AMLOG: an Amalgamated Equational Logic
Programming Language

GLENN MANSFIELD*, ATsusHI ToGasHI* and SHoICHI NoGUCHI™*

AMLOG is an equational logic programming language based on the concept introduced by Fribourg [6]. In
this language, an amalgamation of logic programming and equational programming is achieved by combining,
in the computation procedure, the capability of inferring solutions by means of goal reduction as in logic
programming and the term rewriting feature of equational programming. The logical basis of equational logic
programming languages is established using deductive reasoning about programs. Two deductive systems are
proposed, the notions of confluence and Church-Rosser property of programs are introduced based on these
deductive systems, and their equivalence is proved. It is shown that solutions obtained by executing an equa-
tional logic program are deducible from the program in the deductive system for equational definite clauses.
This result gives the soundness of the computation mechanism. The converse of this result is not true in general.
However, for confluent programs, we have shown the following completeness result: if a goal has a solution
deducible from a confluent program, under certain conditions, then there is a successfully terminating computa-
tion for the goal with a more general solution. Some implementation issues and features of the language are dis-

cussed.

1. Introduction

The phenomenal reduction in the cost of computing
has resulted in the emergence of several descriptive
languages in the horizon of practical computing. These
descriptive languages are gifted with elegant semantics
based on mathematical logic and independent of the ac-
tual method of computation. Two of the more promis-
ing languages, not unrelated as we will see below, are
logic programming languages and equational (or func-
tional) programming languages. Logic programming
languages, e.g. Prolog [5, 16], are based on first order
predicate logic, and involve the direct application of the
resolution principle [3] introduced by Robinson. In
these languages programs are expressed as sentences,
the successive derivation of new goals from goals, using
resolution, is the computation process. Problems
(Goals) are solved by showing the inconsistency of the
given goals with respect to the given program. The in-
stances of contradiction are results of the computation.
The power of these, basically relational, languages lies
in the capability of inferring solutions. The two major
drawbacks of logic programming are its awkward handl-
ing of the equality relation and the meaningless way
functions are handled.

Equational languages, for instance in [10, 21}, use
equations to specify programs. From the computational
point of view, equations may be viewed as reduction

*Research Institute of Electrical Communication, Tohoku Univer-
sity, 2-1-1 Katahira-cho, Sendai-shi 980 Japan.

Journal of Information Processing, Vol. 11, No. 4, 1988

rules allowing the reduction of a left-hand expression to
its corresponding right-hand expression. In the process
of computation successive reductions are carried out on
a given expression by applying equations until no fur-
ther reduction is possible. The expression is then said to
have been reduced to its normal form. This expression
is the result of the computation. The rules are
equivalence relations; thus, equality is builtin. But the
input-output relationship is strictly defined. This
precludes the possibility of inference.

The complementary properties of the two programm-
ing approaches have inspired researchers to look for a
formalism that combines the two approaches. The
FUNLOG of Subrahmanyam et al. [19] uses function
reduction and, what is called, semantic unification. The
computation mechanism does not fully encompass nar-
rowing [13] and is thus limited in its power of reasoning
about equations. The EQLOG of Goguen ef al. [8] is
based on the formal foundation of many sorted Horn
clause logic with equality and offers several attractive
features. The methodology is, however, different from
amalgamation in the sense that it retains predicates and
functions unchanged. This is reflected in the computa-
tion mechanism which consists of separate algorithms
for solving equations and handling predicates.

Operationally, unification (two sided matching) be-
tween two terms is the basis of resolution which forms
the core of logic programming. On the other hand, in
functional programming the evaluation mechanism for
terms and subterms uses one sided matching. A unified
approach would involve unification at subterms. The ap-

AMLOG: an Amalgamated Equational Logic Programming Language

proach of SLOG [7] uses superposition which embodies
the above concept. The language uses the concept of
Horn oriented equational clauses. The only predicate in
the language is the equality predicate. All other
predicates are encoded as functions. The head of the
clause is interpreted as a rewrite rule; instead of resolu-
tion, innermost goal-superposition is used. The com-
pleteness resuit is given for a restricted class of pro-
grams (ground canonical, well-innermost-reducing) and
for goals which have answers made of constructors
only.

In this paper we propose the equational logic pro-
gramming language AMLOG. It is based on the con-
cept of equational logic programming proposed by
Fribourg [6]. A significant change, affecting the com-
pleteness result, is introduced in the computation
mechanism. In [6} a program is seen as a dynamic ob-
ject which is extended, possibly infinitely, by the addi-
tion of new clauses generated by definite superposition
(superposition of clauses on clauses). Nevertheless, the
computation mechanism consists of a linear derivation
from a finite extension of the program with the initial
goal statement. In contrast with this, a computation in
AMLOG envisages a linear derivation from the pro-
gram, which is static, with the initial goal. The com-
pleteness result given, covers a restricted (confluent)
class of programs and goals which have answers made
of normal substitutions (see section 5) only. We have
adopted the deductive approach to establish the sound-
ness and correctness of the computation mechanism.
The properties of these deductive systems and their rela-
tion with the programs in the language are discussed.

The organization of this paper is as follows: in sec-
tion 2 some basic definitions are stated. The formula-
tion of a deductive system for equations is presented in
section 3; soundness and completeness of the system is
dealt with. In section 4, an amalgamated logic program-
ming language is introduced, this is followed by its
precise discussion in section 5. In section 6 some im-
plementation issues and pertinent features of the
language are discussed followed by concluding remarks
in section 7.

2. Basic Definitions

In this section, we briefly review the definitions of
terms, substitutions and other related jargon. See [9,
11, 12], for further detailed discussions. For simplicity
of notation, we assume that we have only one sort.
Nevertheless, all the results of this paper apply to the
many sorted case as well.

Throughout this paper, it is assumed that we are
given a set X of function symbols containing the
distinguished symbol true. Each function symbol has a
rank, a natural number. A function symbol of rank 0 is
called a constant. The symbol true is a constant.

