An Attribute Assignment View of
Non-procedural Computing Systems

TAKEHIRO TokuDA*

This paper gives an attribute assignment view of the interpretation and evaluation of non-procedural com-
puting systems. We first show that a number of non-procedural computing systems such as Prolog, Wi-
jngaarden grammars, and attribute grammars can be viewed as attribute assignment systems in spite of their
different original motivations. An attribute assignment view is a natural common abstraction of these non-pro-

cedural computing systems.

An attribute assignment system consists of a context-free grammar, a set of attributes for nonterminals, and a
set of relations on attributes for productions. Attribute assignment systems allow us to describe both specifica-

tions and solutions of the problems relatively easily.

We then show that our attribute assignment view enables us to have a new evaluation method in a restricted
case where every attribute has finite domains. This evaluation method is based on set-theoretic operations. This
evaluation method has a feature that the performance is fairly stable even in worst cases.

1. Introduction

Traditionally non-procedural computing systems are
usually envisioned through various formal systems such
as logic systems, function systems and rewriting systems
[5, 8-10, 12-14, 16, 23]. In this paper we present a new
view of the interpretation and evaluation of non-pro-
cedural computing systems.

We first show that a number of existing non-pro-
cedural computing systems can be viewed as attribute
assignment systems in spite of different original motiva-
tions. An attribute assignment system is a natural com-
mon abstraction of these non-procedural computing
systems. We then show that our attribute assignment
view enables us to have a new evaluation method in a
restricted case where every attribute has finite domains.
This evaluation method has a feature that the perfor-
mance is fairly stable even in worst cases.

An attribute assignment system consists of a context-
free grammar, a set of attributes for each nonterminal,
and a set of relations for each production. Attribute
assignment systems allow us to describe the specifica-
tion and the solution of a problem relatively easily.

.The organization of the rest of this paper is as
follows. In chapter 2, we quickly illustrate the main
results of this paper. In chapter 3, we briefly review
preliminary concepts in context-free grammars and
some non-procedural computing systems. In chapter 4,
we formally define attribute assignment systems and
show that some of existing non-procedural computing
systems can be naturally viewed as attribute assignment

*Department of Computer Science, Yamanashi University,
Takeda, Kofu 400, Japan. (Present Address: Department of Com-
puter Science, Tokyo Inst. of Tech., Meguro, Tokyo 152, Japan)

Journal of Information Processing, Vol. 11, No. 3, 1988

systems. In chapter 5, we present an evaluation
algorithm for attribute assignment systems with finite
domains. In chapter 6, we discuss implications of at-
tribute assignment systems, an experimental com-
parison with backtracking method, and possible
generalizations of evaluation methods. In chapter 7, we
give concluding remarks.

2. Overview

In this chapter we give a quick illustration of the
motivation and the main results of this paper using ex-
amples. We focus on three non-procedural computing
systems: Prolog, Wijngaarden grammars and attribute
grammars. Historically these non-procedural com-
puting systems have quite different motivations and
backgrounds. However there exist great structural
similarities among them. Namely these systems repre-
sent structures of computation on certain types of trees
(computation trees, derivation trees, and parse trees, re-
spectively). The shape of this tree may be fixed (static)
or variable (dynamic). These systems have either the
distinction of trees and attributes or no distinction as
shown in Figure 1.

Main results of this paper are as follows.

(1) Essentially, as a definition language, Prolog in

Distinction of Shape of

Trees and Attributes Trees
Prolog yes variable
W-grammars No Attributes variable
A grammars yes fixed

Fig. 1 Comparison of three non-procedural computing systems.

166

the 70’s is a rediscovery of what ALGOL 68 people
once discovered in the power of Wijngaarden grammars
in the 60’s.

(2) Attribute grammars, as a definition language,
are restricted forms of Prolog and Wijngaarden gram-
mars. Hence definitions in attribute grammars can be
naturally translated into definitions in Prolog or Wi-
jngaarden grammars.

(3) As a natural abstraction of common
characteristics of Prolog, Wijngaarden grammars and
attribute grammars, we may define a class of non-pro-
cedural computing systems called attribute assignment
systems.

(4) A general strategy of evaluating attribute assign-
ment systems is backtracking as in Prolog. We may,
however, have an efficient evaluation method in
restricted cases taking advantage of the fact that
underlying trees are fixed.

Now let us think of a classic example of the definition
of the factorial function in terms of Prolog in Example
1. This definition consists of two relations.

Example 1.
factorial (1, 1).
factorial (Z, J):—I1 is I—1, factorial (1, J1), J is
I»J1.

If we give the definition of the factorial in terms of Wi-
jngaarden grammars, then the definition will look the
same as in Example 2. (A formal definition of Wi-
jngaarden grammars will be given later in the section
3.2.2) Note that there is a great similarity of two lines of
Example 1 and hyperrules (2) and (3) of Example 2. In
Wijngaarden grammars, everything is represented in
terms of syntax. For example, ‘‘one one one one one
one is the factorial of one one one’’ is a symbol represen-
ting a nonterminal and this nonterminal derives the
empty string.

Example 2.
{Metaproductions)
(1) VAL :: VAL one; one.

