is related to
the mass of the quark m, in such a way that m, is pro-
portional to 1/xk—1/x.. When k approaches ., the
equation becomes nearly singular and difficult to solve.

Since the size of the coefficient matrix A is very large,

*Institute of Information Sciences, University of Tsukuba,
Tsukuba, Ibaraki, 305 Japan.

Journal of Information Processing, Vol. 11, No. 1, 1987

the amount of work and storage required in direct
methods such as Gauss elimination is nearly prohibitive
except for small lattices, such as 4*. The standard pro-
cedure so far has been the conjugate gradient (CG)
method[2] for A'A4 or AA", which gives the exact solu-
tion in finite steps if the round-off error is absent. In the
previous paper[3] we presented a fast method based on
the conjugate residual (CR) method and an incomplete
LU (ILU) decomposition and proposed a hyperplane
vectorization of the ILU preconditioning. Recently a
different vectorization based on a 16-color classification
appeared in the literature[4] and based upon this vec-
torization, they claimed that the ILU preconditioning
was worse than other preconditioning methods especial-
ly when the hopping parameter « is close to the critical
value k..

In the present paper we will compare the hyperplane
and 16-color vectorizations of an imcomplete LU
preconditioning as applied to the minimal residual
(MR) as well as the conjugate residual (CR) methods.
For the two ways of vectorization, we want to assess the
performance as a function of the hopping parameter x
on a quenched gauge configuration at $=5.5 on an 8*
lattice. We measured the error lly;—A~'bll, where y; is
the value of y at the i-th iteration, as a function of / in
the two cases. The CPU time is not a good measure of
the performance, since it critically depends on the ar-
chitecture and especially on the fine-tuning of the
code[3].

In the next section we will describe the Wilson fer-
mion on the lattice; section 3 discusses the conjugate
residual methods; section 4 contains a thorough descrip-
tion of the incomplete LU decomposition; section 5
discusses the vectorization of multiplication and ILU
preconditioning of the Wilson fermion matrix; section

Hyperplane vs. Multicolor Vectorization of Incomplete LU Preconditioning for the Wilson Fermion on the Lattice 33

6 gives a brief description of 16-color vectorization; sec-
tion 7 discusses numerical results.

2. Wilson Lattice Fermions

The coefficient matrix A is defined as a block matrix
{A(x, y)} where x and y represent generic lattice sites on
a four-dimensional hypercubic lattice of arbitrary size
ny X ny X n3 X ng. The site x is specified by four integer
coordinates (xi, X3, X3, Xxs) where x,=1, 2,...n, (u
=1, 2, 3, 4).

Each block A(x, y) has a structure due to the internal
degrees of freedom of the quark field. It is a 12x 12
complex matrix, whose rows (and columns also) are
specified by the pair of Dirac (i, j=1, 2, 3, 4) and color
indices (o, =1, 2, 3).

In greater detail the Wilson fermion matrix is given as
follows:

A(X, P)ia,jp=00up if y=x

AW, Yiwjg=—k(1=yDU(x, ¥)ap if y=x+ji ®
A, Y jp=—Kk(1+yDUX, y)es if y=x—4
A, ¥)iajp=0 otherwise

Here y=x= /i means that the site y lies next to the site x
in the positive (negative) u-direction. The 4 X 4 complex
matrices p* are the Dirac’s y matrices defined by

-

0 0 0—i 0 0 0-1
},._0 o-io'y2= 010,

0 i 00 01 0 0

Li 0 0 0 -1 0 0 O

[0 0—i 0 1 0 0 O
rJ_OOOi,y‘=OIOO} 3

i 00 0 0 0—-1 0

0—i 0 0 0 0 0-1

.

We note that only one element in each row is nonzero
and the value is either =1 or %i.

Since A is related to the discretized version of the
Dirac equation is the continuum, the matrix A as a
whole has a structure similar to the matrix generated by
discretization of elliptic or parabolic partial differential
equation; that is, an off-diagonal block A(x, y) is non-
zero only when x and y are adjacent with each other.