Let V be a denumerable set of variables. A term (or a
2-term if we emphasize X') is recursively defined as

279

follows:

—a variable xe V is a term;

—a constant ae 2'is a term;

—if fe 2'is a function symbol of rank » and each M;

is a term,
then f(M,, . .., M,) is a term.

The set of all terms is denoted by 7(Z, V), and the set
of all ground terms, terms containing no variables, by
7).

For a term M, we denote its set of occurrences by
Ocr(M) and the subterm of M at the occurrence
ue Ocr(M) by M/u. We say u is the occurrence of the
subterm M/u in M. Given two terms M, N and an occur-
rence ue Ocr(M), we define M{u+<N] as the term M in
which the subterm M/ u at the occurrence u is replaced
by N, and M[N] as the term M in which some subterm
of M is replaced by N. Var(M) denotes the set of
variables in a term M.

A substitution is a mapping 0 from a set of variables
into a set of terms such that §(x)=x almost everywhere,
i.e., the set of variables replaced by 6 is finite. Substitu-
tions can be extended to terms in the usual way. The Do-
main of a substitution ¢ is given by D(o)={xlox#=x}.
The set of variables introduced by o is given by I(o)
={xlxe Var(ay), ye D(a)}. The restriction of a sub-
stitution o to a set of variables U is given by (¢TU)x=
oxif xe U and (g1U)x=xif x¢ U.

In this paper, we use several symbols as syntactical
meta variables. We use x, y, z for variables; f, g, h for
function symbols; a, b, c for constants; K, L, M, N, R
for terms; u, v for occurrences; I, 4 for sequence of
equations; and, 8, g, n, {, v for substitutions; possibly,
with primes or subscripts. The symbol = is used to in-
dicate syntactical identity.

3. An Equational Definite Logic

3.1 Equational Definite Clauses

Definition An equational definite clause (or a condi-
tional equation) is an equational clause of the form

L=R‘—M1=N1, ey M,=N,. []

Note that an equation L =R is an equational definite
clause without conditions. In equational definite logic,
a predicate can be viewed as a truth function, an atomic
formula A (in first order logic) is expressed by the equa-
tion (4 =true).

Definition A proof(figure) of an equation M=N in
a deductive system DS is a tree Gy . . . GiGi+1 . . . G
(of equations) where G;, 0<i<n, represents the set of
nodes (equations) at depth / in the tree such that

(i) for all O0<i<n, all the nodes in Gi:+, can be
deduced from those in G; using the inference rules of
the deductive system DS, and

(i) Gnis {M=N}.

We say, M= N is provable from a set S of equational
definite clauses in a deductive system DS, denoted by

280

Skps (M=N), iff there is a proof (figure) of M=N
from S in the deductive system. A sequence of equa-
tions I is said to be provable in DS i.e. S+ ps I' iff every
equation of I is provable in DS. The subscript DS is
dropped from the notation when the deductive system
chosen for the proof is clear from the context. 1]

We have adopted the deductive approach in proving

(EQ reflection)

M=M
(EQ transition)
M=L L=N
M=N
(EQ modus ponens)

OM,=6N, . .. OM,=60N, (M=N<M,=N,, ..

GLENN MANSFIELD, ATSUSHI ToGAsHI and SHOICHI NOGUCHI

the soundness and completeness of our computation
system as, unlike the approach involving interpreta-
tions, in the deductive approach the proofs are simple,
elegant, compact and based on mechanical reasoning.
In the following we present a deductive system EQ for
equations.

(EQ commutation)
M=N
N=M
(EQ replacement)
M=N
LIM]=L[N]

., M,=N,e S)

OM=06N

3.2 A Deductive System for Equations (EQ)

Given a set of equational definite clauses, the follow-
ing are the deductive rules of inference for equations:

Proposition 1. If Sz (M=N) then S+ (M=
ON) for all substitutions 6.

Proof. Straightforward: by structural induction on
the proof of S+ g(M=N).

3.3 Interpretations of Equational Definite Clauses

Definition An interpretation of X in the equational
definite clause logic is a triple I=CA4, X4, =,>, where
—A is a non empty set, called the carrier of the inter-
pretation;
—2, is a set of functions f, assigned to fe Z;
—=,4 is an equivalence relation on A such that if
V:a;=4bi(1 <=i=<n) then

fA(a], “ ooy a,.)=,4f,1(b1, e ey b,,)

for every function symbol f of rank n.]
In other words, an interpretation of X' is a X-algebra
[9] together with an equivalence relation compatible
with every function. An equivalence relation compati-
ble with every function is called a congruence relation.
By abuse of notations, we identify an interpretation
with a Z-algebra on which a congruence relation is de-
fined. A valuation of variables in an interpretation A is
an assignment of an element in A4 to each variable. The
definition of valuation can be extended to terms in the
usual way.
Definition Let A be an interpretation and S be a set
of equational definite clauses.
1. Anequation M= N is satisfied by a valuation v in
A iff v(M)=4v(N).
2. An equational definite clause M=N<«1I"is valid
in A iff for every valuation v in A, M=N is

satisfied by v, or some equation in I' is not
satisfied by v.
3. Aisamodel of Siff each clause in S is valid in A.
4. M=Nis a logical consequence of S, denoted by
S=M=N, iff it is valid in every model of S. {]

3.4 Soundness and Completeness of the Deductive
System EQ

Lemma 1. [Soundness of the Deductive System
EQ} Let S be a set of equational definite clauses and
L=R an equation. If S—goL=R then S=L=R.

