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Locally exhaustive testing of multiple output combinational circuits is the test which provides exhaustive pat-
terns for each set of inputs on which each output is truly dependent. In this paper, a method for locally ex-
haustive testing of combinational circuits using linear logic circuits is proposed. The testing scheme consists of a
linear combinational circuit and a linear feedback shift register. This scheme can be implemented with smaller
amounts of hardware than other existing methods, and can be applied to built-in self testing. The cor-
respondence problem between the outputs of the linear combinational circuit and the inputs of the circuit under
test is formalized as a vector assignment problem of hypergraphs. It resembles the coloring problem of graphs
and is also proved to be NP-complete. The vector assignment of perfect hypergrahs is shown to be equivalent to
the construction of linear codes. Several graph-theoretical properties which can be utilized to reduce the size of
hypergraphs are shown. Finally, the length of test sequences is discussed.

1. Introduction

Logic circuit testing plays an important part in the im-
provement of the reliability of logic circuits. The rapid
progress of semiconductor technology allows us to
design large-scale logic circuits, but as a consequence it
makes logic testing a very difficult process. This paper is
concerned with one of the approaches to ease the
difficulties of logic testing: locally exhaustive testing of
combinational circuits.

In logic circuit testing, a circuit is tested by providing
a test sequence and examining its corresponding
responses. The test sequence is usually designed so that
it can detect all probable faults in the cuircuit. But as
the number of gates in the circuit increases, it becomes
very difficult and time consuming to generate test se-
quences. It is proved to be NP-complete to obtain a test
pattern which detects a specified fault in combinational
circuits [1][2]. In addition, we face the problem of fault
models. Although the single stuck-at fault assumption
has been widely adopted, until now, it seems inap-
propriate for highly integrated circuits.

In order to overcome the above problems, exhaustive
testing where the circuits are exercised with all possible
input patterns can be considered. In exhaustive testing,
test sequences need not be calculated and the functions
of the circuits can be uniquely determined, whereas test
sequences are impractically long for the circuits with
large number of inputs.

There are, however, many multiple output circuits
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where each output depends on only a small portion of
the inputs. In order to test such circuits, not all possible
input patterns are necessarily applied but it is sufficient
to apply a sequence that provides exhaustive patterns
for each set of inputs on which each output depends.
This testing method is called ‘‘locally exhaustive testing
of combinational circuits’’ in this paper. In locally ex-
haustive testing, test sequences are shortened without
spoiling the testing capability of exhaustive testing.

Concerned with locally exhaustive testing of combina-
tional circuits, researches have been made mainly on the
locally exhaustive test sequences for all the subsets of in-
puts of size r where r is the maximum number of the in-
puts on which an output is dependent [3]-[7][15].
Though their test sequences can be used in locally ex-
haustive testing, it seems impractical to use these se-
quences directly for actual circuits, because they often
become quite long. Different from these methods, Mc-
Cluskey proposes a locally exhaustive testing in which
test sequences are calculated considering the input-out-
put dependencies of the circuit to be tested [8].

In this paper, a testing scheme using linear logic cir-
cuits is newly proposed as a test sequence generator for
locally exhaustive testing of combinational circuits [16]
[17]. In our scheme, test sequence generator is com-
posed of a linear feedback shift register and a linear
combinational circuit and can be designed much more
compactly than those in other methods. It is next shown
that the correspondence problem between the inputs of
the circuit under test and the outputs of the linear com-
binational circuit can be formalized as a vector assign-
ment problem of hypergraphs. This vector assignment
problem of hypergraphs is proved to be NP-complete,
and its relation to linear code is argued. The bounds for
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Fig. 1 A dependence matrix D.

vector assignment numbers and the graph-theoretical
properties on this problem are also discussed. Finally
the performance of locally exhaustive testing using
linear logic circuits is discussed.

2. Preliminaries

We shall consider a 2-value, n-input, m-output com-
binational logic circuit C. The set of input lines of C
and the set of its output lines are named X={x;, xz, . . . ,
x.} and Y={y,, y;, . . ., ym}, respectively. In general
an output y;(e Y) depends only on a subset of X. The
dependence matrix D={d;;} of Cis defined asan m by n
matrix whose element d;; is equal to 1 if the output y;
depends on the input x;, and is equal to 0 otherwise.
Fig. 1 shows an example of a dependence matrix. The
drive input set DR, of an output y; is defined as the set of
inputs on which y; is dependent, i.e., DR;={x;l1
<jsn,d;=1}.