3. Conjugate Residual Methods

A class of iterative methods for solving the system of
linear equations by decreasing the norm of the residual
vector llAy—bll, has been proposed[5-6]. The
algorithm consists of iterative steps starting with

r=b—Ay, p=r

and repeating

a=(r, Ap)/(Ap, Ap)
v=y+ap
r=r—aAp

update p

till convergence is achieved. Here the complex
coefficient « is so determined as to minimize the norm
of the new residualllr—aApll,.

The variants differ in the way the new direction vector
p is updated. The simplest choice would be to set p=r.
In this case only three vectors y, r and g=Ar have to be
stored in the memory. We call this algorithm the
minimal residual (MR) method.

The convergence would be faster if the coefficient
matrix A is approximately proportional to a unit
matrix. More precisely, if we denote r; the residual vec-
tor at the i-th iteration, we have[6],

||I‘i+1||2 _ lmin(fl)2
"",'"2 - Ymnx(A'A) ’

provided H=(A'+A)/2, the Hermitian part of A4, is
positive-definite. Here Ann and A denote the
minimum and maximum eigenvalues, respectively. In
the algorithm, the positivity of H is crucial. If the
positivity is lost (e.g. for x>k, the coefficient o
becomes zero or very small and the y is no longer im-
proved.

In the case of the CG method for positive symmetric
linear equation Ax=2J, the conjugacy of the correction
vectors { p;} with respect to A plays an important role in
reducing the bilinear form (x, b— Ax). By only making
Di+1 conjugate to p;, the former is automatically con-
jugate to all preceding correction vectors pi—i, pi-2, . . - ,
Dp1. In our case the conjugacy of the correction vectors
with respect to 4’4 also plays an important role in
reducing lIrll>. The conjugacy, however, is not passed
on to the new direction vectors, so that we can make
Dpi+1 conjugate only to the correction vectors stored in
the memory. We call this class of algorithm conjugate
residual (CR) method.

The simplest choice (CR(1) method) is the make p;+,
conjugate only to the previous vector p;. More specifical-
ly, we start with

@

r=b—Ay, p=r, q=Ap
and repeating
a=(q,n/@q, q)
v=y+op
r=r—aq
s=Ar
B=—(a,5)/(q, 9
p=r+pp
q=s+pq
until the convergence is attained. One step of the CR(1)

34

method entails one matrix multiplication, three inner
products and four vector addition with scalar
multiplication, that is it has one more inner product
and two more vector additions as compared with the
MR. The memory necessary to implement the CR(1) is
larger, since it has two more working vectors p and s.
Although the upper bound for the ratio of residuals (4)
is valid for the CR methods, the residual for the CR
decreases faster than that for the MR.

4. Incomplete LU Decomposition

Since the relative reduction of the norm of the
residual in the MR and CR methods is bounded by (4),
one can improve the convergence by transforming A to
a matrix which is approximately equal to the unit
matrix (or its scalar multiple).

If we have a matrix A, which is a good approxima-
tion to A, we can expect A~ 'A is closer to the unit
matrix than A itself. If the solution of the equation Ax
=y requires a relatively small amount of computation,
it would be easier to solve the equation

A 'Ay=A"'b,)

instead of eq. (1). This observation is at the basis of any
preconditioning technique. The more the A resembles
A, the better will be the convergence of the MR or CR
methods. On the other hand, the solution of Ax=y
should not be too time-exhausting, since we have to
solve it once in each step.

Some years ago Meijerink and van der Vorst[7] pro-
posed an incomplete LU factorization for the matrix
originated in partial differential equations, which ap-
proximately decomposes A as

A=LU-N, (6)

where L and U are lower and upper triangular matrices
and N is the error of decomposition. By suitably choos-
ing the non-zero entries of L and U, one can make L
and U as sparse as the original 4. If the error Nis small,
the factorized form LU plays the role of A in eq. (5).