Proof. Straightforward. It suffices to show that
each inference rule preserves the validity of clauses.
Since this can be easily checked, the details are omit-
ted. [l

To prove the completeness of the system, we will con-
struct a special interpretation. Let S be an arbitrary set
of equational definite clauses. Recall that T(Z, V)
denotes the set of all terms constructed from X and V.
Let us define a relation = on 7(Z, V) by M=N iff
S+ soM=N. By the rules of inference, the relation = is
clearly a congruence relation on 7(ZX, V'), the resulting
quotient algebra Q=T(Z, V)/ = is an interpretation
with the identity relation on the set of all congruence
classes as a congruence relation on Q. A function fo,
for each function symbol fe X of rank n, is defined by

Jo(IM, ..., IMD)=[/M,, ..., M),

where [M] denotes the congruence class of M.

In the following, we adopt the fact, without proof,
that an equational definite clause M=N«M,=N,, . . .,
M,=N, is valid in Q iff 6M=6N follows from
M, =6N,, . .., 6M,=6N,, for every substitution 6.

Lemma 2. Q is a model of S.

Proof. Let M=N+«~M,=N,, ..., M,=N, be a
clause in S and @ a substitution. Suppose M= ON, for

AMLOG: an Amalgamated Equational Logic Programming Language

i=1,...,n then from the definition of Q
S+OM;=0N;, fori=1, . . ., n whence applying modus
ponence we can deduce S+-6M=0N so that M =6N.
Thus Q is model of S. |

Lemma 3. L=R isprovable from S in the deductive
system EQ, S+ g L=R, iff it is valid in the model Q of
S.

Proof. “‘Only if”’ part is by Lemma 1 and Lemma
2. The “‘if”’ part follows from the definition of validity
in Q. 1

Theorem 1. [Soundness and Completeness of the
Deductive System EQ]

S—L=R iff S=L=R. Where, S is a set of equational
definite clauses and L=R is an equation.

Proof. By Lemma 1, 2, and 3. Il

4. Equational Logic Programs

In an equational logic programming language, the
head equation of an equational definite clause L=R<I"
is implicitly oriented from left to right. Thus the head
of the clause can be viewed as a rewriting rule L—R. In
the following, we shall describe an equational logic pro-
gram and its operational semantics.

Definition An equational logic program is a finite
set P of oriented equational definite clauses of the form

L->R<L /=Ry, ..., L,=R,. []

Definition A goal for an equational logic program
is a finite sequence of equations: M\=N,, . . ., M=
N (1

Computation mechanism. Goals represent the prob-
lems which will be solved by execution of programs. A
computation (or an execution) is initiated by an input
goal. The computation proceeds by applying suitable
computation rules to derive successive new goals. At
each step some equation is selected from the goal and is
checked for the applicability of reflection or superposi-
tion. If reflection is possible, the equation is deleted
from the goal and the substitution which unifies the two
sides of the equation is applied to the resulting goal. In
the case of superposition, some subterm in the equa-
tion, unifiable with the left hand side of the head of
some clause in the program, is replaced by the corre-
sponding right hand side in the head of the clause. The
body of the clause is added to the goal. Finally, the
unifier is applied to the resulting goal. The computation
successfully terminates for an input goal if the empty
goal (an empty sequence of equations) is derived.
Precise definitions related to the computation are given
below.

Definition Let G=(M,=N,, ..., Mi=N;) be a
goal. The reflection rule allows the removal of an equa-
tion M;=N,, 1<i<k, from G where OM;=6N, by a
most general unifier 8 of the terms M; and N,. The goal

G'=0(M1=N1, ..., Mi- =N,

M =Nty o .., M,=N))

281

is called a reflectant of G on M;=N,.]
Definition Let G=(M,=N,, ..., Mi=N,) be a
goal. The superposition rule yields a superposant G’ of
G by an oriented clause LR« L,=R,, ..., L,=R,,

on M,=N, if either:
1. M; has a non-variable occurrence «; such that
O(M;/ u;)= 6L by a most general unifier §, and G’

is the goal
OM,=N,, . .., Mui—R]=N,
Li\=Ry, ..., L,=Ry,,Mix,<=Nit1, .. .,
M;=Ny), or

2. N; has a non-variable occurrence v»; such that
O(N;/ v)=6L by a most general unifier 8, and G’

is the goal
oM\, =N,, ..., Mi=Njvi+R],
Li=R,...,L,=R,,Mix,=Ni+1, ...,
M=Ny). l

Note that we are considering only goal superposition
i.e. superposition of clauses on goals. Definite super-
position cf. [6] i.e. superposition of clauses on clauses is
not included in the computation. Narrowing, see [8, 13],
is a special case of superposition where the program con-
sists only of equations i.e. definite clauses without con-
ditions. The computational use of narrowing and its
links with Prolog have been independently investigated
in [8].

For goals G and G’, G= G’ indicates that G’ is either
a reflectant or a superposant of G. We may write
G=°G’ to specify the used unifier 6.

Definition Let P be a program. A computation
from a goal G is a, possibly infinite, sequence of goal
reductions

G(J(=G)=’G'G1=szc;z= .. G,‘=0’”Gi+|= “ e

A computation successfully terminates if G, is an
empty goal, denoted by e, for some n=0, where an emp-
ty goal is the empty sequence of equations. In this case,
the composition 8=0, . . . 6, is the used substitution,
@', the restriction of 8 to the variables in G denoted by
0’=01Var(G) is called the answer substitution and
0'G(=6G) is the result of the computation. The active
variables V(G)) in an intermediate goal G; is given by

W(Go)= Var(Go)
V(Gi+)=(V(G) U I(6;+11 V(G))) — D(6i+1T V(G)).
Where, G;="°%+'G;+, and D(6;+)) N I(6i+)= . 1]

5. Soundness and Completeness

In the following we have viewed a program as a set of
equational definite clauses by ignoring the orientation.
This ensures that the notions such as models, validness,
logical consequence and so on are also available for
equational logic programs.

282

Lemma 4. Let P be an equational logic program
and G a goal. If there is a successful computation from
G:G=%G,=% ... =g, then every equation in 6, . . .
6,G is provable from P.