Combinational circuits are usually tested by feeding a
set of test patterns and examining the corresponding
outputs. A binary n-dimensional vector (¢, f2, . . . , 1n)
is regarded as a test pattern for C. Each input x;,(e X) is
provided with a logical value #; by the test pattern and
outputs for it will be examined. A ¢ by n matrix 7 whose
row vectors are test patterns for C is called a test se-
quence for C, where ¢ is the number of test patterns and
is called the length of test sequence 7.

The set of all binary k-dimensional vectors is denoted
by V*. Vectors vi, v3, . . . , v, contained in V* are said
to be linearly independent if and only if there exist no
sets of coefficients {ay, @, . . ., a,} (aie {0, 1}) such
that

at least one coefficients ;= 0, and

ayotay vt +a,v,=(0,0, PR 0),
where - and + mean the scalar product and the bitwise
addition over modulo 2, respectively.

The pair H=(X, E) is called a hypergraph [9], where
X={x, X%, ..., x}isafinitesetand E={e;, &, . . . , &m}
is a set of subsets of X that satisfies e;# ¢ and U e=X.
Each element x; in X is called a vertex and each set
e in E is called an edge. The incidence matrix of a
hypergraph H=(X, E) is denoted by D= {d;;} and is an
m by n matrix whose element dj; is equal to 1 if x;e ¢
and is equal to 0 if x;g e;. A corresponding hypergraph
is one obtained by regarding a dependence matrix as its
incidence matrix. Fig. 2 shows the corresponding
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Fig. 2 A corresponding hypergraph H.
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Fig. 3 Separation of a hypergraph into peices by articulation set.

hypergraph H of the dependence matrix D in Fig. 1.

leil is called the rank of e; where |S | represents the
number of elements in a set S. A hypergraph, all edges
of which have rank two, is called a graph. The rank of
hypergraph H is the maximum rank of the edges in H.
Perfect hypergraph of rank r is the hypergraph H=(X,
E), where E consists of all the subsets of size r of X and
H, , denotes the perfect hypergraph of rank r with n ver-
tices. The subhypergraph of H=(X, E) generated by
the set A< X is defined to be the hypergraph H,=(A,
E,), where E,={eiNAlec E,e,NA=¢}.

An edge e; of hypergraph H=(X, E) is said to be
redundant if there exists an edge e; such that 1) ¢;Ce; or
2) ee=¢; and i>j. A hypergraph with no redundant
edges is said to be irreducible. A reduced form of
hypergraph H is the irreducible hypergraph obtained by
omitting all redundant edge from H.

Connected components of a hypergraph and con-
nected hypergraphs are defined in the same way as in
usual graphs. If there exists two edges e,,, e, in a con-
nected hypergraph H=(X, E) such that

1) Q=e,Ne, and

2) the subhypergraph Hyx_, generated by the set
X—Q has s(=2) connected components H,=(X, E))
(=1,2,...,s), the pair of e, and e,, is called the ar-
ticulation pair and Q is called the articulation set.
Pieces by Q are defined as the subhypergraphs Hyxuo
generated by the set X,UQ. The hypergraph H shown in
Fig. 2 has an articulation set Q= {xs}, and its pieces by
Q is shown in Fig. 3.

-
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Fig. 4 Locally exhaustive test sequence.

3. Locally Exhaustive Testing Using Linear Logic
Circuits

3.1 Concept of Locally Exhaustive Testing

Definition 1. A test sequence 7 is said to be a locally
exhaustive test sequence for a subset of inputs X'=
{xi» X . . ., X, } (€X) of a combinational circuit C if
all the vectors in V'? are contained as row vectors in the
submatrix 7" which consists of the x;-th, x;-th, . . .,
X; -th column vectors of 7.

Definition 2. A test sequence T is said to be a locally
exhaustive test sequence for a combinational circuit C if
T is a locally exhaustive test sequence for all the drive in-
put sets of C.