In the case of the Wilson fermions on the lattice, it
can readily be shown[3] that the block triangular split-
ting of A,

L(x, y))=A(x,y) (x=y)
=0 x<y)
R(x, »)=0 x>y)
=A(x,y) (x=<y)

provides an incomplete LU decomposition due to the
projection operators (1 y*), that is

LR=A+O0(rx?). 16

We use the symbol R instead of U for the right (upper)
triangular matrix, since we have to reserve U for the
gauge field.

The lattice sites are ordered according to the site

0]

Y. OYANAGI

number x (denoted by IX in the program) in the usual
manner,

Xx=(—DXns+x;—1)xXnm+x,— 1) Xn+x.. (9

The site number runs from 1 to n, where n=n,n,n;n, is
the total number of the lattice sites. The detailed
algorithm of ILUMR and ILUCR methods is given in
13].

We found(3, 8] that the convergence rate is further
improved by a Gustafsson-type acceleration[7)]. This is
a trick of replacing the hopping parameter x in the
preconditioner LR by ck, ¢ being an appropriate con-
stant. This acceleration can be understood as approx-
imating cA4 by LR. The error N=LR —cA now has non-
zero diagonal entries

N, x)=—(—-1)I
(10a)
as well as the usual off-diagonal entries
N(x, y)=c’k*1 =y (1 +y)UX, x+DU'(y, y—9)
(10b)

for the next-nearest pairs (x, y) with y=x+4—v. When
the gauge field U as well as the fermion field y are
nearly aligned, the effect of those two errors tends to
cancel each other, so that (LR)'A is effectively closer
to a constant multiple of a unit matrix. We found the
best choice of ¢ is 1.1~1.3. Unlike the acceleration
parameter w in the SOR method, the number of itera-
tion needed to fulfill a convergence criterion does not
critically depend on the choice of c.

5. Vectorization

We now need to discuss how to carry out the com-
putation on a vector processor. The vectorization of
MR and CR methods offers no problem since they con-
sist of vector operations and matrix multiplication of a
vector. We show in Fig. 1 the core of the code which
gives r=Aq. The arrays Q(IX, i,) and R(IX, i, @)
represent quark field where / and « denote the Dirac and
color indices. The link connecting the site IX and its
nearest neighbor in the positive u-direction is numbered
as LL=4%IX—4+y, so that the link number LL runs
from 1 to 4xN. IGAM (i, u) gives the Dirac index j for
which (y.);=GAM (i, u) #0. The array elements NRR
(IX, u) and NLL (IX, u) give the site number which lies
next to IX in the positive and negative u-directions re-
spectively. Due to the periodic boundary condition,
NRR (IX,) cannot be given in terms of a linear form
of IX. The hopping parameter is denoted by HK. Since
there is no data dependency in the innermost loop DO
10, it would be straightforward for a compiler to vec-
torize the loop.

On the other hand, the vectorization of the solution
of the triangular equations Lp=g and Rs=p is quite a
bit more complex. These equations are solved recursive-

Hyperplane vs. Multicolor Vectorization of Incomplete LU Preconditioning for the Wilson Fermion on the Lattice 35

