The Extension of the Aho-Corasick Algorithm to
Multiple Rectangular Pattern Arrays of
Different Sizes and N-Dimensional Cases

Rul FENG ZHU* and TADAO TAKAOKA*

In this paper, we first show that multiple rectangular pattern arrays of various sizes can be efficiently recogniz-
ed by extending the idea proposed in the AC algorithm, then demonstrate such a method permits extension to ar-
rays of arbitrarily many dimensions. Both the running time and preprocessing time of our algorithms are prov-
ed to be linear. Possible applications are foreseen to problems such as detection of edges in digital pictures and

in the field of computer graphics.

1. Introduction

As is well known, an efficient pattern matching
algorithm was proposed by Aho and Corasick (AC
algorithm) in [1]. A natural extension of the pattern
matching problem is the one in which the pattern is a
two-dimensional array PT{1 . . M1, 1. . M2], and the
text is a second array T[1 .. N1, 1 .. N2]. In this case
the problem is to determine where, if anywhere, all oc-
currences of the pattern array as embedded subarray in
the text, that is to find all pairs (i, j) such that

Tli—Ml+k, j—M2+1]=PTlk, 1]

for all k and 1, such that 1 =k <M1 and 1 <l=M2. Such
a problem occurs in some methods for detecting edges
in digital pictures, where a set of ‘‘edge detector’’ ar-
rays is matched against sets in the picture. It also occurs
in the detection of special local conditions in board
games.

Karp, Miller and Rosenberg [2] have presented a
method of finding all repeated occurrences of (all)
square subarrays of an N by N square text array in
NxN=xlog (N) time; In [3] Baker proposed a technique
with the running time bounded by k*N1xN2x(log (1 21)
+log (M1)) (2 is the alphabet set of which the pattern
and text are composed, and k is a constant independent
of text, pattern and 2); By combining the AC algorithm
with KMP algorithm [5], Bird [4] (B algorithm)
demonstrated an efficient algorithm for two dimen-
sional pattern matching.

Based on the AC and B algorithms, in this paper we
first present an efficient algorithm to locate all occur-
rences of multiple pattern arrays of various sizes in the
text, then demonstrate such algorithm permits exten-

*Department of Information Science, Ibaraki University, Hitachi,
Japan 316

Journal of Information Processing, Vol. 11, No. 4, 1988

sion to arrays of arbitrarily many dimensions.
2. The AC and B Algorithms

Let keywords K= {PT,, PT>, . . . PT:} be a finite set
of strings and text 7 be an arbitrary string. The problem
is to locate and identify all substrings of T which are
keywords in K. Substring may overlap with one
another.

The AC algorithm first construct from the set of
keywords a finite state pattern matching machine, then
apply the text string as input to the machine. The
behavior of the pattern matching machine is dictated by
three functions: a goto function g, a failure function f,
and a output function output. The details of algorithms
for constructions the three functions are given in [1].

Figure 1 shows an example of the three functions for
the set of keywords {do, does, did, done, undo}.

The goto function g maps a pair consisting of a state
and an input symbol into a state or the message fail.
The directed graph in Figure 1(a) represents the goto
function. For example, the edge labeled d from 0 to 1 in-
dicates that g(0, d)=1. The absence of an arrow in-
dicates fail. Thus, g(1, d)="fail for all input symbols &
that are neither o nor i. The pattern matching machine
has the property that g(0, &) = fail for all input symbols
J.

The failure function f maps a state into a state. The
failure function is consulted whenever the goto func-
tion reports fail. Certain states are designated as output
states which indicates that a set of keywords has been
found. The output function formalizes this concept by
associating a set of keywords (possibly empty) with
every state.

The B algorithm is designed to match a two dimen-
sional pattern with a two dimensional text. At the row-
matching stage, it takes each row of the pattern as a

272

Example 1.
d S
Tidut ©— »74—:—-? . A.,_@,,, @
€
b) ——=(©®
[u n d o
L@ -—=0 =0 =0

(a) Goto function

I 1234567891
f) 000001000
(b) Failure functio

6

11 12
1 2

S oo

output (I)
{do}
{does}
{did}
{done}
{undo, do}
(c) output function

SR s =

Fig. I Pattern Matching Machine.

keyword, and then constructs from the set of such
keywords a finite state matching machine to match with
the text row by row. At column-matching stage, it
checkes whether or not each row of the pattern appears
in the text sequentially. For details of the B algorithm,
refer to [4].