Example 1. The test sequence T illustrated in Fig. 4 is
a locally exhaustive test sequence for {x;, x;}, but not
for {xz, Xg}.

As for locally exhaustive testing of combinational cir-
cuits, research has concentrated on the locally ex-
haustive test sequences for all the subsets of inputs of
size r, where r is the maximum number of elements in
the drive input sets. Although these test sequences can
be regarded as solutions of locally exhaustive test se-
quences, test sequences for actual circuits need not
necessarily be such a locally exhaustive test sequence.

In [3][6] shorter test sequences with such testing
capabilities are offered by constructive methods, but it
costs very much to generate test sequences by these
methods. In [4][5] locally exhaustive test sequences
which can be systematically generated are proposed,
but their test sequences often become impractically
long. Different from these methods, McCluskey pro-
poses a locally exhaustive testing in which test se-
quences are calculated using the input-output
dependence information of the circuits under test [8].

The testing method proposed in this paper also uses
the input-output dependencies, but specific linear logic
circuits are newly proposed and its testing schemes are
generally more compact than those in [8].

3.2 Utilization of Linear Logic Circuits

A linear feedback shift register (LFSR) is a circuit
composed of a shift register and a feedback loop with
modulo 2 adders. For a LFSR with & stages, the feed-
back is generally characterized by a k-degree
polynomial over GF(2), the characteristic polynomial.
If a primitive polynomial [10] of degree k is adopted as
the characteristics polynomial of LFSR, all the vectors
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Fig. 5 Locally exhaustive testing using linear logic circuits.

in V* are generated at the outputs.

Consider the scheme composed of a LFSR and a
linear combinational circuit (LCC) as shown in Fig. 5.
The LFSR has outputs z;, 22, . . . , 2 and all the pat-
terns in V* are observed at outputs z;, 22, . . . , 2 as
time goes on (In Fig. 5, k=3). The LCC offers some
linear combinations of the outputs of the LFSR. Its out-
puts are in the form of a;, 21®a: 2@ - Dar %,
where a1, @3, . . ., axe {0, 1}, - and @ mean logical
AND and modulo 2 addition, respectively.

An input x; of the circuit under test is said to corres-
pond to a binary k-dimensional vector v;=(ay, az, . . . ,
ay), when x; is connected to the output
@ 21@a 2@ - @Dar-zx of the LCC. The sequence
which is observed at inputs x1, x3, . . . , X, of the circuit
under test while all the vectors in ¥* are generated at
outputs 2y, 23, . . . , 2 is denoted by Tyy.

Theorem 1. T, is a locally exhaustive test sequence
for a set of inputs {x;, xi,, . . . , x; } if and only if the as-
sociated vectors v;, vi, . . ., v; are linearly indepen-
dent.
Proof: Let f denote the linear transformation re-
presented by the matrix whose row vectors are vi, v, . . . ,
Vi.

pWhen iy Vipy « + -, Vi are linearly independent, the
rank of fis p and image of V* by fis V?. Therefore the
set of inputs {x;, x;, . . . , x; } is provided with all vec-
tors in V7 and Ty is a locally exhaustive test sequence
for the set of inputs.

When v;, vi, . . ., v; are not linearly independent,
on the other hand, the rank of fis p’ which is less than
p and the image of V* by fis a proper subset of V*.
Therefore the set of inputs {x;, X;,, . . . , x; } is not pro-
vided with all vectors in V”? and T, is not a locally ex-
haustive test sequence for the set of inputs. QED
Example 2. In the testing scheme shown in Fig. 5, the
vectors corresponding to each input of the circuit under
test are as follows: »,=(100), »,=(010), v;=(011),
v,=(001), »s=(101). As v1, v, and v; are linearly in-
dependent, the test sequence T, defined above is a local-
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ly exhaustive test sequence for the set of inputs {xi, x2,
x3}. On the other hand, as v;, v4 and s are not linearly in-
dependent (for v;+wvs=uvs), Ty is not a locally ex-
haustive test sequence for the set of inputs {xi, x4, Xxs}.

When the dependence matrix of the circuit under test
is given, the testing scheme for locally exhaustive testing
of the circuit is obtained by corresponding the outputs
of the LCC to the inputs of the circuit so that the condi-
tion of linear independence stated in Theorem 1 is
satisfied for every drive input set.