COMPLEX U(4%N.,3,3),Q(N.,4,3),R(N,4.3).,0Q1.0Q02,Q0Q3.GAM(4.4).GM
INTEGER 1GAM(4.,4) .NRR(N,4) ,NLL(N.4)
DO S IALPHA=1.3
DO S I=1,4
DO 5 IX=1,N
5 RCUIX, i, 1ALPHA) =Q (X, I, |ALPHA)
DO 10 MU=1.4
0O 10 I=1.,4
J=IGAM (1, MU)
GM=GAM(! ,MU)
DO 10 IX=I,N
NR=NRR (I X, MU)
LR=4X%(X-4+MU
QQ1=Q(NR,1.,1) - GMXQ(NR.J.1)
QG2=Q(NR.1,2) - GMXQ(NR.J.2)
QQ3=Q(NR,1,3) - GMXQ(NR.J,3)
RCIX,), 1)=RUIX,1,1) - HKXK(UCLR,1.1)%QQ1 + U(LR,1,2)%QQ2 +
1 U(LR.,1,3)%QQ3)
RCIX,1,2)=R(IX,1,2) - HKX(UCLR,2,1)%QQ1 + U(LR,2,2)%QQ2 +
2 U(LR,2.,3)%Q03)
RUIX,!,3)=R(IX.1.,3) - HKX(U(LR,3,1)%QQ1 + U(LR.3,2)%Q42 +
3 U(LR,3,3)%QQ3)
NL=NLL CIX,MU)
LL=4XNL-4+MU
QQI=Q(NL.1.,1) + GMXQ(NL.J. 1)
QQ2=Q(NL,1.2) + GMX*Q(NL.,J.2)
QQ3=Q(NL.1.3) + GMXQ(NL.J.3)
RCIX,1,1)=RCIX,1,1) - HKKC(CONJG(UCLL.1.,1))%QQ1 +
1 CONJG(UCLL,2,1))%QQ2 + CONJG(U(LL,3.,1))*QQ3)
RCIX,1,2)=RCIX,1.,2) - HKX(CONJGCU(LL.1,2))xQQl +
2 CONJG (U(LL,2,2))%QQ2 + CONJG(U(LL.3,2))*QQ3)
RCIX,1,3)=R(IX,1,3) - HKX(CONJG(U(LL.],3))%QQl +
3 CONJG(U(LL,2,3))%QQ2 + CONJG(U(LL,3,3))%QQ3)
10 CONT{NUE

Fig. 1 A program for R=AQ.

ly in terms of the forward and backward substitutions,
as

dox=1,n
x=1
pX)=qx)— Y L(x, »)p(»)
y=1

and

dox=n, 1, —1
S)=plx) - Z Rx, 7)s(9).

The algorithm is hard to vectorize since the previous
variables are referred to in the loops. In order that the
vectorized code may produce the same results as the
scalar computers, we have to find a subset of lattice sites
which are independent of each other and therefore can
be computed concurrently. This cannot be done by
dividing the lattice into sublattices with doubled lattice
spacing. For example p(1, 1, 1, 3) depends on p(1, 1, 1,
1) via p(1, 1, 1, 2).

It is easily seen in the forward substitution, p(x)
depends on p(y) if and only if there exists at least one se-
quence of lattice sites, x=z", z?@, 2%, . . ., z9=y for
which z® and z'*" are adjacent to each other and z?
>z%*D, One can prove by induction that p(x,, X2, X3, Xs)
is dependent on p(yi, 2, y3, ys) if and only if x,>y,
holds for all 4. This statement is also valid when we
take the periodic (or antiperiodic) boundary conditions
into account.

In our previous paper[3] we presented a hyperplane
vectorization, which was originally proposed years ago
for ILLIAC IV[10] and later revised for the ILU precon-
ditioning of partial differential equations[11]. This ap-
proach is based upon the observation that the sites lying
on a p-th hyperplane defined by

x1+x+x;+x,=p=const. (11)

are independent of each other and that if p(x) depends
on p(y) then y lies on a hyperplane with smaller p. We
can start with p=4 and increment the constant p after
each step, until p reaches its maximum value
NP=n.+n2+n3+n4.

A slight modification of the program in Fig. 1 yields a
solver of Lp=gq, which is shown in Fig. 2. Here the solu-
tion p is overwritten on q in order to save storage. The
site numbers of those lattice sites whose nearest
neighbor site in the positive u-direction has smaller site
number than themselves (i.e. connected in the matrix L)
are reordered according to the hyperplane number IP
and NNLR(IXP, u) contains the IXP-th of such site
numbers. The largest IXP on the IP-th hyperplane is
given in NBLR(IP, u). In the same way, the lattice sites
whose nearest neighbor site in the negative u-direction
has smaller site number are stored in NNLL(*, u). We
note NBLR(NP, u)+NBLL(MP, uy)=n for any u.
Since the compiler cannot identify the independency of
the operations on Q in the loops DO 10 and DO 20, we
have to put in a compiler directive. Fig. 2 shows the one
for HITAC S810.