{Hyperrules)

(1) start: VALI is the factorial of VAL2.

(2) one is the factorial of one:.

(3) VALI is the factorial of one VAL: VAL2 is the
factorial of VAL, VALI is the product of one
VAL and VAL2.

(4) VAL is the product of one and VAL:.

(5) VAL VALIL is the product of one VAL2 and
VAL: VALI is the product of VAL2 and VAL.

If we give a definition of the factorial function in terms
of attribute grammars, the result will be as in Example
3. Here we have a distinction between syntax and at-
tributes unlike Wijngaarden grammars. The domain of
an attribute value is integers.

Example 3.
{Syntax Rule>

T. TokubA

(1) S—N

2) N—Mi

(3) N-i

{Semantio Functions)

(1) S. value:=N. value

(2) N,. value:=N,. value«N,. number
N,. number:=N,. number+1

(3) N. value:=1
N. number:=1

In order to take another look at the distinction of syn-
tax and attributes, we take examples of defining a pars-
ing method. We consider a problem of parsing an input
‘‘bbabaa’’ according to the syntax rule of Example 6.
(This method is an extremely simplified version of
Earley’s parsing method. Here we use a nonterminal (or
terminal) symbol instead of a production rule with a
dot.) In this solution by Prolog in Example 4, two in-
tegers are used for specifying the start locations and
finish locations of a substring of the input.

Example 4.

uppers(, J):—I1 is I+1, lowera(/,Il), upper
b(11, J).

uppers(Z, J):—I1 is I+1, lowerb(, I1), upper
a(l1, J).

uppera(l, J):—J is I+ 1, lowera(/, J).

uppera(l, J):—I1 is I+1, lowera(l, /1), upper
s, J).

uppera(l, J:—I1 is I+1, lowerb(J, I1), upper
a(l1, I2), uppera(2, J).

upperb(/, J):—J is I+1, lowerb(/, J).

upperb(Z, J):—I1 is I+1, lowerb(/, I1), upper
s(11, J).

upperb(i, J):—I1 is I+1, lowera(/, I1), upper

b(11, I2), upperb(l2, J).

lowerb(l, 2).
lowerb(2, 3).
lowera(3, 4).
lowerb(4, 5).
lowera(s, 6).
lowera(6, 7).

In a solution by Wijngaarden grammars in Example 5,
integers are represented by unary notation and this
forms a part of a long nonterminal name.

Example 5.

{Metaproductions)

(1) VAL :: VAL one; one.

{Hyperrules)

start: uppers with VAL and VAL2.

uppers with VAL and VALI1: lowera with VAL and
one VAL, upperb with one VAL and VALI.

uppers with VAL and VALI1: lowerb with VAL and
one VAL, uppera with one VAL and VALI.

uppera with VAL and one VAL: lowera with VAL
and one VAL.

uppera with VAL and VALI1: lowera with VAL and

An Attribute Assignment View of Non-procedural Computing Systems

one VAL, uppers with one VAL and VALI.

uppera with VAL and VAI2: lowerb with VAL and
one VAL, uppera with one VAL and VALI, up-
pera with VALI1 and VAL2.

upperb with VAL and one VAL: lowerb with VAL
and one VAL.

upperb with VAL and VALI1: lowerb with VAL and
one VAL, uppers with one VAL and VALI.

upperb with VAL and VAL2: lowera with VAL and
one VAL, upperb with one VAL and VALL, up-
perb with VAL1 and VAL2.

lowerb with one and one one:.

lowerb with one one and one one one:.

lowera with one one one and one one one one:.

lowerb with one one one one and one one one one
one:.

lowera with one one one one one and one one one
one one one:.

lowera with one one one one one one and one one
one one one one one:.

A solution by attribute grammars is shown in Example
6, The domains of attributes start and finish are in-
tegers. Handling of construction of the derivation tree
is done by a syntax analyzer.

Example 6.

{Syntax Rule)

(1) S—aB

2) S—-bA

(3) A-a

@) A—aS

(5) A,—bA.A,s

6 B-b

(7 B-bS

(8) B,—aB;B;

{Semantic Functions)

(1) B. start:=2

(2) A. start:=2

(3) A. finish:=A. start+1

(4) S. start:=A. start+1
A. finish:=S. finish

(5) A,. start:=A,. start+1
As. start: =A,. finish
A;. finish: =A;. finish

(6) B. finish:=B. start+1

(7) S. start:=B. start+1
B. finish:=S. finish

(8) B;. start:=B,. start+1
B;. start: = B,. finish
B,. finish: =B;. finish

Note that the unification in Prolog is corresponding to
the uniform replacement in Wijngaarden grammars and
the identity assignment in attribute grammars.

167
3. Preliminaries

3.1 Context-Free Grammars

We review concepts of context-free grammars. A con-
text-free grammar G=(N, T, P, S) is a rewriting system
which consists of four components: a set N of nonter-
minals; a set T of terminals which is disjoint from N; a
set P of productions of the form X(p, 0)—X(p, 1),
X(p,2) ..., X(p, n(p)) where X(p, 0) is a nonter-
minal and X(p, 1), X(p,2) . . ., X(p, n(p)) is a string
of nonterminals and terminals of length n(p)=0; and
the start nonterminal S, which appears only in the left-
hand side of the 0-th production of P.