Proof. The proof is by induction on the length n=0
of computation. In the base case, n=0, G is an empty
goal and the Lemma is trivially true.

Next, suppose that the result holds for computations
of length n—12=0. Let us consider a computation of
length n, G=%G,=% . . . =% =%, where G is of the
form (I, M=N, A). There are two possibilities.

If G, is a reflectant of (I, M=N, 4) at M=N, then
G\=6,I",4) where, 6 M=6,N. Thus, Pr6,...
0,(6lM=6,N) by Proposition 1. Also, P+6,. ..
6:0.(I", A) by the induction hypothesis and Proposition
1. Combining these proofs we have P06, . . . 6.0:(T,
M=N, A), or, P+6, ... 6:0G.

If G, is a superposant of (I, M=N, 4)on M=Nbya
clause L-R<AeP, either M or N is modified.
Without loss of generality, suppose M is rewritten, then
G1=6,(", Mlu—R]=N, A, A) where 8,(M/u)=6,L for
some occurrence # in M. By induction hypothesis,

P+6,...6(Mu—R]=N) 5.1
PH6,...0/(, 4) (5.2)
Pr6,...6(A) (5.3)

The proof figure for 6,...6,G may be built as
follows-

0,...6A (using5.3)

(modus ponens)
0,...6(L=R)
(replacement)
0,...06M=Mu<R0;0,...6Mu-R]=N)
(using 5.1)
-—- (transitivity)

On...0M=N)0,...6(,A4) (using 5.2)

6, ...60(G) 1]

Without loss of generality, we can assume that an in-
put goal in an equational logic program is a single equa-

(RD reflection)

M=M
(RD transition)
M=L L=N
M=N

Note: P+ zxpM=N implies P+ zpfM=6N for all 8 as in
EQ.
Proposition 2. P zpM=N implies P goM=N.
Proof. Obvious. 0l
Definition An equation L =R is convergent by P in

GLENN MANSFIELD, ATSUSHI TOGASHI and SHOICHI NOGUCHI

tion M=N. Because, solving a goal M,=N,, ...,
M, = Ny is logically equivalent to solving the single equa-

tion f(M,, ..., M)=f(N, ..., N, where f is a
fresh function symbol.

Theorem 2. [Soundness of the Computation
Mechanism]

Let P be an equational logic program and
G=(M=N) a goal. If there is a successfully ter-

minating computation G=°G,=%"G,= . .. =%, then
the universal closure of the result 8, ... 6,G is the
logical consequence of P.

Proof. By Lemma 4 and Theorem 1. I

The converse of Theorem 2 is not true in general. Not
all logical consequences of a program P have a suc-
cessfully terminating computation as is shown in the
following example.

Example 1. Let us consider the program P=
{a—b, a—c, f(a, a)—true}. Clearly, f(b, c)=true is
the logical consequence of P. But there is no successful-
ly terminating computation from the goal f(b, ¢)
=true. 1

To handle the completeness problem we view an equa-
tional logic program as a reduction relation.

Definition Any equational logic program P defines
a reduction relation Rp: My— N belongs to R, iff there is
a successful computation from the goal My=N
My=N)="(M\=N, 4)="(M=N, 4;)> . ..

=8 (N=N)="e
such that 8, . . . 6ix\M;=M; and 6, . . . 8;x\N=N for
each i, 0<i=<n—1and N remains unchanged during the
computation. By definition, M—Ne Rp if M—L, L—
Ne Rp for all terms M, N, and L. N

Now, we propose another deductive system RD
which corresponds to the reduction relation R, defined
by a program P. This deductive system needs to take
care of the inherent asymmetry in the reduction rela-
tions defined by an equational logic program.

Definition A deductive system RD for an equa-
tional logic program P consists of the following in-
ference rules:

(RD replacement)
M=N
LIM]=LIN]
(RD modus ponens)
OM\=K/ON,=K, . .. 0M,=K,ON,=K,
M =6N
where, M=N<M,=N,, . .

.y Mn=Nne P

RD, denoted by lp(L =R), iff there exists a K such that
L=K and R=K are provable from P in RD i.e.
lp(L=R) iff Pp (L=K), (R=K) for some K. A se-
quence of equations is convergent iff every equation in
the sequence is convergent.

AMLOG: an Amalgamated Equational Logic Programming Language

Theorem 3. Let P be an equational logic program
and M, N be terms. M—Ne Rp iff M=N is provable
from P in RD.

Proof. ‘If”’ part is by structural induction on the
proof figure of M=N from P.

For the ‘‘only if”’ part, suppose M—Ne Rp.
Let (My=N)=%M,=N, A))="*(M,=N, A)> . ..
=%-y(N=N)= %¢ be the corresponding successful com-
putation from the goal (My=N), where My=M. The
result follows from the following assertions:

(Al) M,_;=N is provable from P in RD, for each

i=1,...,n
(A2) 6,...6,-i:14,.-i is convergent by P in RD,
p(0n . . . Opiv14,-)), for each i=1, . .., n.

The proof of the above assertions is by induction on
i
Base case: i=1. Al is true as the proof of N=Nin RD
can be constructed using the reflection rule. A2 is trivial-
ly true as A4, =¢.
Induction step: Suppose Al and A2 are true fori=1,
we will show that Al and A2 are true for i+1.