3. Our Algorithm

When the patterns are rectangular arrays of various
sizes, that is

K={PT:[1..P,,1..Py,lli=1,2,...k}

the text is also a rectangular array T'[1 . . N1, 1. . N2].
The problem becomes to determine all occurrences of
any pattern array P7; as embedded subarray in the text
array.

The general scheme of the algorithm is composed of
two distinct parts, a row-matching and a column-mat-
ching.

3.1 Row-Matching

The purpose of the row-matching step is to determine
which row of the patterns matches a terminal substring
of text T. This can be done using the AC algorithm in
which each row of PT; is considered as a keyword.
We assume that P,,=P;;=2Py;=... =P, (Here
Pizi=1,,..x is row length for each pattern PT;), and
make a partition according to the following:

Put PT; and PT;,, in the same set
iff Piy=Piy1p. (=1,2,...k—1)

the size of such a partition is assumed to be k1(k1<k).
We define an array PARTITION [1 . . k]Jof 1 .. kl to
partition patterns according to their row length. The

R. F. ZHU and T. TAKAOKA

computation of the PARTITION is:
Algorithm 1.
Input. each row length of the patterns Py, P,,, . . .
Py,
Output. partition of pattern row length.
Methods.
begin
Jj:=1
fori:=1to k do
begin
PARTITION[i]: =/
if i<k and P;;#Pi+; then j:=j+1
end

end.

The component rows of patterns within the same par-
tition are all of the same length. It follows that no two
component rows may be proper suffixes in the same par-
tition. So, for each position in a row of the text, at most
one distinct row of given length of patterns may match
in that location. (If two rows of the same length match
at one location, they must be identical.)

We identify the distinct rows of patterns and assign
each a unique index. Let the distinct rows be X, X3, . . .
X,. Thus pattern PT; can be represented by the column
(pG, 1, p@, 2), . .. pG, P;;)), whose elements are in

{1,2,...q} such that
PTi=Xpin)
Xpi
Xoptip,)

In our algorithm, we put such a unique index in output
function output instead of its corresponding row.
Example 2.

k=5 Partition k1=4 index
PT,: aabba=X, 1 p(, D=1
aaaab=X, 1 p(l,2)=2
PT,: aaa=X, 2 p2, 1)=3
bbb=X, 2 p(2,2)=4
aaa=X; 2 p2,3)=3
PTy: aaa=X, 2 p3,1)=3
PTy: a b=X; 3 p@4, 1)=5
a a=Xs 3 p4,2)=6
PTs: a=X; 4 p(5, N=17

Also we add to the output function output in our
algorithm another value to retain the partition value of
the row found (In fact the partition value of a row is
equal to the partition value of the pattern in which the
row locates). The modified algorithm for construction

The Extension of the Aho-Corasick Algorithm to Multiple Rectangular Pattern Arrays of Different Sizes and N-Dimensional Cases 273

goto function g1 is as follows:
Algorithm 2.
Input. Set of keywords

K={PTilj, 11 PTij,2] . . . PTilj, P:)]
|j=1,2, e P,"l, i=1,2, e k}

Output. Goto function g1 and a partially computed out-
put function outputl.
Method. We assume outputl(l, s) (1=1, 2) is initially
empty.

begin

newstate: =0

for i:=1 until k do

for j:=1 until P;; do)

enter (i, j, PTilj, 1} PTilj, 2] . . . PTilj, P:a])

for all a such that g1(0, a)=fail do g1(0, a):=0

end
Procedure enter (i1, j1,A; A2 . .. An)
begin

state: =0; 1:=1;

while gl(state, A,)# fail do

begin
state: = gl(state, A,);
t.=t+1
end
for p:=t until m do
begin

newstate: =newstate+1;
gl(state, A,): =newstate;
state: =newstate
end
outputl(1, state): =p(il, j1);
outputl(2, state): = partition(il)