Rewriting is started from the start nonterminal S, and
repeated until there are no nonterminals in the string.
One-step rewriting is done by replacing one nonter-
minal in the string by its corresponding right-hand side
string of a production.

As a rewriting system context-free grammars have
limited capabilities. Namely context-free grammars can
define a proper subclass of recursive languages. But the
condition that the left-hand side of a production con-
sists of one nonterminal makes us treat rewriting pro-
cess in easy and context independent manner. This
feature will naturally correspond to, for example, Pro-
log system as we shall discuss later.

3.2 Non-Procedural Computing Systems

We briefly summarize some of the non-procedural
computing systems, Prolog, Wijngaarden grammars,
and attribute grammars.

3.2.1 Prolog

Prolog is a programming language based on the con-
cept of Horn clause [14]. A Horn clause is a clause
which is either denial. assertion, or implication. A Pro-
log program is a sequence of Horn clauses. Each Horn
clause consists of head and body. We refer to a clause
without its body as an assertion. We refer to a clause
without its head as a denial or a goal. The head has zero
or one predicate. The body has zero or more predicates.

A predicate is an n-tuple of terms prefixed by a
predicate symbol. A term is either a variable, a con-
stant, or a compound term. A compound term is an n-
tuple of terms prefixed by a functor symbol. Prolog pro-
grams can specify any recursively enumerable sets. (As
for concepts of recursively enumerable sets and
predicates, we refer to [11,15,17], for example.)
(Representability of recursively enumerable sets by Pro-
log programs is rather straightforward [6, 18].)

We give a definition of well-balanced parentheses con-
sisting of “‘{*’ and “‘}’’ in terms of Prolog in Example
7. A formulation given in this example is rather redun-
dant because of pedagogical reasons. Infix operator
““}** stands for cons operation of car and cdr parts of a
list.

168

Example 7.

wellbalanced (PAR):—binary (PAR),
(PAR).

balanced ([]).

balanced (PAR):—append ([{ | PAR1], [} | PAR2],
PAR), balanced (PAR1), balanced (PAR2).

binary ([]).

binary ([{ | PAR]):—binary (PAR).

binary ([} | PAR]):—binary (PAR).

append ([], LIS, LIS).

append ([HEAD | RESTO], LIS, [HEAD | REST1]):—
append (RESTO, LIS, REST1).

balanced

3.2.2 Wijngaarden grammars

Wijngaarden grammars are systems for writing

specifications [9]. Wijngaarden grammars can specify
any recursively enumerable sets, usually in a concise
manner. (Representability of recursively enumerable
sets by Wijngaarden grammars is rather straightfor-
ward [19]. A simple proof would be to construct a Wi-
jngaarden grammar to simulate a type O rewriting
system [21].) A Wijngaarden grammar W= (M, H) con-
sists of a context-free grammar M called metaproduc-
tions, and another context-free grammar H called hyper-
rules.
" Nonterminals of metaproductions are called metano-
tions and terminals of metaproductions are called pro-
tonotions. Metanotions are denoted by strings of upper-
case letters. Protonotions are denoted by strings of
lowercase letters or special characters. (Hence ‘“‘{ }is
equal to { }”’ and ‘‘is balanced”’ are examples of a
single symbol of protonotions. We insert spaces within
a single symbol to improve readability in hyperrules.)
We derive possibly infinite protonotions from each
metanotion using metaproductions. Grammar symbols
of hyperrules are protonotions or metanotions or their
composite. Terminals of hyperrules are protonotions en-
ding with reserved word ‘‘symbol’’, and nonterminals
of hyperrules are other protonotions.

Hyperrules are mold rules for final context-free gram-
mars. By uniformly replacing each occurrence of
metanotions in the hyperrules by its derived protono-
tions, we generate possibly infinite number of context-
free productions from hyper-rules. We give a definition
of well-balanced parentheses in terms of a Wijngaarden
grammar in Example 8. In this case final context-free
grammars can only generate the empty string.

Example 8.
{Metaproductions)
(1) PAR:{ PAR;
} PAR;
EMPTY.
(2) EMPTY :..
{Hyperrules)
(1) start: PAR is balanced.
(2) PAR is balanced: PAR is equal to { PAR1 }
PAR2, PARI is balanced, PAR2 is balanced.

T. TOKUDA

(3) EMPTY is balanced: true.
(4) PAR is equal to PAR: true.
(5) true: EMPTY.

Note that following examples are productions derived
from hyperrules using uniform replacement.

start: is balanced.

start: { } is balanced.

is balanced: is equal to {

{ }isbalanced: {
balanced.

{{ 1} is balanced: {{
anced, is balanced.

is balanced: true.

is equal to: true.

{ is equal to {: true.

{ }isequalto { }: true.

true:.

}, is balanced, is balanced.
}isequalto { 1}, is balanced, is

} is equal to {{ }, { is bal-

Using these productions, for example, we can derive an
empty string from the nonterminal *‘{ } is balanced’’.
start={ } is balanced
={ }isequalto { }, is balanced, is balanced
=true, is balanced, is balanced
=is balanced, is balanced
=true, is balanced = is balanced = true=.