6. Quasi-vectorization by Multicolor Method

Recently P. Rossi, C. T. H. Davies and G. P.
Lepage[4] implemented the ILU preconditioning in
terms of a 16-color sublattice ‘‘vectorization”’. They ex-
pressed the coordinate x on the lattice as

x=2y+n (12)
with

y=()’1;)’2,}'3,}’4) lsyusn‘,/z

COMPLEX U(4%N.3.,3).Q(N.4.3).Q0Q1.,Q02,QQ3,GAM(4.4).GM
INTEGER 1GAM(4.4) ,NRR(N.4) ,NLL(N.4) ,NBLR(NP.4) NBLL(NP.4),
1 NNLR(N.4) ,NNLL (N, 4)

DO 30 IP=4,NP
00O 30 Mu=1.4
DO 30 1=1.4
J=IGAM I . MU)
GM=GAM(| ,MU)
XVOPTION |INDEP(Q)
DO 10 IXP=NBLRCIP-1,MU)+1,NBLRCIP,MU)
I1X=NNLR (1 XP, MU}
NR=NRR (1 X, MU)
LR=4X|X-4+MU
QQI=Q(NR,,1) - GMXQ(NR.J.1)
QQ2=Q(NR,1.2) - GMXQ(NR,J.2)
QQ3=Q(NR,1.,3) - GMXQ(NR,J.,3)
QUIX,1,1)=QCIX,1,1) + HKXCUCLR,1,1)%QQ1 +
1 U(LR.1,2)%QQ2 + U(LR.,1,3)%0Q3)
QUIX,1,2)=QC1X.1,2) + HKX(U(LR.2,1)%QQ) +
2 UCLR,2,2)%QQ2 + U(LR.,2,3)%QQ3)
QUIX,1,3)=QCIX,1,3) + HK¥(U(LR,3,1)%QQl +
3 U(LR,3,2)%QQ2 + U(LR,3.3)%QQ3)
10 CONTINUE

c
*VOPTION |NDEP(Q)
DO 20 IXP=NBLL (IP-1,MU)+! ,NBLLCIP.MU)
IX=NNLL CIXP, MU}
NL=NLL C1X, MU
LL=4%XNL-4+MU
QQ1=Q(NL,f,1) + GM*Q(NL.J.1)
QQ2=Q(NL.1.2) + GMXQ(NL.J.2)
QQ3=Q(NL,1,3) + GMXQ(NL,J,3)
QUX, 1, 1)=Q(IX,1,1) + HKX(CONJG(UCLL,1.1))%QQ1 +
1 CONJG(U(LL.2.1))%QQ2 + CONJG(U(LL,3,1))%QQ3)
QUIX, 1,2)=Q(IX,1,2) + HKX(CONJG(U(LL.1.,2))%*QQ1 +
2 CONJG(U(LL.2.2))%QQ2 + CONJG(U(LL,3.2))%QQ3)
QUIX,1,3)=QCIX,1,3) + HKX(CONJG(UCLL.,1,3))%xQQ1 +
CONJG(U(LL.2.3))%QQ2 + CONJG(U(LL.3,3))*x0Q3)
20 CONT INUE
30 CONTINUE

Fig. 2 A program for Q«L'Q.

36

and

n=(m, 12, N3, 1) M.=0orl,

and treated all the sites labeled by a different y but iden-
tical simultaneously.