Although the result of Theorem 1 is true so long as ex-
haustive patterns appear at the inputs of LCC, it is
recommended to use LFSRs because LFSRs can be
designed compactly and generate exhaustive patterns
quickly. Therefore, the testing scheme composed of an
LFSR and an LCC is good for the test sequence
generator for locally exhaustive testing of combina-
tional circuits. This testing method is hereafter called
locally exhaustive testing using linear logic circuits.

4. Vector Assignment Problem of Hypergraphs

In the preparation of locally exhaustive testing, the
correspondence problem between the inputs of the cir-
cuit under test and the outputs of the LCC has to be
solved. This correspondence problem is formalized as a
vector assignment problem of a corresponding
hypergraph obtained by regarding the dependence
matrix as its incidence matrix.

Definition 3. A hypergraph H=(X, E) is said to be k-
vector assignable if there exists an assignment of the
binary k-dimensional vectors in V* to the vertices of H
such that for every edge e; the assigned vectors

Vi, Vi . ., Ui, to the vertices X;, Xi, . . . , X; in ¢ are
linearly independent.
Definition 4. The vector assignment problem of

hypergraphs is the following decision problem.

Instance: Hypergraph H=(X, E) and a positive in-
teger k.
Question: Is H k-vector assignable?

Definition 5. The vector assignment number of a
hypergraph H is defined as the smallest number of &
such that H is k-vector assignable and is denoted by
o(H).

Obviously, d(H) has the following properties.
Lemma 1. For a hypergraph H=(X, E) whose rank is
r,r<d(H)=\XI.

4.1 Proof of NP-Completeness

The vector assignment problem of hypergraphs is pro-
ved to be an NP-complete problem by showing that the
coloring problem of graphs is polynomially transfor-
mable to it.

Definition 6. A graph G=(X, E) is said to be k-col-
orable if there exists an assignment of & colors to the ver-
tices of G such that no two vertices contained in a com-
mon edge are assigned the same colors.

Definition 7. The chromatic number of a graph G is
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defined as the smallest number of & such that G is k-col-
orable and is denoted by 1(G).

The coloring problem of graphs (Is a graph G k-col-
orable?) is well known to be NP-complete [11]. The vec-
tor assignment problem of hypergraphs resembles the
coloring problem of graphs.

Theorem 2. The vector assignment
hypergraphs is NP-complete.

Proof: Without loss of generality, hypergraphs are en-
coded to the form of incidence matrix. The size of a
hypergraph with n vertices and m edges becomes 0(mn)
in this coding.

The vector assignment problem of hypergraphs is
shown to be in NP by the following reason. A nondeter-
ministic Turing machine (NDTM) first guesses a vector
assignment. That is, it guesses whether each element of
vector v; assigned to vertex x; is 0 or 1. This process re-
quires 0(k) time for one vertex, and total 0(kn) time for
all vertices. Therefore it takes O(n?) time to carry out
this process because k<n. The NDTM next checks
whether the vector assignment satisfies the condition of
linear independence at every edge. In general, p(<k)
pieces of k-dimensional vectors are linearly independent
if and only if the rank of the k by p matrix obtained by
setting those vectors as row vectors is p. So the NDTM
can check this condition in polynomial time of k, m and
p using Gaussian elimination. As p<k=n, the time
needed for this check is in polynomial order of m and n.
Therefore the vector assignment problem of
hypergraphs is in NP.

Next it is shown that the coloring problem of graphs
is polynomially transformable to the vector assignment
problem of hypergraphs. For the problem whether a
graph G=(X, E)is k-colorable, we construct the follow-
ing graph G’, where k is represented as 2°7'+b
(0=<b=<2°"!, a and b are integers.)

G'=(XUX',EUE,UE)

X' ={x{,x}, ..., Xp-1-p—y'}
E={{x,x/}xe X, xle X'}
E={{x/,x}Ixte X', xle X', i#j}

problem of

Namely, G’ is the graph obtained from G by adding
new vertices up to 2°—1 and forming new edges of
order two for every pair of old and new vertices and for
every pair of new ones. G is k-colorable if and only if
G’ is (2°—1)-colorable because new distinct
(2°"'—b—1) colors are necessary to color the vertices
contained in X’.