-,

end.
The computation of failure function f1 can be made by
directly using the corresponding algorithm in [1].
The Goto function g1, failure function f1, output
function outputl for example 2 are shown in Fig. 2.
The modified pattern matching machine algorithm is:
Algorithm 3.
Input. A text array T[1 . . N1, 1 .. N2] of stringand a
pattern matching machine M1 with Goto function g1,
failure functions f1 and output function outputl.
Output. locations (row, column) at which PT; occurs in
text.
Method.
begin
statel: =0;
for row:=1 until N1 do
for column:=1 until N2 do
begin
while gl(statel, T[row, column])=fail do
statel: =flI(statel);
statel: =gl(statel, T[row, column]);
if outputl(l, statel) =empty then
print (outputl(l, statel), outputl(2, statel))
end
end.

N A WLWN =D

S O 00N

1

3.2 Column-Matching

Discovering that the yth row of pattern P7; occurs in
a given place in the text only means that the yth row of
PT,; exist in the text, so we must investigate whether or
not the rows from the 1st row until (y — 1)th row of PT;
occur immediately above the yth row in order to deter-
mine if PT; occurs in the text. This can be done by using

a

\ a a b b
labl @ —=0— =@ — =0 =@ =0
| a

b b
® ®— O

(a) Goto function g1

i 12 3 456789101112
fI() 01121012630 910 9
(b) failure function f1

state (outputl(l, state), outputl(2, state))

——
DN wwN =

[(7,4)]
[(6,3),(7,4)]
5,3
[(1,1,(7,9]
1(7,4),(6,3),(3,2)]
i(7,4),(6,3).3,2)]
[(2,1),(5,3)]
1(4,2))

[(5.3)]

(c) output function outputl

Fig. 2

274

the pattern matching machine again.

We construct another pattern matching machine M2
with Goto function g2, failure function f2, and output
function output2. The input keywords are:

KK={p(, 1) p(i,2)...pGG, P)i=1,2,. .., k}

The Goto function g2, failure function f2, and out-
put function output2 for example 1 are shown in Fig. 3.

We maintain a rectangular array a[l . . k1,1 .. N2]
of states, such that for each step (row, column) the fact
that alk, column]=s (assume string X;X>... X,
represents state s of pattern matching machine M2 if the
shortest path in the goto graph of M2 from the start
state to state s spells out X, X, . . . X,) means just that
XX, ... X, of pattern PT; with partition value k have
been discovered to match the text in positions:

T[row—u+1, column—P;,+1], .

T[row—u, coumn—P;,+1],. . ..

T [row, column —.P,;;],

if we have output2(s)=empty that means a complete
pattern PT; has been found as a subarray of the text at
(row, column).

The algorithm is the following code:

Algorithm 4.

Input. A text array 7[1 . . N1, 1. . N2] of string and a
pattern matching machine M1 with Goto function g1,
failure function f1 and output function outputl.
Output. locations (row, column) at which PT; occurs in
text. .

Method.

begin

statel: =0;

for row:=1 until N1 do

for column:=1 until N2 do

begin

while gl(statel, T[row, column])="fail do
statel:=fl(statel);

6 statel:=gl(statel, T[row, column});

7 if outputl(l, statel) #empty

8 then for each outputl(l, statel) #empty do

9 begin

10 state2: =agf[output1(2, statel), column];

11 c:=outputl(l, statel);

12 while g2(state2, c)=fail do state2:=f2(state2);
13 state2: =g2(state2, c);

14 aloutputl(2, state), column]: =state2;

15 if output2(state2)#empty then

wm AW —-=O

16 begin

17 print (row, column);
18 print (output2(state2))
19 end

20 end

R. F. ZHU and T. TAKAOKA

11,3,5,7} (0 =D -
3 4 3
_/ — >0 - ——> 0
; S 6
}—))
' 7
e ®)
(a) goto function g2
i S2(i) state output2
2 {PT\}
1 0
2 0 3 {PT,}
3 0
4 0 5 {PT,, PT;)
5 3
6 0 7 {PT.
7 0
8 0 8 {PT5)

(b) failure function f2 (c) output function output2

Fig. 3

. .T[row—u+1, column] X,

. .T[row—u, column] X,

. .T[row, columh] Xu

21 end
22 end.