Let us consider the one-step goal reduction

(Mn—i~l=N, An—i—l)=0n—i(Mn—l =N, An-—i)

There are three possibilities

1p(046n-: . . . 8,-.1) (induction hypothesis)
—————————— By Modus Ponens
0,, “ .. 0,,—,'L=9n e 0,,_,»R; 0,, P 9,._,(T|/u)=0,, PR

283

(@) A4,-;is obtained from A4,-;,—; by reflection and
Mn—i-l EMn—is

(b) A4,-;is obtained from A4,-,_, by superposition

and M,,A,'_x EM,,_,‘, and,

() (M,-i=N, 4,-) is obtained by superposing a

subterm of M,_;-, with the left hand side of a
rule in P.
In the following each of these cases are examined—

(@ If A,_; is obtained from A4,-;-, by reflection,
without loss of generality let 4,-,-, be of the form
(T'\=T,, I') such that 6,_;,7,=6,-,T; and A4,_;=6,_,I.
According to the induction hypothesis A2 is true for
A,-i. We can easily construct the proof for 4,_;_, in ac-
cordance with A2 by chosing 8,-;,7y=K=4,-,T; and us-
ing the induction hypothesis for A4,-.. (Al is trivially
true in this case)

(b) If A,-;is obtained form A,-;-; by superposi-
tion. Without loss of generality let A,—;-,=(T\=T,, I');
0.-(T1/u)=0,-;L and 4,-;=8,_(T\[u<R]|=Ty, A, I'),
where, L=R <+ Ae P is superposed on T, at its u"" occur-
rence. According to the induction hypothesis A2 is true
for A,-;. The proof for A,-;_, can easily be constructed
in accordance with A2 as follows (Al is trivially true in
this case)—

6,-:L(superposition cond’n) By Transitivity

0n...00-(T\/U)=0,...6,R

By Replacement

On...0.-(T)=6,...0,—(Ti[u=R1);0,..

. 6,—i(T\[u<RY)=K(ind’n hyp) By Transitivity

6,...0,-(T)=K;06,...06,_-(T2)=K,80,...80,-.I(Induction hypothesis)

9,, L on—iAn—i-l

(¢) (M,-;=N, 4,-) is obtained from (M,—;-;=N, 4,-;-) by superposing the clause L=R<Ae P at the occur-
rence u using the substitution 8,—_;. From the definition of the reduction relation, 8,-; does not affect M,_,-, and Ni.e.
D(@.-)NVar(M,_,-\)=¢=D(0,-)NVar(N). Using the superposition condition we have (M,—;_,/u)=8,_;L, M,_;=
M,_i\[u<6,-;R], Ay-i=0,-/(A, 4,-,-1). By the induction hypothesis there exist proofsin RD for 6, . . . 8.-is1An-;

(A2) and M,_;=N (A1l). Thus, (A2) is true for 4,-;-,. Also, 8, .

e it M,-,=N)=(M,-,=N), whence, 6, . . .

gn—i(Mn-i—l=N)E(Mn—i—l =N) as D(G,,_,-)ﬂVar(N)=¢>=D(0,,_,-)ﬂVar(M,,_,--.).

The proof for M,_,_;=N is constructed as follows—

Lp(Br . . . 8,—;A)(induction hypothesis)
By Modus Ponens

on R 0,,—,‘(L=R); (Mn—i—l/u)=0n .

. . B.—;L(superposition condition) By Transitivity

(M,-i~1/u)=6, . . . 8.—;.R By Replacement

Mu-i-)=M,_i-\[u<06, . .. 0,-iR]; M,—i-\[u—86,-;R}=N(Induction hypothesis) By transitivity

On...0-iMy-im\=N)=(M,--)=N
note: M,,_,-ﬂ[u‘—@,. e 0,,_,-R]‘='M,,_,-_.[u+—0,._;R]

This completes the proof of the theorem.

284

Definition A program P is confluent iff for any
terms M, N, and N,, P+ zp(M=N,), (M=N,) implies
P rp(N1=L), (N,=L) for some L. 1

Definition A program P has a Church-Rosser pro-
perty iff for any terms M and N, P+ go(M=N) implies
P gp(M=L), (N=L) for some L. M

It is evident that P is confluent, whenever P has a
Church-Rosser property.

Proposition 3. Let P be an equational logic pro-
gram. P is confluent if and only if P has the Church-
Rosser property.

Proof. It suffices to show ‘‘only if’’ part only.
Assume that P is confluent. Let M=N be an equation.
Suppose that M= N is provable from P in the deductive
system EQ. Let 7 be a proof figure of M=N from P in
EQ. To prove the result, we show by structural induc-
tion on 7 that both equations M=K and N=XK are pro-
vable from P in RD for some K.

Base case is clear by (RD reflection). Now, suppose nt
is a proof figure of M=N consisting of more than one
quation, then M=N is inferred, for instance, from
equations M=L and L =N by applying (EQ transition).
By inductive hypothesis, there are terms K, and K; such
that M=K,, L=K,, L=K,, and N=K, are provable
from P in RD. Since P is confluent, K,=K and K,=K
are provable from P in RD for some K. Hence, M=K
and N=K are provable from P in RD.

Other cases are proved using the same line of argu-
ment. il

Corollary 1. Let P be a confluent program. If a
single equation M=N is the logical consequence of P,
then there is a successfully terminating computation
Sfrom M=N with the empty answer substitution.

Proof. By Theorem 1, 3 and Proposition 3.

Definition Given a program P, a term M is said to
be Rp-normal if there is no term N except M itself such
that M—Ne Rp. A substitution 8 is Rpe-normalized if
6(x) is Rp-normal, for every variable x. An Rp-normal in-
stance of a term ¢ is nt where 7 is an Rp-normal substitu-
tion. 0

The connection between rewriting relations and nar-
rowing relations has been given for equations in [13].
This result has been extended to the case of conditional
equations in [15, 14, 4]. It has been shown: Given a pro-
gram P, if there exists a rewriting relation from nG
where 77 is an Rp-normal substitution and G is a goal
then there exists a computation from G in P. In the
following, we present a more general result eliciting the
connection between a successful computation which
uses an empty answer substitution (reference computa-
tion) and other successful computations, emerging re-
spectively, from an Rp-normal instance of a goal and
the goal itself. Note that, though the referenced suc-
cessful computations involve empty answer substitu-
tions only; intermediate variables may be introduced
into the goal by the referenced computation and may be
freely instantiated as the occasion arises.