Hence we know that ‘‘{ }”’ is balanced.
3.2.3 Attribute grammars

Attribute grammars are systems for describing com-
puting systems [12]). An attribute grammar A =(G, D,
F) consists of a context-free grammar G, a family D of
sets A(X) of attributes for each nonterminal X, and a
set F(p) of semantic functions for each production p.

The set A(X) of attributes for a nonterminal X is par-
titioned into synthesized attributes and inherited at-
tributes. Synthesized attributes are attributes of a
nonterminal when it is used as a father, i.e. the left-
hand side of a production. Inherited attributes are at-
tributes of a nonterminal when it is used as a son, i.e. a
symbol of the right-hand side of a production. Disjoint-
ness of synthesized attributes and inherited attributes
prevents from the situation in which the value of one at-
tribute is dependent on more than one production.

Each semantic function defines a mapping from
values of certain attributes of nonterminals in a produc-
tion to the value of some attribute in the production.

Attribute grammars can specify any recursively
enumerable sets provided that we may use partial recur-
sive functions as semantic functions.

Proof is constructed in such a way that we show a
type 0 language can be partially recognized by an at-
tribute grammar system. A grammar gives a Kleene star
generation of the underlying alphabet. For any given str-
ing we construct a parse tree based on that grammar.
Synthesized attribute passes the given string to the root
of the parse tree. At the root, we simulate all the deriva-
tions of an original type 0 grammar according to the

An Attribute Assignment View of Non-procedural Computing Systems

number of steps of derivations, to see whether or not
the given string is in the set. The computation at the
root will terminate and report yes, if it is eventually in
the set. The computation at the root will not terminate,
if it is not in the set.

We give a definition of well-balanced parentheses in
terms of an attribute grammar in Example 9. For the
nonterminal L we use L, and L, respectively to
distinguish the occurrences in the left-hand side and the
right-hand side of the production.

Example 9.
{Syntax Rule}
() N-L
2 L~L,B
(3) L—B
4 B—-{
(5) B—}
{Semantic Functions)
(1) N. boole:=L. boole and (L. value=0)
(2) L,. value:=L,. value+ B. value
L,. boole:=L,. boole and (L,. value=0)
(3) L. value:=B. value, L. boole:=(L. value=0)
(4) B. value:=1
(5) B. value:=-—1

4. Attribute Assignment Approach

4.1 Attribute Assignmet Systems

We present a formal definition of attribute assign-
ment systems. An attribute assignment system consists
of a context-free grammar G=(N, T, P, §), a set of at-
tributes A(X) for each nonterminal X in N, and a set of
relations R(p) for each production p in P. Let the p-th
production of G be as follows.

X(p,0)=>X(p, 1) . . . X(p, n(p)),

Let an attribute attr be an element of A(X(p, j)). Let
V(X (p, j), attr) be the domain of the attribute attr asso-
ciated with nonterminal occurrence X(p,j). Namely
V(X(p, j), attr) is the set of possible values for the at-
tribute attr. A semantic relation R(X(p, j), attr) in
R(p) is defined for the p-th production, as follows.

R(X(p, j), attr) is a subset of

V(Xo, attro)* V(X), attry))s . . . =V (X, attr,),

., and attr, are attributes of
. ., X, of the p-th production,
., and (X, attr,) is

where attry, attry, . .
nonterminals X, Xi, .
and one of (X, attry), (X, attr)), . .
identical with (X(p, j), attr).

Because we do not partition the attributes into in-
herited and synthesized attributes as in attribute gram-
mars, the value of an attribute may depend on two pro-
ductions directly, and the entire tree indirectly.

We say that an attribute assignment system is
strongly defined, if there exists one and only one global
assignment to the attributes of any parse tree of the con-

169

A-assignment Prolog
nonterminal predicate
symbol symbol
terminal empty
symbol string
attribute position of

terms
value constant
relations clause
definition of predefined
domains domains
unconditional assertion
relation

Fig. 2 Correspondence with Prolog.

text-free grammar. (Global assignment is an assignment
of attribute values to each node of the derivation tree.)
Hence if there are zero or more than one global assign-
ment to some parse tree, then the attribute assignment
system is not strongly defined.

We say that an attribute assignment system is weakly
defined, if there are one or more global assignment to
any parse tree. If the assignment system is strongly de-
fined, then the system is weakly defined.

4.2 New Interpretations

In this section we show that a number of non-pro-
cedural computing systems can be interpretated as at-
tribute assignment systems, and there exist natural cor-
respondences among them.

4.2.1 Prolog

A new interpretation of Prolog is as follows. A Horn
clause is now considered as a context-free production
with attributes. These context-free productions derive
only the empty string. A predicate is viewed as a nonter-
minal, and arguments associated with the predicate are
regarded as attributes. The condition of Horn clause
that a head has at most one predicate is essential to this
view. As for the left-hand side of the goal, this can be re-
garded as a hypothetical start nonterminal, which is in-
visible. Hence, in Prolog, we make an effort to build a
tree whose root is an invisible symbol and leaves are all
empty strings.