The number of outputl(1, statel) might be more than
1, but always less than k1. For array a to work correct-
ly, at the begining of the algorithm, we initialize a[t, col-
umn]=0 1<¢=<kl, and 1 <column<MN2, that is, each
element of array a bigins from start state.

3.3 The Time Complexity of Our Algorithm

According to the theorems in [1], the complexity of
pattern preprocess:;

* The computation of Goto function g1, failure func-
tion f1, and output function outputl for M1 takes
time proportiona.l to P|'|*P|2+P2,|*P22+ e +Pk_|*Pk2,
that is, the sum of the pattern sizes.

* The computation of Goto function g2, failure func-
tion f2, and output function output2 for M2 takes
time proportional to P+ P,,+. . .+ P, that is
the sum of the pattern column lengths.

Since the row lengths of patterns vary, perhaps at one
position in text, we may get more than one value of out-
put function outputl. So the time complexity depends
on how often rows of the patterns occur in the text, for
average cases the running time is O(N1£N2) (the
number of state transpotation). Theoretically in
(unbelievable) worst case it might be O(k1xN1xN2),
that is at each position in the text for each different row
length one row (in fact at most one row) is found mat-
ching. But in practice the algorithm can be relied upon
to take about O(N1xN2) steps. The only additional
space requirement of array @ is k1+N2. So the space
complexity of our Algorithm is still proportional to the
size of the text, assuming k1 <M1,

The Extension of the Aho-Corasick Algorithm to Multiple Rectangular Pattern Arrays of Different Sizes and N-Dimensional Cases 275

4. The Extension of Our Algorithm

In section 3, if P,,=P,,=. . .=Px,, that is, all pat-
terns have a common row length (k1=1), and
P,,=P,,=...=Py,, we may consider the set of pat-
terns as a three dimensional array PT[1..P1,1..
P2,1 .. P3], and also text is a three dimensional array
T[1..N1,1..N2,1..N3]. The problem becomes
to find all occurrences of PT as embedded subarray in
text T.

The algorithm has three matching stages. We will
discuss them from 4.1 to 4.3.

4.1 First Matching Stage

The first matching stage is to determine which row of
pattern PT matches a substring in the text. We con-
struct a pattern matching machine M1 with goto func-
tion g1, failure function f1, and output function out-
putl from the keywords K1 as described in following:

K,={PT|i,j,1] PTIi,j2}...PTl[i,j,P3]
li=1,2...P1;j=1,2...P2}
and in outputl we put a unique character of Z' for each
distinct keyword (X' is a set, each element of Z'is corre-
sponding to a unique keyword of X ;=,.,...~). From such
unique character of !, we construct a two-dimensional
pattern PT’ which is used for the second matching
stage.
Example 3:
Pattern PT[l1..2,1..3,1..3] and
character for each distinct keyword:
PT[1 1 1]=a PT[1 2 1]=a PT[1 3 1}=D
PT[1 1 2l=a PT[1 2 2]=b PT[1 3 2]=D
PT[1 1 3]=a PT[1 2 3l=b PT(1 3 3]=D
A B C

unique

PT[2 1 1]1=a PT[2 2 l]=a PT[2 3 l]=a
PT[2 1 2]=a PT[22 2]=a PT[23 2]=b
PT[2 1 3]=a PT[2 2 3]=b PT[2 3 3]=b

A D B

So we have PT’[1...2,1...3]:
123

1ABC

2ADB

4.2 Second Matching Stage

The second stage is designed to find which row of pat-
tern PT’ matches a subarray in the text. Also using
algorithm 2 we construct another pattern matching
machine M2 with goto function g2, failure function /2,
and output function output2 from keywords K, de-
scribed below:

K,={PT'[i, 1)PT'[i,2]...PT'[i, P2]
li=1,2,..., P}
and in output2 we put a unique character of 2 for each
distinct row of PT’. From X? we construct an array

PT” which is then used for the third matching stage. In
the case of example 3, such PT” is:

PT'[1...2,1...3): PT"[1...2):
ABC X
ADB Y

4.3 Third Matching Stage

We use algorithm 2 to construct M3 with Goto func-
tion g3, failure function f3, and output function out-
put3. The keywords K is defined as following:

K;={PT"[1] PT"[2]...PT"[P1]}}

The following is modified algorithm 2:
Algorithm 5
1 begin
2 statel: =0; state3:=0;
3 for il:=1to N1 do
4 for i2:=1 to N2 do
5 for i3:=1 to N3 do
6 begin
7 while gl(statel, T[il, i2, i3])=fail do
statel: =f1(statel);

8 statel: =gl (statel, T[il, i2, i3]);
9 if outputl(statel) #empty
10 then begin
11 state2: =alil];
12 while g2(state2, outputl(statel))=fail do
state2: =f2(state2);
13 state2: =g2(state2, outputl(statel));
14 afil]: =state2;
15 if output2(state2) # empty
16 then begin
17 while g3(state3, output2(state2))=
fail do state3:=f3(state3);
18 state3: =g3(state3, output2(state2));
19 if output3(state3) = empty
20 then print(‘found at’, i1, i2, i3)
21 end
22 end
23 end.

In the above algorithm an array a of size [1 . . Nl1] is
used to store states for goto function g2 at the second
matching stage. The function of array @ is much like
that defined in section 3.2.

The time complexity of first matching stage and sec-
ond matching stage are bounded by O(P1xP2+P3) and
O(P1#P2) respectively, according to the theorems in [1].

THEOREM. The running time of algorithm § is
O(N1xN2+N3).
PROVE: Obviously the running time of algorithm $ is

276

O(N1xN2+N3) in average, The worst case occurs when
at line 9 outputl(statel) #empty is always true, so the
loop 10-22 is carried out. At line 13 we make a state
transition according to goto function g2, this makes the
depth of state2 increase one step in goto graph of g2, we
assume the total number of such increase of depth is
K’, and K’ <= N1«N2xN3. At line 12 failure function f2
is used when the goto function g2 reports fail, and this
makes the depth of state2 decrease, we assume the
number of such cases is K1’. However the steps of
depth increase is equal or more than that of decrease,
that is:

K’=K1’=L1 (L1 is the average steps made at line 12)
and the total steps made at line 12 and 13 is:
K’ +K1’sL, so the average steps L made at line 12 and
13 for each operating cycle is:

L=(K’'+K1'xL1)/(N1xN2xN3)
<(2+K’)/(N1«N2axN3)<2

Line 16-21 in algorithm 5 can also be analysed in the
same way.
#

Including all the relevant tables and the array a, the
space requirement is still bounded by O(N1xN2xN3).

4.4 The N-Dimensional Case

Obviously we can extend our algorithm to N-dimen-
sional array problem that is the pattern is an N-dimen-
sional array PT[l .. P,1..P, ...,1.. Py, and
the text is also an N-dimensional array 7[1 . . N;, 1 ..
Ny .., 1. Ny

We have N—1 stages for the pattern preprocess, and
implement each stage in the following way:

BEGIN

PT,:=PT,;
for j:=1to N—1do
begin

1. Construct goto function g;, failure function f;, and
output function output ; from keywords set K. The
definition of Xj is:

K;={PT;li\, iz ...,in-jy 1), PT;[i\, i2y. . .,
inen 2Dy« o o PTlin, iy .
lh=1,2,...,P;i=1,2,...,Py...;
in-;=1,2,...Pn_j};

LY iN—jr PN—j+l]

2. Identify distinct keywords in K; and assign each a
unique chracter Z of £/*!, and put Z into
output j;

3. Construct a N—j dimensional array PT7;,, from Z
of /%! for j+1 stage

END.