G’ is (2°—1)-colorable if and only if G’ is a-vector
assignable. The reason for this is stated below. If G’ is
(2°—1)-colorable, (2°—1) vectors in V“ except the zero
vector can be assigned to each vertex of G’ so that same
vectors are assigned to the vertices to which same colors
are assigned. This vector assignment satisfies the condi-
tion of linear independence, so G’ is a-vector
assignable. If G’ is a-vector assignable, colors can be as-
signed to each vertex of G’ so that same colors are as-
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signed to the vertices to which same vectors are as-
signed. This coloring satisfies the coloring condition
and the number of colors does not exceed 2°—1. So G’
is (2°—1)-colorable. Therefore G is k-colorable if and
only if G’ is a-vector assignable.

It takes polynomial time of & and n to construct G’
from G. Since k <n, the coloring problem of graphs is
proved to be polynomially transformable to the vector
assignment problem of hypergraphs. QED

4.2 Vector Assignment of Perfect Hypergraphs

Vector assignment number &(H,,) of the perfect
hypergraph of rank r with n vertices is regarded as the
upper bound of those of arbitrary hypergraphs of rank
r with n vertices. We have the following theorem which
states the relation between the vector assignment
numbers of perfect hypergraphs and the construction
of linear codes.

Theorem 3. H,,is k-vector assignable if and only if a
linear code of length n with k& check digits whose
minimum distance is d(=r-+1) can be constructed.
Proof: If H,,is k-vector assignable, we can construct
a k by n parity check matrix Hp,i:y whose column vec-
tors are those assigned to the vertices of H,, Hence
arbitrary sums of r or less pieces of column vectors in
H,..iy can not be the zero vector, because arbitrary r
pieces of vectors assigned to the vertices of H are line-
arly independent. Therefore the minimum distance of
linear code defined by Haqy is more than or equal to
r+1.

On the contrary, suppose that there exists a linear
code of length n with k check digits whose minimum
distance is d(=r+1). When all vertexs of H,, are as-
signed distinct column vectors of the parity check
matrix which defines the linear code, arbitrary sums of »
or less pieces of these vectors can not be the zero vector,
because the minimum distance of the linear code is
d(=r+1). Therefore this assignment satisfies the condi-
tion of linear independence at every edge and H,, is pro-
ved to be k-vector assignable. QED

For locally exhaustive testing for all the subsets of in-
puts of size r, a testing scheme using condensed LFSR is
proposed in [15]. The condensed LFSR testing is con-
sidered to utilize only a sub-class of linear code.
Therefore, our testing scheme is more general and can
generate more compact test sequences.

In the field of coding theory, the problem whether a
linear code can be constructed with a given set of
length, number of check digits and minimum distance is
solved only in limited cases. Theorem 3 shows that the
results offered in coding theory are also true for the vec-
tor assignment of perfect hypergraphs. Helgert and
Stinaff calculated the upper and lower bounds of binary
linear codes for code length less than 128 [14]. By using
their results, the upper and lower bounds of vector
assignment number d(H\2,,) are obtained as shown in
Fig. 6. For other values of n less than 128, graphs of the
upper and lower bounds of vector assignment number
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Fig. 6 Upper and lower bound of vector assignment number
d(H,3,) with Hamming and VGS bound (Data extracted
from [14]).

O(H,,) have almost the same shape as in the case of
n=127.

Furthermore, we already know the following facts in
the coding theory, where N(k, r+ 1) denotes the length
of the longest linear code under given number of check
digits k¥ and minimum distance (r+1).

1) When r+1=3, N(k, 3)=2¢—1.

2) When r+1=4, N(k, 4)=2"",

By applying the results of Theorem 3, we have the
following properties concerning with the vector assign-
ment number of hypergraphs (where [x] is the smallest
integer not smaller than x).

Colioraly 1.
1) d(Hnz)=[log:(n+1)).
2) O(H,3)=[log:n] +1.

4.3 Graph-Theoretical Properties

Since the vector assignment problem of hypergraphs
is proved to be NP-complete, algorithms to solve this
problem should try to reduce the size of hypergraphs by
some way if possible rather than try to treat large
hypergraphs directly. The following graph-theoretical
properties can be utilized for this purpose.