Proposition 4. Given an equational program P, a

GLENN MANSFIELD, ATSUSHI TOGASHI and SHOICHI NOGUCHI

goal G’, and a successful computation from G{(=G’)
=%G{=%G}= ... =% where 6, ... 6,6 is an empty
(answer) subsitution i.e. 8,-, . . . 8,61 V(Gy) is an emp-
ty substitution; suppose at some step, say i, the com-
putation involves superposition by a clause C:
L=R+<Qe P at some non-variable occurrence u of a
term M’ in G/ (Var(G/)N"Var(C)= &) using a substitu-
tion 6:(D(OINV(G/)=D as b0,... 06 is an empty
(answer) substitution) and M ' =nM where n is an Rp-
normal substitution, D(n)=U< Var(M), and Var(nx)
S V(M') for all xe U, then

(i) u corresponds to a non-variable subterm in M.

Proof. (i)LetM’'/u=nM/u=P’. By the superposi-
tion condition 8P’ =0L. There are three possibilities-

(@) u corresponds to a non variable occurrence in
M)

(b) u corresponds to a variable occurrence in M i.e.
M/u=xe Var(M),

(¢) 3ve Ocr(M) such that M/v=xe Var(M) and
M’ /u=P’ is a proper subterm of nx.

In the following we will examine all the three
possibilities:

(@) In this case (i) is true.

(b) M/u=x. There are two possibilities—

xe U: by the hypothesis of the proposition Var(nx)<S
V(M ") and since 6 is an empty answer substitution D(6)
NVar(nx)=®. Thus, @nx=nx and the superposition
condition reduces to nx=60L. Also, the conditions of
successful computation yield §Q0* = ¥¢ for some empty
answer substitution . This indicates that 7x—60Re Rp
which contradicts the assumption that 7 is Rp-normal.

x¢ U: by the hypothesis of the proposition 7x=x.
Once again from the superposition condition Ox=6L.
This shows that u is a variable occurrence in M’ itself
which contradicts the assumption that ¥ is a non
variable occurrence in M’

(c¢) Suppose P’ corresponds to some subterm of 7x
i.e. px/ w=P’. The superposition condition gives P’ =
B(nx/w)y=0L. Now, B(nx/w)=nx/w as D@)NVar(nx)
= ¢ so that x/ w=0L. Once again using the logic in (b)
above we can show that this contradicts the assumption
that # is Rp-normal.

Thus by reductio ad absurdum u corresponds to a non
variable occurrence in M)|

Lemma 5. Given an equational program P, a goal
G, and an Rp-normal substitution #, if there exists a suc-
cessful computation from G{(=nG)=%G{=G;= . ..
=%g where 8, . . . 6,6 is an empty (answer) substitu-
tion i.e. 6, ... 86,1 V(Go) is an empty substitution,
then there is a successful computation Go(=G)
=%G, =% , .. =%gemerging from G such that for all 7,
0=<i=<n, there exists n; and p; such that

D(n) € (G) M
ni is R,-normal (I

AMLOG: an Amalgamated Equational Logic Programming Language

0,
Go——2 o > o b [
K n, n, Ry
o, o, o, 9,
Go i Gi e Gi L Gi+1 il

(II1) where, po=¢; piv1=0pi
I

no=npit V(Go)
n:Gi=Gy
Proof. By induction on i:

Base case. i=0; choosing 7,=7, conditions I-IV are

trivially satisfied.

Induction step. Suppose it is true for some i=0. Let

us consider the derivation G/ —»%G/.,.

Suppose G/ is of the form (I"', M'=N"’, A4'). Accord-

ing to the induction hypothesis G; is of the form (I,

M=N, A4), and, I''=nl, M’'=nM, N’'=nN,

A= ﬂ,A .

There are two possibilities:
(A) G/., is obtained by applying reflection on
M’'=N’' ie. OM’ =6N’ since M’'=nqM and
N'’=n;N, we have 6in; M=0;n;N so that M and N
may be unified using 67..
(B) G+, is obtained by superposing a clause (C:
A=B+<Qe P)on M’'=N’. Without loss of generali-
ty, suppose the superposition is at an occurrence u of
M’. Let M'/u=P’. The superposition condition
gives t(P)=v(A), 6i=(Uv) and G, =61,
6:M’'{u<~B]=6,N', 6,Q, 6,4’). By renaming C we
can arrange so that V(G)ND(v)=@=I(n)ND(v) i.e.
V(GHND(v)= . P is a non-variable subterm in G; as
P’ =n;P, D(n)< V(G), n: is Ry-normal, and 6; is an
empty answer substitution i.e. D(6)NV(G/)= P (Pro-
position 4-(i)). Thus, 777:P = v(A) which shows super-
position is possible using w=1tp,Uv=1,Uvn,=(7Uv)
n:=~0:n; as a unifier.

Thus in both cases the computation may be simulated

using the unifier 6;77;. Suppose g; is the minimum unifier

i.e. 8in;=n’a; for some n’. Note, since 6; is an empty

answer substitution and D(n7;) € V(G), we have D(6)N

Var(n.x)=®, for all xe V(G:), whence 8;7,=80,Un..

With W(Gi+1)={V(G)UI(e:t V(G))} — D(a:t V(G)...(1)
i 1= TV(Gi+1) -..(Q)
D(nir1) € V(Gi+1) (1) proved.
ni=0m) T V(G)=(n'a)t V(G)
=i+16)t1V(G) ...(3) from (1) and (2).
Also, it is clear 8;=#n;+1a:1({ Var(G)JVar(A)} — V(G))
since, D(6)NVar(nix)=®P, and 6;, o; are mgu’s.

chosing
we have

.'.Gir],-=t1,-+,a,- (4)
From definitions
I(U,'—l e G']O'oT V(Go))g V(G,) ...(5)

and V(G,)g V(GO)LJI(U,‘—1 e Ula'oT V(Go)) (6)
Also, n=nptV(G,) ...(ITT) induction hypothesis

285

=((1:+16)TV(G))pit V(Go) from (3)
=((Ri+10)TV(G))ai-1 . . . 61601 V(Go)

=("i+10:p:)1 V(Go) using (5) and (6)
=i+ 1Pi+1) T V(Go) (I11) proved.