4.2.2 Wijngaarden grammars

A new interpretation of Wijngaarden grammars is as
follows. Now a Wijngaarden grammar is not simply an
infinite set of context-free productions. We can respec-
tively regard hyperrules and metaproductions as pro-
ductions with attributes, and definition of attribute
domains. Hence we have a finite set of productions
with attributes, whose domains are defined by metapro-
ductions. The domain of those attributes are possibly in-

170 T. TOKUDA
A-assignment W-grammars A-assignment Attribute grammar
nonterminal protonotion in LHS nonterminal nonterminal
symbol of hyperrules symbol symbol
terminal protonotion ending terminal terminal
symbol with *‘symbol’’ symbol symbol
attribute metanotion in attribute attribute

les
hyperru value value
rotonotion in X ;
value p X relations functions
metaproductions
K definition of definition of
relations hyperrule . N
domains domains
iti T ion o
geiri:;;:gn of metaproductio unconditional constant
o relation function
unconditional hyperrule without R . i
relation metanotions Fig. 4 Correspondence with attribute grammars.

Fig. 3 Correspondence with Wijngaarden grammars.

finite. (Attributes having finite domains may be treated
either as a part of productions or as attributes
themselves.) Without loss of generality we can restrict
the type of Wijngaarden grammers to grammars deriv-
ing only the empty string.

4.2.3 Attribute grammars

A new interpretation of Attribute grammars is as
follows. An attribute grammar is a restricted form of
the attribute assignment system. A function is a special
form of a relation, where we can determine the value of
one attribute from values of the rest of attributes
explicitly. In attribute grammars, value dependency is
explicitly defined in terms of semantic functions. If an
attribute grammar is well-defined, then the attribute
grammar is a strongly defined attribute assignment
system.

4.2.4 Miscellaneous Discussions

From a theoretical point of view, we have a very in-
teresting problem when we deal with negation. In Wi-
jngaarden grammars, negation of a recursively
enumerable predicate is not necessarily recursively
enumerable. (Note that a set S is recursive, if and only if
S and the complement of S are both recursively
enumerable.) Hence negation cannot be dealt with di-
rectly by Wijngaarden grammars in general. The con-
struction of the negation of a predicate is not an easy
job as in the example 10. A predicate ‘“‘ALPHALI is not
equal to ALPHA?2’’ stating two characters are different
takes a number of lines, while its negation ‘“‘ALPHA is
equal to ALPHA”’ takes only one line.

Example 10.
{Metaproductions)
(1) ALPHA:: a;b;c;d;e; f; g h; i5J; k; I; m; n; o
P q; 5 55 6 u; v Wi X5)5 2.
(2) STRING :: ALPHA STRING:;.
{Hyperrules)
(1) ALPHA is equal to ALPHA..

(2) ALPHALI is not equal to ALPHA2:
(STRING1 ALPHA1 STRING2 ALPHA2 STR-
ING3) is identical with (abcdefghijklmnop-
qrstuvwxyz);
(STRING1 ALPHA2 STRING2 ALPHA1 STR-
ING3) is identical with (abcdefghijklmnop-
qrstuvwxyz).

(3) (STRING) is identical with (STRING):.

Because of the same reason, we cannot deal with nega-
tion directly in Prolog or attribute grammars. (Nega-
tion problems in Prolog has been discussed widely
concerning negation-as-failure and closed-world as-
sumption [6].)

It is possible to transform Wijngaarden grammars,
which generates only the empty string, into Prolog pro-
grams using a natural correspondence given in Figure 2
and 3. Transformation of attribute grammars into
Wijngaarden grammars can be achieved naturally,
Transformation of Wijngaarden grammars into at-
tribute grammars can be achieved artificially, but can-
not be achieved naturally, because it involves discovery
of a natural decomposition of the whole computation
explicitly.

4.3 Examples

In this section we show examples of attribute assign-
ment systems. First we give definitions of the factorial
function and the parsing method in terms of attribute
assignment systems in Example 11 and 12 respectively.
Note that symbol ‘‘="’ represents equality of left-hand
side and right-hand side rather than ordinary assign-
ment. Domains of attributes number, value, start and
finish are integers.

Example 11.
{Syntax Rule)
1) S—N
Q) N—=Nsi
(3) N-i
{Semantic Relation)
(1) S value=MN. value

An Attribute Assignment View of Non-procedural Computing Systems

(2) N,. value=N,. value«N,. number
N,. number=N,. number + 1

(3) N.value=1
N. number=1

Example 12.

{Syntax Rule)

(1) S—aB

(2) S—bA

(3) A—a

4 A—aS

(5) A,—bAA;

6) B—b

(7) B-bS

(8) B,—aB;B;

{Semantic Relation)

(1) B. start=2

(2) A. start=2

(3) A. finish=A. start+1

(4) S.start=A. start+1
A. finish=S. finish

(5) A,. start=A, start+1
A;. start=A,. finish
A,. finish=A,. finish

(6) B. finish=B2B. start+1

(7) S. start=B. start+1
B. finish=S. finish

(8) B,. start=B,. start+1
B,. start=1B,. finish
B,. finish=B,. finish

The next example is slightly more complex. Now we con-
sider a problem of translating a logical expression into
quadruples of short circuit evaluation form. Namely,
for example, we translate a logical expression below

(A or B) and (C or D)

into the corresponding quadruples as follows. A
quadruple (:=, val, , Z) stands for the assignment of a
val to a variable Z. Values 1 and 0 respectively stand for
true and false. A quadruple (Br, VAR, i, j) stands for
branch to address i, if VAR is true, and branch to ad-
dress j, if VAR is false.