Although the sites with the same # are not connected
directly, they are not independent as we saw in the
previous section, so that this method does not give the
same result as the original ILU preconditioning. It
should be regarded as a different solver based on the vec-
tor iteration in the sense of Schendel[12].

We show in Fig. 3, the relative error e of the 16 color
ILU preconditioning for complex random righthand
vector b (both real and imaginary parts are normal ran-
dom numbers and normalized as Ilbll;=1). The error e
is defined by

e=lUi'Lig'b—U""L™'bll,/IIU~'L™'bll, a3

where Lis' and U &' represent the 16-color vectorization
of L= and U~". As is expected, the error is small for
small x, whereas it gets worse when x becomes larger.
One may think that since the ILU preconditioning itself
is an approximation, exact identity of numerical
algorithm may not be necessary in the vectorization.
We will see the effect in the next section.

7. Summary and Results

In Fig. 4 the Euclidean norm of the error lly;—A~'bll
is given as a function of #, the iteration number, for the
ILUMR algorithm vectorized by the hyperplane and 16-
color methods. The acceleration parameter ¢ is set to

Y. OYANAGI

0.4

0.3

0.2

relative error

0.1

lvvll‘llllll'rllvlTl

Fig. 3 Relative error of 16-color preconditioning as a function of
the hopping parameter.

1.0 (no acceleration). The gauge configuration was
taken from a quenched simulation at $=5.5 on an 8*lat-
tice. The hopping parameters are xk=0.17, 0.18, 0.181
and 0.183. The critical value k. for which the pion mass
vanishes in this configuration is 0.1844 +0.0009[8]. The
righthand side b is a complex gaussian random vector
described in the previous section. We do not plot the
residual lb— Aw.ll,, since it would require an extra com-
putation, since the vector r in ILUCR or ILUMR
algorithm is a modified residual (LR)™'(b—Ay) and
depends on the vectorization and acceleration of ILU
preconditioning.

We also show in Table 1 the number of iterations un-

x=0.170 £=0.180
oo [T w00 T
LS 1071 -
z 1072 | 10-2 | —
v E E 3
¥ o108 1073 —
& -4 —a L]
2 0t |- 10
T T N S T
0 10 20 30 40 50 80 0 50 100 160 200 250 300
xk=0.181 £=0.183
100 R RARES RS ay L SSASRAARFREARI RaSEInaS
107!
F 107?
v E
“" 1073 |-
£ o4 L
SN N N R R

100 200 300
i

O m

200 400 600 800 1000
i

Fig. 4 The error lly,— A~ 'bll as a function of the number of itera-
tions i for 16-color preconditioning (upper curve) and
hyperplane preconditioning (lower curve).

Hyperplane vs. Multicolor Vectorization of Incomplete LU Preconditioning for the Wilson Fermion on the Lattice 37

Table 1 The number of iterations needed to attain
lly —A~'bll < 10™* in the hyperplane (upper figures) and 16-
color (lower figures) vectorization. A bar denotes the
failure of convergence.

K 0.170 1.180 0.181 0.183
(m,a)’ 0.83 0.24 0.18 0.02
ILUMR

c=1.0 31 105 134 270
57 265 361 1045

c=1.1 25 79 97 178
52 227 312 838

c=1.2 22 68 81 138
48 201 274 687

c=1.3 25 78 94 147
45 183 244 574

c=1.4 38 117 153 394
43 168 221 495

c=1.5 80 — — —
42 157 204 432

ILUCR (1)

c=1.0 26 82 100 191
46 183 245 660

c=1.1 23 69 82 149
43 165 219 543

c=1.2 22 66 78 131
41 150 197 452

c=1.3 24 74 89 139
39 139 180 388

c=1.4 36 118 149 257
37 130 167 345

c=1.5 74 — —_ —
37 123 157 316

til ly;— A~ 'bll <10~ *is attained for the various choices
of ¢ for ILUMR and ILUCR methods in both
hyperplane (upper figures) and 16-color (lower figures)
vectorization. For all values of hopping parameters the
16-color version requires 2~4 times more iterations.
From the result in Table 1, the optimum value of c in
16-color vectorization is larger than that in the
hyperplane method. Even if we compare the best
choices of ¢ for each case, the difference is large,
especially for the range of x of our interest, which is
close to k.. The critical slowing down is more striking in
the multicolor vectorization.