Theorem 4. If the reduced form of a hypergraph
H=(X,E)is H =(X, E’), then 6(H)=46(H").

Proof: Obvious from the definition of 6(H). QED
Theorem 5. If there is a vertex x; contained only in
one edge e; in a hypergraph H=(X, E), then J(H)
=max {0(Hx-x)), leil}, where Hx_( is the sub-
hypergraph of H generated by the set X — {x;}.

Proof: Suppose that e; contains p vertices xj, x;, Xiy, . . . ,
X;,_, and that &(Hy- ) is k. Since Hx- ) has an edge
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whose rank is p—1, p—1=(rank of Hx-())<k from
Lemma 1.

H is k-vector assignable when k>p—1. It is because
there exist (2¥—27"") pieces of k-dimensional vectors
which can not be expressed as any linear combination
of v, vi, . . ., v;_,. Furthermore, H is not k’-vector
assignable for any £’ smaller than k. Therefore, d(H)
=k=0(Hx- ) in this case.

In the case of k=p—1, H is p-vector assignable. The
reason is as follows. There exist 27! p-dimensional vec-
tors which can not be expressed as any linear combina-
tion of v, vi, ..., v;_,. So after vi, vi,, . . ., v; _,
have been determined, we can assign one of the 27~ vec-
tors to v;, which satisfies the condition of linear in-
dependence at every edge of H. In this case §(H)=p,
because d(h)=p from Lemma 1.

These conclude 6(H)=max{d(Hx- ), leil}. QED
Theorem 6. When a hypergraph H=(X, E) has an ar-
ticulation set Q=1{x,, X, . . . , X,,} and is separated
into pieces {prg=(X.~UQ, Exy) (i=1,2,...,9),
then 6(H)=rp=aix{6(prQ)}.

Proof: We denote by H:=(X{,E}) tpe sub-
hypergraph of H generated by the set X{=Q L_J Xi. We
are going to prove =

S(H:)=max{6(Hy0) M

by the induction on §.

In the case of §=1, Eq. (1) holds evidently from the
definitions. .

Next we examine the case of §=¢+1, assuming
that Eq. (1) is true in the case §=¢. Let 6(H¢)=a; and
d(Hx,, w)=a:. ai is equal to rygx{é(Hxlug)} from the
assumption. Let @; be max{a;, azi. Suppose that to the
vertices Xg, Xg,, - . . , Xg,, VECLOIS Vg, Vg, . . . , Uy, ATE
assigned in H; and vectors vg, vg, - . . , vg,_, are as-
signed in Hx_ uo. We have an assignment of the as-
dimensional vectors to the vertices in H/4, in the follow-
ing manner.

1) If ai#a,, extend all the smaller dimensional vec-
tors to a;-dimensional vectors by adding zero elements.

2) Calculate a linear transformation f of rank a,
suchthatvg, v, . . ., v;p are transformed to v, , v, . . . ,
vg,. (Linear space theory guarantees the existence of f.)

3) Assign the formerly assigned vector to each
vertex in H;.

4) Assign the image of the formerly assigned vector
by f to each vertex in X,+;.

The linear transformation f does not alter the linear
independence of vectors and so the vectors in every edge
of H/,, are linearly independent. So H/., is as-vector
assignable and it is obvious that H/., is not k-vector
assignable r+flor every k smaller than g;. Therefore
J(H,’+1)=q1=alx{6(me)} and the Eq. (1) is true in the
case of §=t+1. Setting § to s, theorem 6 is proved.
QED

Theorem 4 implies that redundant edges do not need
to be taken into consideration in vector assignment of
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Inputs

4 N\
000000OOGCOOCOCOO0OOOT111
00000000O0O0GCOO0O0OOOO01
000000O0COCOOOOO0OOOI10
0000O0COOCO0OOOOOOOCOT!> OO
0010100010000000CO0TO0
0000O0O0O0OCOCOO0OOO0OO100U0D0
000O0O0OO0COOOOOO?> 0O0O0O0O

D = 000O0O0OO0OOCOOOOT1O0O0OO0O 0 |Outputs

1100010000011 11000
0010100010011 1100°0
0000001100100 01000
00000011001 00000O00
1101000000000 00O0O0TO0TO0
001010001000000O0O0O0TO0
1100000001 00001110