=0 Z |

I

N WA WN -

A specification (and a solution) of this problem in terms
of an attribute assignment system is given in Fig. 5. The
domain of attribute code is strings. The domains of at-
tributes next, start, true, and false are integers. The at-
tribute code holds the corresponding code. The at-
tribute start and next hold the starting address of the
code and the last address of the code+ 1. The attribute
true and false hold the goto address of the component

171

0) Z-FE code=(:=,1,, Z)+E. code+(:=,0,, Z)
start=2
true=FE. next+1
false=E. next
code=T. code
next=T. next
, start=T. start
true=T. true
. false=T. false
. code=TOR. code+E,. code
. next=EFE,, next
. start=TOR. start
. start=TOR. next
E,. true=TOR. true=E,. true
E,. false=E,. false
TOR. false=TOR. next
3) TOR-Tor TOR. code=T. code
TOR. next=T. next
TOR. start=T. start
TOR. true=T. true
TOR. false=T. false=T. next
4) T-F T. code=F. code
T. next=F. next
T. start=F, start
T. true=F. true
T. false=F. false
T,. code=FAND. code+ 7. code
T,. next=T,. next
T,. start=FAND. start
T,. start=FAND. next
T,. true=T,. true
T,. false=FAND. false=T,. false
FAND. true=FAND. next
FAND. code=F. code
FAND. next=F. next
FAND. start=F. start
FAND. true=F. true=F. next
FAND. false=F. false
F. code=(Br, lex (), F. true, F. false)
F. next=F, start+1
F. code=E. code
F. next=E. next
F. start=F.start
F
F.
Fy
F,

2) E,~TORE,

hmhmmEnnnmmN

5) T,~FAND T,

6) FAND—F and

7) F-i

8) F—(E)

. true=E. true
. false=E. false
. code=SWAP(F,. code)
. true=F,. false
F,. false=F,. true
F,. next=F,. next
F,. start=F,. start

9) F,—not F,

Fig. 5 An attribute assignment description.

constructs in case true and false respectively. The func-
tion SWAP gives a new code by swapping the occur-
rences of F,. true and F,. false in a given F;. code.

5. Evaluation Algorithms

5.1 Algorithms.

Attribute assignment systems allow us to describe the
specification of a problem in a concise manner without
knowing the solution explicitly. However there does not
exist efficient evaluation method in general, and is usu-
ally solved by enumeration based on backtracking. In

172

this section we show that we have a new evaluation
method for attribute assignment systems which have
finite attribute domains. (If we consider the same prob-
lem on an undirected graph, this problem becomes an
NP-complete problem provided that the size of a prob-
lem is the number of nodes. Namely the k-colorability
problem of an undirected graph can be coded as
follows. For a node X, and its neighbors X, X5, . . .,
X, the relation is (i, &1, - . . , im) Where do, i1, . . ., im
are integers from 1to kand i, . . . , im are not equal to
io.)

We describe a method for a global assignment of at-
tributes to a parse tree in case we need to obtain one
assignment of an attribute assignment system with finite
attribute domains. Traditional solutions of this type of
problem are based on backtracking method. Perfor-
mance of backtracking method depends on input in-
stances. Our method is based on set-theoretic opera-
tions. Intuitively this method consists of two phases.
We perform intersections of relations in the first phase
and broadcast a solution to each node in the second
phase.

[Evaluation Method]

Input: An attribute assignment system and a parse
tree of an input string.

Output: An assignment of attribute values to the
parse tree, if it exists. An error message, if it does not ex-
ist.

Method: Initially the set S(X) is empty for each
nonterminal X of the parse tree.

(1) Apply Algorithm 1 from leaves of the parse tree
to the root of the parse tree.

(2) Apply Algorithm 2 from the root of the parse
tree to leaves of the parse tree. Then we have an assign-
ment V(X) for each nonterminal X of the parse tree

Algorithm 1.
for each relation (¢, ti, . . . , tn)
at a production of nodes (X, X1, . . ., X»)
do if ((#; is in S(X))) or (X, is a terminal)) and
...and
((#, is in S(X,))or (x, is a terminal))
then S(Xy):=S(Xo)+ {to} i
od

Algorithm 2.
if X, is the root of the entire tree
then if size (S(x0))=0 then error ()
else V(x,): ={an element ¢ in S(Xy)} fi fi;
if
for some relation (¢, t;, . . . , &)
at a production of nodes (Xo, X1, .
that
(% is in V(X)) and
((#, is in S(X))) or (X, is a terminal)) and
...,and
(¢, is in S(X,)) or (X, is a terminal))
then
Vx):={u}; .