This result can be understood in terms of the velocity
of information running across the lattice. In the 16-col-
or vectorization of ILU preconditioning, an element of
the residual vector influences only the elements of y in a
hypercube which lies next to it. The velocity is only v7
per iteration in the lattice unit. This feature exhibits a
striking contrast to the hyperplane vectorization, in
which any element of the residual can give influence on
the value on any other lattice site, albeit incomplete.

On the other hand, the multicolor vectorization pro-
cesses some computational advantages. For one thing,
the vector length in the 16-color vectorization is n/ 16,
which is larger than n/(n,+n;+n;+n,—3) in the
hyperplane vectorization. Moreover the access to the
memory is more regular in the former method, so that
the execution time for one iteration is shorter in the
multicolor vectorization than in the hyperplane one,
especially on a vector machine with slow memory ac-
cess. This fact may cover the shortage of the former
that more iteration is necessary than the latter. It is also
to be noted that the multicolor method can be easily im-
plemented an a highly parallel array of processors with
distributed memory. We conclude, however, that the
hyperplane vectorization is superior to the multicolor
vectorization, unless the execution on the former is at
least two times (or more) faster than that of the latter.

Acknowledgement

The numerical calculation for the present work was
carried out on HITAC S-810/10 at KEK, National
Laboratory for High Energy Physics. We thank the
Theory Division of KEK for its warm hospitality. We
are indebted to M. Fukugita, A. Ukawa, Y. Iwasaki,
M. Mori, M. Natori, K. Murata and U. Ushiro for
discussions. We are also greatful so S. Fujino and K.
Takeda for informing us of Lamport’s paper[10]. Our
work was supported in part by the Grants-in-Aid for
Scientific Research of Ministry of Education, Science
and Culture (Nos. 61540142 and 62580015).

References
1. WiLsoN, K. G. Phys. Rev. D10.(1974), 2445-2459.
2. HESTENES, M. R. and STIEFEL, E. J. Res. Nat. Bur. Standards 49
(1952), 409.
3. Ovanadl, Y. Comput. Phys. C . 42 (1986), 333-343.
4. Rossi, P., DAavies, C. T. H. and LeEPAGE, G. P. University of
California, San diego report UCSD-PTH 87/08.
§. Concus, P. and Gorus, G. H. in: Lecture Notes in Economics
and Mathematical Systems, 134, eds. GLowiNskI, R. and Lions, J. L.
(Springer-Verlag, Berlin, 1976), 56~65.

VINSOME, P. K. W. in: Proc. Fourth Symp. on Reservoir Simula-
tion, Soc. Petroleum Eng. AIME (1976), 149.
6. EiSeEnsTAT, S. L., ELMAN, H. C. and ScHuLTs, M. H. SIAM J.
Numer. Anal. 20 (1984), 345-357.
7. MEDERINK, J. A. and VAN DER VORrsT, H. Z. Math. Comput. 31
(1977), 148-162.
8. FUKuGITA, M., OYANAGI, Y. and UKAwA, A. Phys. Rev. D 36 3
(1987), 824-858.
9. GUSTAFSSON, 1. BIT 18 (1978), 142.
10. LAMPORT, L. Comm. of ACM 17 (1974), 83-93.
11. UsHIRO, Y., NISHIKATA, M. and NAGAHORI, F. Hitachi Hyoron
65 (1983), 557-562 [in Japanese}.
12. ScHENDEL, U. Introduction to Numerical Methods for Parallel
Computers, trans. by B. W. Conolly, Ellis Horwood Limited,
Chichester (1984), 35.

(Received July 29, 1987)