N

(a) Dependence matrix of a bit serial adder-subtracter

(b) The reduced form of /

Fig. 7 An example of the reduction of the size of hypergraphs. (a)
Dependence matrix of a bit serial adder-subtracter, (b) The
reduced from of H.

hypergraphs. It takes O(m®n) time for a hypergraph
with n vertices and m edges to calculate its reduced
form by examining whether edges are contained in
other edges. The operation to find vertices contained in
only one edge takes O(mn) time. It is in general difficult
to find articulation sets in a hypergraph in order to
separate the hypergraph into pieces, but the size of
hypergraphs can become drastically smaller when
separated into pieces.

Example 3. Fig. 7(a) shows the dependence matrix D
of a bit serial adder-subtracter in [12]. The corre-
sponding hypergraph is denoted by H. The reduced
form H’ of H is illustrated in Fig. 7(b). H’ can be
separated into pieces in turn by articulation sets {xis,
X}, {x1, X2, X15}, {x12, x13, X14, X15} and finally all edges
of H'’ are regarded as pieces. The assignment of vectors
to the vertices contained in these edges can be easily car-
ried out and vector assignment numbers of these pieces
are equal to their own ranks. Theorem 6 shows that
S(H’) is equal to the maximum rank of edges. So d(H)
=d0(H")=1.

5. Performance of Locally Exhaustive Testing Using
Linear Logic Circuits

In this chapter, methods of locally exhaustive testing
are compared mainly on the point of the length of test
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Table 1

Length of the test sequences for the circuit C, .

length

method
Cn2

Cn.s

(1a) Constructive method A
(1b) Constructive method B

(1c) Constant weight vector method n+1
(1d) Method using LFSR 2Mleszin+1)
(2) Verification testing n+1

(3) Proposed method Qllosatn+ D]
(4) Exhaustive testing 2"

1.893-log,n+1*
log,n+0.5-log; log,n +0O(1)*

2-(log,n)' "% +2*

0.5- [log,n] +O(log,n - log, log,n)*
2n

2- zlloxznl

2n

2- Qllosan)

>

*only for sufficiently large n

=}

"
COC OO MM -
CoOmHMEHOO N
OmHOMOOHO
R - -
HOOOO OO N
COmMOOMO M
HOQOHOMOO
o~ocooOo~OOO

(a) Dependence matrix

H=(X,E)
X={x1, Xz, X3, X4, X51 Xe» X72 Xa)
E= e, e,, &3, &, &s, &, 1, &, &)}
&= {x), x5, X5, Xl

&= {x,, X3, X4, X5) v1=(1000)
&= (xy, X, X3} v2=(0100)
&= {x, X, X} v3=(1100)
&= {x;, x5, X7} v4=(0011)
5= {xz, X4, Xl v5=(0010)
&= {x3, x4, X6} v6=(0001)
&= {x;, X0, Xal ¥7=(0110)
&= {xy, X3, X} v8=(0010)
SH)=4

(b) An assignment of vectors to the vertices of H

Fig. 8 An example of locally exhaustive testing using linear logic
circuits. (a) Dependence matrix, (b) An assignment of vec-
tors to the vertices of H.

sequences. The dependence matrix of the circuit under
test is denoted by D and its corresponding hypergraph is
denoted by H. Here methods of locally exhaustive
testing are divided into three categories.

The first method is the test with a locally exhaustive
test sequence for all the subsets of inputs of size r,
where r is the rank of H [3]-[6]. In these methods, the
length of test sequences is determined only by the
number of the vertices in A and the rank of H. The sec-
ond method is the verification testing proposed in [8],
which utilizes the input-output dependence information
of the circuits under test. The last one is the locally ex-
haustive testing proposed in this paper, in which the vec-
tor assignment problem of hypergraphs is solved for the
hypergraph H and the length of the test sequence
becomes 29,

The two following examples show that the test se-

Table 2 Length of the test sequences for the circuit C.

method length
(1a) Constructive method A 36
(1b) Constructive method B 68
(Ic) Constant weight vector method 36
(1d) Method using LFSR 64
(2) Verification testing 28
(3) Proposed method 16
(4) Exhaustive testing 256

quences obtained by our method are shorter in some
cases and longer in other cases, comparared with those
obtained by other methods.