.., Xn) such

.y VX)) ={t1h

T. TokubA

Note that the uniqueness of global assignment to the
parse tree can be determined in one-pass bottom-up
evaluation of Algorithm 1, if we use multi sets instead
of usual sets. A multi set is a set of occurrences of
elements, and we may have many occurrences of same
element in a multi set.

5.2 Example

Let us solve the example of Fig. 5 over a small finite
set of addresses using our algorithm. Usually the solu-
tion of this type of problem is realized by a technique
called backpatching. Backpatching is a technique of pat-
ching jump addresses of jump instructions when they
are determined after generation. The parse tree of the in-
put is shown in Figure 6. (For convenience the terminal
i is replaced by corresponding variable name.)

If we directly apply our evaluation algorithm, there
will be two approaches to the solution of this problem.
The first solution holds a finite set of attribute values
and apply intersection operations of Algorithm 1
repeatedly. Attributes at each nonterminal are (code,
true, false, start, next). The size of the set of attribute
values at each nonterminal decreases, when we perform
intersection operations from leaves to the root. Finally,
at the root, the size of the set of attribute values become
one, and the value of the attribute code is identical with
six quadruples shown in the section 4.3. In this par-
ticular case the broadcast phase of Algorithm 2 is rather

fL
l
—

FAND T
F and F

pallinn
\

\)

TO[R !l‘: T(I;R I~|I
=
T or TT or T
| | | |
F F F F
| | |
A B C D

Fig. 6 Parse tree of a boolean expression.

An Attribute Assignment View of Non-procedural Computing Systems

= z

BrA 4 3

BrB 4 6

BrC 17 5

BrD 17 6

1= V4

BrA i+2 i+l

BrB i+2 fa

BrC 13 i+3

BrD 13 f4

BrA i+2 i+l

BrB i+2 f4

BrC 3 i+3

BrD 13 fa4

I
]

BrAi+2 i+l BrCt3 k+1
BrB i+2 f2 BrD13 f4

k+1
f4

BrC13
BrD13

BrC3 k+1
BrDt3 f4

BrAn
BrBi f2

i+1

Bra n i+l [Brc 6 k+1]|BrD u gl
1 [i
lBrA Ln f: EXR f2] [Brc B f3 HBrD “ f4

1
B /3 E[BrD “ /4|

|
2 f2||BrC

Fig. 7 Determination of attribute values.

‘BrA 1A HBrB

redundant.

The second solution could use the concept of value
numbers often used in the data-flow analysis. Instead of
having a finite set of attribute values, we hold a value
number (and value expressions) such as ¢, fi, and iin a
quadruple (Br A t, f;) where ¢, and f; are value numbers
for F. true and F. false, and i is the value number for
the start address of the code respectively. We perform
intersection operations of value numbers and value ex-
pressions repeatedly, and get the final value of the code
at the root. The determination of attribute values based
on this approach is illustrated in Figure 7. In this par-
ticular case, the use of value numbers can be im-
plemented using usual unification techniques.

5.3 Proofs

We give correctness proofs of algorithms in the sec-
tion 5.1 by induction on the height of parse trees.

Theorem 1. The set S(x;) of Algorithm 1 gives a set of
values at node X; such that the value is assignable in

173

global assignments of the subtree T of node x; (with X;
as the subtree root) in terms of attribute assignment rela-
tions.

Proof. By induction on the height of the subtree T.
When the height of the tree T is one, Theorem 1 holds
trivially. Because the set of assignable values is a simple
union of the values in relations.

Assume that Theorem 1 holds when the height is less
than k. We denote the global assignment of the tree of
height k by k-assignment. Assume that a production at
the entire root is Xo— X\, X3, . . . , X,,. By definition, a
tree of height k could be considered as pasting of a tree
of height one with the root X, and trees of height k—1
or less with the roots X, X3, . . ., X,

Forizl1,

S(X)) at k-global assignment=
an intersection of S(X;) at m-global assignment
(k—1=zm) and (assignable values of X; for nodes
Xo, X1, X2y .« ., X))

Hence we obtain the k-global assignment by our
algorithm.

Corollary 1. The set V(x;) of Algorithm 2 gives a
value at node x; in a global assignment of attribute
values to the parse tree, if it exists. Algorithm 2 gives an
error message, otherwise.

Proof. Straightforward.

6. Discussions

6.1 Transformation

Attribute assignment systems often can be considered
as starting descriptions, which will be transformed into
descriptions of attribute grammars via a series of
natural transformation techniques. This is true in the
case of the example of Fig. 5. (We can naturally treat
start, true, and false as inherited attributes, and next
and code as synthesized attributes respectively.) Also in
this case the description of the attribute grammar can
be transformed into a description of action routines in
terms of the use of backpatching. So this transforma-
tion process could be considered as an explanation of
how we can come up with backpatching techniques.