In the case of reflection #;., is trivially normal.
In the case of superposition let us consider any variable
x in V(Gi+y), there are two possibilities:

(i) xe I(o'V(G)) then 3ye V(G)) such that
xe Var(ai(y)). Since D(6)NVar(n:x)= & we have, using
4), Oiniy=n;y=n:+.0:y, which shows z;+, is Rp-normal
as 1, is Rp-normal.

(i) oi(x)=xi.e. x¢ D(o;) and xe V(G;). Once again
since D(6)NVar(nx)=® we have using (4) O.inix=n.x=
Ni+10:X=N;+1x, which shows 7,;, is Rp-normal as z; is
Rp-normal. (I1) proved.
Finally,

in case of reflection

Giv1=0,G! =0m:Gi=1i+16,G;i=1;+1Gi+, and,
for superposition
Gin=(@I’, 6M’'[u—~B]=6,N’, 6,Q, 6,4")
=6indI’, Mlu-B]=N, Q, 4)
=ni+10{l’, Mlu~B}=N, Q, 4)
=1i+1(Gix1)

This completes the proof of the Lemma.

Theorem 4. [Rp-normalized Completeness for Con-
fluent Programs)

Let P be a confluent equational logic program,
G=(M=N) a goal, and 6 an Rp-normal substitution.
If 6(M=N) is the logical consequence of the program
P, then there is a successfully terminating computation
from M=N with an answer substitution ¢ such that
6={_a for some (.

(IV) proved.

Proof. By Corollary 1 and Lemma 5. 0
6. Amlog: Implementation Issues & Pertinent
Features

6.1 Implementation issues

The computation rules involve reflection and super-
position only. We have proved that the computation is
complete for confluent systems and Rp-normalised
answer substitutions. The completeness implies that
there is a successfully terminating computation for
every logical conseqence of the program. However this
does not preclude the possibility of non-terminating
computations. In the following we will examine the
effect of some computation strategies.

6.1.1 Reflection vs Superposition: The sequence of
reflection and superposition seriously effects the com-
putation-

e.g. given the program

F(x)=F(a)«~F(x)=F(a) and the goal
~F(a)=F(a)

286

applying superposition first i.e. the Superposition
first strategy, will continue ad infinitum. While, reflec-
tion first strategy trivially yields the success goal.

On the other hand with reflection first the goal

—Fact(a)=x

terminates with the trivial solution x=Fact(a).
6.1.2 Innermost vs. Outermost: The choice of
subterms has an important effect on the termination
and efficiency of the computation. In the innermost
strategy the innermost subterm with a defined function
symbol at its head is chosen for superposition. While in
the outermost strategy the outermost subterm is chosen
for superposition.
Innermost computation sequences tend to be infinite
whenever possible; for the case of unconditional equa-
tions O’Donell [18] has argued that the innermost
strategy may be very expensive and inefficient and has
shown that some outermost strategies may be optimal.
For conditional equations, under certain conditions,
Bergstra et al. [2] have shown that the parallel outer-
most strategy is optimal and terminating.
6.1.3 Simplification: An important aspect of the
computation strategy adopted that retains the efficiency
of functional programming over logic programming is
simplification. It involves-
trivial removal: removal of identities 7= T from
the goal and,
goal rewriting: unconditional rewritings on goals,
as much as possible.

Note that simplification is a special case of reflection
and superposition. With the added property of
irrevocability. I.e. simplifcations (when confluence is
guaranteed) are non-backtrackable. This results in
significant savings of resources in terms of memory
usage-backtrack information need not be retained for
simplifications, and in terms of computation time since
backtracking over reductions would be senseless for
confluent programs.

Thus the strategy adopted is-

(1) Simplify as much as possible-

(2) Try reflection, if successful, go to step (1)

(3) Superpose one step, if failure backtrack

4) Go to (1).

6.2 Features of AMLOG

The combination of the two programming paradigms
viz. logic programming and functional programming in
AMLOG has resulted in several interesting and power-
ful features some of which are listed below.

6.2.1 Solving equations: The capability of using
embedded functions coupled with the power of in-
ference allows one to obtain solutions of simultaneous
equations in a very natural and simple manner in
AMLOG.

Example.

Suppose we want to solve the two simple linear equa-
tions—

GLENN MANSFIELD, ATSUSHI ToGAsHI and SHOICHI NOGUCHI

Add(Add(*x, *x), *y)=s(s(s(s(0)))).
Add(*x, *y)=s(s(s(0))).
Where the signature 2 consists of the function Add the

constructor s and the constant 0. The program consists
of the definition of Add as follows—

Add(0, *x)="*x.
Add(s(*x), *y)=s(Add(*x, *y)).

To obtain the solution the user will simply have to pose
the query

—Add(Add(*x, *x), *y)=s(s(s(s(0)))), Add(*x, *y)
=s(s(s(0)))

The answer substitution *x=s(0); *y=s(s(0)); is ob-
tained.

6.2.2 Functionality: Simplification does not allow
backtracking. Thus backtracking over functional
dependencies is avoided. Thereby a major portion of
the cut usage in the normal PROLOG programs is made
unnecessary.

Example. Suppose we want to solve the following equa-
tion for a given n and P(x)—

P(x)=D(x, Fact(n)).

The signature contains the function symbols P, D, Fact,
the constructor s and the constant 0. The program con-
sists of the definitions of D, Fact and P.