The pattern preprocess takes time proportional to:
T=PxPy* ... *Py+ PxPy*...xPn_+ PixPy+ P,

=P,(1+P(1+...(Pn-1(1+Pn))...))

as P>1

(=1,2,...,N), we may consider

R. F. ZHU and T. TAKAOKA

T=1t«(P\»Pyx. . .xPy), t is a constant.

The behavior of pattern matching machine is:
Algorithm N;
begin

state,: =0; statey: =0;

for ii:=1to N, do

for i,=1to N, do

for in:=1 to Ny do
begin
while g(state,, T[i\, i, .
state,: =f\(state,);

. ., in])=fail do

state;: =g (state,, T{i1, iz, . . . , in]);
if output,(state;) #empty
then begin state;: =aliy, iz, . . . , in-2];

while g,(state;, output,[state,])=fail do
state,: = fi(statey);
state;: = gx(state,, output,(state,));
a;[il, iz, “ oy i~_2]:=state2;
if output,(state;) #empty then
begin

statey—: =an-[ii]
while gn—j(statey—,, outputy—(statey—,))=fail do
statey— : =fy-i(statey-,);
statey—i: =gn-i(statey-1, outputy_o(stateny—z));
if output(statey—;) #empty then
begin
while gn[statey, outputy_,[statey—,]]="fail do
statey: = fn(staten);
statey: =gn(statey, outputy—(staten—1));
if outputn(staten) #empty
then print(‘found at’, i), &z, . . . , in)
end
end
end
end.
The additional arrays a,[l1 .. MN,...,1 .. Nx-3,
a[l .. Ny, ..., 1 .. Nyasl,. oL, an—i[l . . Ny] arein-
itialized in the same way as described in section 3.2.

5. Conclusion

In this paper, we have demonstrated that multiple rec-
tangular pattern arrays of various sizes and N-dimen-
sional arrays can be efficiently recognized by using the
method proposed in AC algorithm [1]. The algorithms
described here possess the following noteworthy prop-
erties:
(1) Both its running time and space requirement are
linearly proportional to the size of text, which is
nearly optimal within constant factor (see [7]).

(2) The on-line nature, that is the input is scanned
only once, and after scanning the character at
any position of the input, before scanning fur-
ther, it is possible to answer yes or no to whether
any of the patterns match at that position.

The Extension of the Aho-Corasick Algorithm to Multiple Rectangular Pattern Arrays of Different Sizes and N-Dimensional Cases 277

(3) its extension to any dimensional cases makes it
very useful in fields such as computer graphics,
picture processing, etc.

Acknowledgement

The authors are grateful to Mr. Tamaki, Department
of Information Science, Ibaraki University for his
helpful discussions and anonymous referees for their
constructive comments.

References

1. AHO, A. V. and Corasick, M. J. Efficient string matching, An
aid to bibliographic search, Comm. ACM 18(6) (1975), 333-340.

2. KAaRp, R. M., MILLER, R. E. and ROSENBERG, A. L. Rapid iden-
tification of repeated patterns in string, tree and array, Proc. of rhe
4th Annual ACM Symposium on Theory of Comput. (1972), Assoc.
for Comput. Mach, New York, 125-136.

3. BAKER, T. P. A technique for extending rapid exact-match string
matching to arrays of more than one dimension, SIAM Journal on
computing 1(4) (1978), 533-541.

4. BIrD, R. S. Two dimensional pattern matching, Information Pro-
cessing Lett. 6(5) (1977), 168-170.

5. KNutH, D. E., MoRRIs, J. H. and PrATT, V. R. Fast pattern mat-
ching in strings SIAM journal on computing, 6(2) (1977), 323-350.
6. AHO, A.V., HOPCROFT, J. E. and ULLMAN, J. D. The Design and
Analysis of Computer Algorithm, Addison-Wesley, Reading, MA,
(1974).

7. RIvEsT, R. L. On the worst case of string-searching algorithm,
SIAM Journal on Computing 6 (1977), 669-674.

(Received September 24, 1987; reviced May 12, 1988)