6.2 Comparison

We mention an experimental comparison of
backtracking approach and our set-theoretic approach
to combinatorial problems. According to [8], Iwamoto
measured the two evaluation methods for attribute
assignment problems. The problem is assignment of in
tegers to nodes of a complete binary tree of height n
with r locally possible assignment relations at each pro-
duction. Measured time in milliseconds is given in Fig.
8a and 8b. (By best cases and worst cases, we mean the
case where the backtracking method works best and
worst respectively. Backtracking was implemented by a
simple recursive procedure.) Numbers above and below

174

n 2 [3 ‘ 4 5

r=2 2 2 28 2%
58 68 82 94

r=3 48 2 46 2
110 140 166 198

r=4 88 84 82 88
22 282 344 414

r=s 184 186 186 182
450 580 714 856

Fig. 8(a) Comparison of best cases.

n 2 [3 I 4 l 5

r=2 40 58 76 100
50 68 78 86

r=3 114 244 468 782
112 136 170 198

r=4 328 1022 2428 4956
222 284 340 418

r=5 988 4176 12760 31490
446 594 728 864

Fig. 8(b) Comparison of worst cases.

in a column show measured time by backtracking
method and our method respectively. This experiment
suggests our evaluation method is relatively efficient
and stable in comparing with traditional backtracking
method.

6.3 Generalization

A generalization of the evaluation method in this
paper is possible. One possible extension of this method
is to extend the domain of attributes from finite sets to
manageable infinite sets such as regular sets or paren-
thesis languages. This extension would increase the
capability of the evaluation method. However, it would
have a large amount of overhead.

7. Conclusion

We have shown that our attribute assignment inter-
pretation of non-procedural computing systems such as
Prolog, Wijngaarden grammars, and attribute gram-
mars is very natural and useful. We presented a formula-
tion of attribute assignment systems. This view enables
us to have a set-theoretic evaluation method of non-pro-
cedural computing systems with finite domains.

Historically it is quite interesting that what computer
scientists of the 60’s tried to forget was rediscovered by

T. ToKUDA

computer scientists of the 70’s in a slightly different set-
ting.

Acknowledgement

The author would like to express his gratitude to Mr.
Norio Iwamoto for having discussions with him about
his formulation of relational attribute grammars and
his implementation based on object-oriented systems.

References

1. BOCHMANN, G. V. Semantic evaluation from left to right, Comm.
ACM, 19, 2 (Feb. 1976), 55-62.

2. CLEAVELAND, J. C. and UzgaLis, R. C. Grammars for Program-
ming Languages, American Elsevier (1976).

3. GANzINGER, H. and RiPKEN, K. Operator identification in Ada:
formal specification, complexity, and concrete implementation,
SIGPLAN Notices 15, 2 (1980), 30-42.

4. GOLDBERG, A. and ROBSON, D. Smalltalk-80: The language and
its implementation, Addison-Wesley (1983).

5. HENDERsON, P. Functional programming: application and im-
plementation, Prentice-Hall (1980).

6. HOGGER, C. J. Introduction to logic programming, Academic
Press (1984).

7. IcHBIAH, J. D. et al. Rationale for the design of the ADA pro-
gramming language, SIGPLAN Notices, 14, 6 (1979).

8. IwamoTo, N. Relational Attribute Grammars, M. Eng. Thesis,
Dept. of Comp. Sci., Yamanashi University (1985).

9. KATAYAMA, T. A hierarchical and functional programming based
on attribute grammar, 5th International Conference of Software
Engineering (1981).

10. KAy, M. Functional Grammar, Technical Report, Xerox Palo
Alto Research Center (1979).

11. KFOURY, A. J., MoLL, R. N. and ARBIB, M. A. A programming
approach to computability, Springer-Verlag (1982).

12. KnNutH, D. E. Semantics of context-free languages, Math.
System Theory 2, 2 (1968), 127-145; Correction: §, 1 (1971), 95-96.
13. KosTER, C. H. A. Affix grammars, Algol 68 Implementation,
north-Holland (1971).

14, KowaLski, R. Algorithm=Logic+Control, Comm. 24, 2
(1979), 147-155.

15. MANNA, Z. Mathematical theory of computation, McGraw-Hill
(1974).

16. MARrcoTTY, M., Ledgard, H. F. and BoCHMANN, G. V. A
Sampler of Formal Definitions, Computing Surveys 8, 2 (1976), 191-
216.

17. Rocers, H. Theory of recursive functions and effective
computability, McGraw-Hill (1967).

18. REBELIK, J. and STEPANEK, P. Horn clause programs suggested
by recursive functions, Proc. Logic Programming Workshop,
Hungary (1980).

19. SINTZOFF, M. Existence of a Van Wijngaarden syntax for every
recursively enumerable set, Annale de la Societe Scientifique de Brux-
elles, 81 (1967), 115-118.

20. Toxupa, T., TOKUDA, J., SAssA, M. and INOUE, K. Metanotion
Chart for revised Algol 68, SIGPLAN Notices 12, 9 (1977), 11-14.
21. Tokupa, T. Wijngaarden grammars as Knuthian grammars,
Proc. 20th Annual IPSJ Conference (1979), 207-208.

22. Tokupa, T. An Exercise in Transforming Wijngaarden Gram-
mars into Knuthian Grammars, Research Reports on Comp. Sci. C-
40, Dept. of Info. Sci., Tokyo Inst. of. Tech. (1981).

23. VAN WIINGAARDEN, A. et al. Revised Report on the Algorithmic
Language ALGOL 68, Acta Informatica § (1974), 1-236.

(Received January 16, 1986; revised October 16, 1986)

