A Numerical Method to Estimate the Optimal
Regularization Parameter
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In this paper, we propose a numerical method to estimate the optimal regularization parameter based on a
previous paper [12]. Using the singular value decomposition, the method estimates the optimal parameter
efficiently in the course of calculation of the solution. Some numerical examples applied to Fredholm integral

equations of the first kind are presented.

1. Introduction

In the present paper, on the basis of a previous paper
[12], we develop an efficient numerical algorithm to esti-
mate the optimal parameter in the regularization
method for solving linear ill-posed problems including
Fredholm integral equations of the first kind. Let F and
G be Hilbert spaces and T be a linear compact operator
acting from F to G and consider an operator equation

Tf=g, (1.1

where fe F and ge G. The equation (1.1) includes as a
special case Fredholm integral equations of the first
kind of the form

b
S K(S, t)?(t) dt=g(5), Smin = § = Smax (1-2)

where K(s, t) and g(s) are known L, functions and f(t) is
the unknown function in L,[a, b].

We suppose that the operator equation (1.1) is
discretized by some method into the linear system of the
form

=8, 1.3)

with f=(, f ..., f)eR", g=@, &, ..., &)eR"
and T:R"—R™. An example of the discretization is
given in the numerical examples of Section 5. Let (-, -)
denote the inner product and Il - || the Euclidean norm in
the sequel. In the case of a rectangular matrix T, we
define the condition number of T by IITTIITI.

If the operator T does not have a boundgd inverse,
then the condition number of the matrix T increases
rapidly as m and n increase. (For the equation (1.2) the
speed depends on the smoothness of the kernel K(s, t).)
Hence, the ordinary least squares method does not
work out well for this kind of problems. One well
known technique to overcome the difficulty of this ill-
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conditioning involves the method of regularization (8,
9, 11, 17]. The method converts (1.3) to a minimization
problem which can be stated that

find fe R" for which

min {ITF-gI*+uILEI%, (1.4)

is attained, where L is a discretizaition of an operator of
the Hilbert space F into itself which is called a stabilizer
and y is a parameter. The functional to be minimized in
(1.4) is called the smoothing functional whose
minimizer f is the solution of the normal equation of
the form

(T'T +uL'L)f=T'g. 1.5)

The stabilizer usually involves the norm of the solution
T or derivative of T for the integral equation problem.
An example of the stabilizer is given in Section 5. The
parameter u is called the regularization parameter
which plays a vital role for controlling the stability of
the equation (1.5).

Though this method is known to be very successful in
practice, it has a critical drawback that one should
choose the regularization parameter which is optimal in
some sense. The selection of the parameter u decides
how well the method approximates the solution [1, 5,
8, 14, 17, 20]. In this paper, we develop an algorithm to
estimate the parameter automatically and efficiently.

By numerical procedures stated in Section 3, we can
transform_the functional in (1.4) into that with L=1.
(Then T, fand g are transformed to T, f and g respec-
tively). Then we can formulate our problem as follows:

For given g and gs=g+A4ge R™, find f=1(u; 4g)
e R" and ue [0, ©) for which

rrnianl {ITEf—ga 1>+ ullflI2} (1.6)
and
min (T g—~f(u; 4g)l? .7
ue [0, )



264

are attained, where T' denotes the Moore-Penrose
generalized inverse [7], [14] of T and f(u; 4g) in (1.7)
represents the minimizer of the smoothing functional
(1.6).

The main purpose of this paper is to design an
efficient numerical scheme to solve the problem of (1.6)
and (1.7), in other words, to estimate the optimal
regularization parameter u, which is defined as follows.
Definition 1.1 We call u, the optimal regularization
parameter if

toe {ia nlloin) IT'g—f(u; Ag)l =T g—f(a; Ag)ll}.
ue [0, ©

Note that y, is the minimizer of (1.7). First, in Section
2, we prepare several notations and present an outline
of the theory developed in [12]. Next, in Section 3, we
construct an effective algorithm which will be numerical-
ly implemented. Furthermore, in Section 4, we give a
summary of the algorithm. Finally, in Section 5, we pre-
sent results of some numerical experiments which show
how the numerical scheme works well in practice.

2. Preliminaries

In this section we prepare mathematical foundations
and the notations required in the sequel. We also
outline our previous paper [12] on which the algorithm
developed in the later section is based.