Example 4. Table 1 shows the comparison of the
length of the test sequences obtained by the following
methods for the circuit C,, whose dependence matrix is
H,,.

1) Test with a locally exhaustive test sequence for

all the sets of inputs of size r
a) A constructive method A [6]
b) A constructive method B [3]
¢) The constant weight vector method [5])
d) The method using linear feedback shift
registers {4]

2) Verification testing [8]

3) The method using linear logic circuits

4) Exhaustive Testing

Although two constructive methods seem to offer

very short test sequences, this is an asymptotic estima-
tion and they work well only for large n. In this case,
test sequences obtained by our method are longer than
those by other methods.
Example 5. Suppose that locally exhaustive testing is
to be performed on the circuit C whose dependence
matrix D is illustrated in Fig. 8(a). For the hypergraph
H whose incidence matrix is D, a vector assignment is
performed, the result of which is shown in Fig. 8(b).
Since o(H)=(rank of H)=4 from Lemma 1, so 6(H)
=4. Therefore the length of the test sequence is 2*=16
and it realizes the lower bound of the test sequence
length for locally exhaustive testing of C.

Comparison on the length of test sequences for this
example is shown in Table 2, where our method gives
the shortest test sequence.

Next we give a brief discussion on the cost for
generator of test sequences. Among the methods listed
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above, test sequences are systematically generated ex-
cept two constructive methods [3][6]. In [5][8], a con-
stant weight vector generator is necessary. In locally ex-
haustive testing using linear logic circuits, only an
LFSR and an LCC are necessary and test sequence
generators are much more compact than for the other
methods stated above. From the point of necessary
hardware, the method of [4] and exhaustive testing are
the best, because only a LFSR is needed.

6. Conclusion

In this paper, locally exhaustive testing of combina-
tional circuits using linear logic circuits has been pro-
posed. Locally exhaustive testing is in a sense equivalent
to functional testing. It is shown that some class of logic
function including important one such as addition with
redundant binary number has a property of local
computability [13]. Depending on circuit structure,
however, the locally exhaustive testing is in some cases
insufficient for the test of a logic circuit for some locally
computable function. But in most cases such a circuit
has the property of local connectivity. Furthermore,
many control circuits are apt to be locally connected. In
this case, our approach can be directly applied by
calculating dependence matrix from circuits structure.
The testing scheme proposed in this paper is composed
of an LFSR and an LCC. It is designed more compactly
than former testing schemes and is suitable for built-in
self testing.

The correspondence problem between the inputs of
the circuit under test and the outputs of the LCC has
been formalized as the vector assignment problem of
hypergraphs. This problem resembles the coloring prob-
lem of graphs and has been proved to be also NP-com-
plete. Furthermore, it has been shown that the vector
assignment problem of perfect hypergraphs is
equivalent to the construction problem of linear codes.
So generally speaking, the vector assignment problem
of hypergraphs is difficult to solve. But using several
graph-theoretical properties, the size of hypergraphs
can be reduced.

A comparison of the length of test sequences for
locally exhaustive testing has been made. Compared
with the test sequences offered by other methods, those
offered by our method are shorter in some cases and
longer in other cases, which depends on the structure of
dependence matrix. Our method has a great advantage
over other methods when considering the cost for
generation of test sequences.

Several problems remain unsolved concerning locally
exhaustive testing using linear logic circuits.

1) In order to design test sequence generators com-
pactly, the vector assignment problem of hypergraphs
have many variations. For example, the following
points should be considered: reduction of the number
of modulo 2 adders, use of existent shift registers and so
on.

2) If the length of the test sequence for the given cir-

H. HiraisHI, K. KAWAHARA and S. YAJIMA

cuit is not acceptable, the circuit should be partitioned
into subcircuits. Circuit partitioning techniques should
be achieved considering the cost of partitioning.

3) As for the vector assignment problem of
hypergraphs, other graph-theoretical properties should
be found to reduce the size of hypergraphs. It seems in-
teresting to find the class of hypergraphs whose vector
assignment number is equal to or a little larger than
their ranks.
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