Now in the computation- Fact(n) is computed by
simplification using the (unconditional) definition of
Fact(n) and there is no backtracking over it.

6.2.3 Call by need implementation: The outermost
strategy results in a call by need type implementation in
the case of superposition.

Using the program

Car(ID=1].
Car([AIL])=L.

Given the query
—Car(IM | Fact(*x)])="*y.

The answer substitution immediately yields *y=M
without going into the evaluation of Fact(*x) which
may even be undefined in some cases.

6.2.4 Infinite data structures: By virtue of the call by
need approach of superposition infinite structures may
be handled. Note that the ‘‘simplify as much as possi-
ble’’ policy of simplification apparently contravenes
this tenet. Actually, the call by need is effected only in
superposition and in case the user intends making use
of this feature even when the relation is functional it is
only required to put the corresponding equation (defini-
tion) in the conditional form.

Example.

The program P:

G(*x)=[*x|G(s(*x))] < true=true.
Sum([*x|*y))=Add(*x, Sum(*y)).

AMLOG: an Amalgamated Equational Logic Programming Language

may be used to carry out the following pattern mat-
ching

Sum(G(s(0)))= Add(*x, Sum(*1))

to obtain the match *x=s(0), */=Sum(s(s(0))).

Thus the user has greater flexibility. The efficiency of
functional programs to deliver answers directly by sim-
ple rewriting is retained. At the same time the user may
exert control to handle divergent functions by using
dummy condition true=true cf. [20, 4].

7. Concluding Remarks

The language AMLOG is presented and its soundness
and correctness has been established using the deductive
approach. At first we have introduced a deductive
system for equations, and proved its soundness and
completeness. Then we have presented the equational
logic programming language and investigated the rela-
tionship between the operational semantics and the
declarative semantics of equational logic programs us-
ing the deductive systems. The soundness and com-
pleteness of the interpreter is proved. Some attractive
features of the language have been shown.

The interpreter for AMLOG has been implemented
[17]. Currently it supports both selection modes: inner-
most and outermost. The efficiency considerations and
other studies are being carried out.

References

1. BELLIA, M., DEGANO, P. and LEvI, G. The Call-by-name seman-
tics of a clause language with functions, in Logic Programming
(Clark, K.L. and Tarnlund, S-A. eds.) (1982), 281-295.

2. BERGSTRA, J. A. and KLop, J. W. Conditional Rewrite rules: Con-
fluence and Termination. Journal of Computer and System Sciences
32 (1986), 323-362.

3. CHANG, C. L. and LEE, R. C. T. Symbolic logic and mechanical
theorem proving, Academic press (1973).

4. DEeRrsHOWITZ, N. and PLAISTED, D. A. Equational Programming
Report no. UIUCDCS-R-86-1265, Dep’t of Computer Science, Uni-

287

versity of Illinois at Urbana-Champaign, Urbana, Illinois (1986).

5. vaN EMDEN, M. H. and Kowatski, R. A. The Semantics of
Predicate Logic as a Programming language, J. ACM, 23 (1976),
733-742.

6. FRIBOURG, L. Oriented Equational Clauses as a Programming
language, J. Logic Programming 1 (1984), 165-177.

7. FRIBOURG, L. SLOG: A Logic Programming Language Inter-
preter based on Clausal Superposition and Rewriting. Proc. of the
1985 symposium on Logic Programming, Boston, MA (July, 1985),
172-184.

8. GOGUEN, J. A. and MESEGUER, J. Equality, Types, Modules and
Generics for Logic programming, J. of Logic Programming, 1:2
(1984) 179-210.

9. GOGUEN, J. A., THATCHER, J. W., WAGNER, E. G. and WRIGHT,
J. B. An Initial algebra approach to the Specification, Correctness,
and Implementation of Abstract data types, in Current Trends in Pro-
gramming Methodology, 4, ed. Yeh, R., Prentice-Hal (1978), 80-149.
10. HOFFMANN, M. and O’DoONNELL, M. J. Programming with
Equations, ACM TOPLAS, 4 (1982), 83-112.

11. Huet, G. Confluent reductions: Abstract properties and Ap-
plications to Term rewriting systems, J. ACM, 27:4 (1980), 797-821.
12. Huer, G. and OrpEN, D. C. Equations and Rewrite rules: A
survey, in Formal Languages: Perspectives and open Problems, ed.
Book, R., Academic Press (1980), 349-405.

13. HoLLoT, J-M. Canonical forms and Unification, in 5th Con-
ference on Automated Deduction (1980), 318-334.

14. HussmaN, H. Unification in Conditional-Equational theories.
Technical Report MIP-8502 Dep’t of Mathematics and Information
sciences, University of Passau (Jan. 1985).

15. KaPLAN, S. Simplifying Conditional Term rewriting systems:
Unification, Termination and Confluence. Research Report no. 316,
University de Paris-Sud, LRI Orsay, France (1986).

16. Lioyp, J. W. Foundations of logic programming, Springer-
Verlag (1984).

17. Mivakg, N., TocasHI, A. and NOGUCHI, S. Amalgamated Pro-
gramming Languages and their implementations, to be published in
the Journal of the Japan Software Science Society.

18. O’DoNELL, M. J. Computing in Systems described by Equa-
tions, Lecture notes in Computer science, 58, Springer Verlag (1977).
19. SUBRAHMANYAM, P. A. and You, J-H. Pattern Driven Lazy
reduction: A Unifying evaluation mechanism for Functional and
Logic programs, Proc. of the Eleventh ACM Symposium on Prin-
ciples of Programming Languages (1984).

20. Tamaki, H. and Sato, T. Program transformation through
Meta-shifting, New Generation Computing, 1 (1983), 93-98.

21. ToocasHI, A. and NoGucHI, S. A Program transformation from
Equational programs into Logic programs, J. of Logic Programming
(1987: 4), 85-103.

(Received October 15, 1987; revised June 9, 1988)