For any m by n matrix T with m=n, there exist
singular values {g;},i=1, 2, ..., n, m by m unitary
matrix U and n by n unitary matrix V such that

T=UZV', Q.1

where 2'is m by n matrix with 2=diag (6, 02, . . . , G,)
and V' denotes the transpose of V [4], [6]. We assume
that g,=20:=...20,20. Note that column vectors
{w},i=1,...,mofUand {v},i=1,2,...,nof V
form orthonormal bases of R™ and R" respectively.
Hereafter, we write f(u)=f(u; Ag), etc. for simplici-
ty. Using the singular values and the vectors, we can
write the minimizer f(u) of the functional in (1.6) as

f(u)=(T'T+ul)"'T'(g +4g) 2.2)

SO
=2 i, @Az, 2.3)
or
n ai . .
fW=3, o @+ 4, 24)

where T(u)=V'f(u), g=U'g and 45=U'Ag with T(u)

=), Bu), ..., L), g=@, 8, . .., &) and
Ag=(4g,, 48,, . . . ,Ag..)z_
Similarly T'g can be written as
1
T'g=>,—gvi, where I'={ilg;=0} 2.5)

ier Ui

or
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1

) ~& ifiel,

dp={a> "'€ 2.6)
0 ifigl,

where Tt=V'TtU.

To estimate uo, we introduce first two vector valued
functions t(u)=(t:i(u), t2{u), . . . , t(u)) and n(u)
=(m(u), n2(u), . . ., na(u)) defined as follows:

Let e(u; Ag)=T'g—f(u; 4g), & u; Ag)=V'e(u; 4g)
=T'g—F(u, 48), W(u)=&u; 0) and ~n(u)=8&u; 4g)
—&(u; 0). Note that e(u; Ag) is in (1.7) whose norm
should be minimized with respect to 4. We may write
e(u)=e(u; Ag) etc for simplicity. Then it directly
follows from (2.4) and (2.5) that

n(u)=—0'i2(%+,u) g, i=1,2,...,n Q.7
and
4]
m(,u)=mzlgi, i=1,2,...,n. 2.7)

We call 7(u) theoretical error vector function and n(u)
computational error vector function. Namely, 7(u)
represents the error due to the regularization without
the perturbation Ag, while n(u) represents the error in-
troduced to regularized solution due to the perturbation
4g. We also have the relation &(u)=1(u)—n(u) and
&)l =lle()

As for these error vector functions, we have the
following: ll7(u)ll is monotone increasing with respect
to u >0 and lln(u)ll is monotone decreasing with respect
to x>0 (Lemma 2.1 of [12]). The way to estimate u,, de-
veloped in [12] is as follows: (Since the following idea is
quite heuristic, please refer to [12] for the rigorous
discussion):

(a) Since liz(u)ll and lin(u)ll are monotone increas-
ing and decreasing respectively, there should be regions
in which llz(u)ll > Clin(u)ll holds and in which Clit(u)l
<lIn(u)ll holds for some C>1. We call the former the
theoretical error dominant region Q. and the latter the
perturbation error dominant region £2,. (Definition 2.3
and Theorem 2.1 of [12]).

(b) We may think that lle(u)ll is nearly equal to
llz(u)ll in £2, and lle(u)ll is nearly equal to lin(u)ll in
Q, and accordingly the monotonicity of llt(u)ll and
llp(u)ll inherits to lle(u)ll in each region. In other
words, lle(u)l is monotone increasing in ., and
monotone decreasing in ,. This is actually true under
some conditions. (Theorem 4.1 and Theorem 5.1 of
[12]) Thus the optimal parameter y, lies in the optimal
region Qo= [0, )\ (2,UQ,).

(c) Since the optimal parameter u, satisfies

d
= lie(u)ll =0,
aa (1) .
it seems natural to estimate u, by minimizing some up-
per bound of
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One of the conceivable upper bounds for it may involve
[Idf () [ d ull which directly follows from the relation of
e(u)=T'g—f(u).

(d) We introduce a function

tu — ||d% f(u)Hz, £=log su @.8)

for some #>1 to estimate the optimal regularization
parameter uo. Then for any ue [0, ©), we have

'd%.ﬂé(,u)lll g“d% f) 2.9)

(Lemma 6.1 of [12]). Note that dll&(u)Il/dEZ0 is
equivalent to dllé(u)ll/du=0. We expect that the
minimizer of { is close to the optimal regularization
parameter Uo.

(¢) Though we cannot assert that the minimizer
of {(f; u) coincide with u,, under some conditions the
minimizer among ue P,, where P, is the set of singular
values of T'T, is in ©,, the extension of €, to the closest
singular values of T'T. (Definition 6.1 and Theorem 6.1
of [12])

In this paper, we develop an efficient algorithm based
on the above idea and examine how the method works
in actual problems.

3. Construction of Algorithm

Our original problem is given by (1.6) and (1.7). In
place of (1.7), we introduce the function (2.8) to esti-
mate the optimal regularization parameter. We write
the function ¢ introduced in (2.8) {(f; u) hereafter. Our
new problem becomes as follows:

For given g and gs=g+A4ge R™, find f=f(u; Ag)
e R" and ue [0, ) for which (1.6) and

min {(f; u) 3.1
ue [0, )

are attained. The minimization problem (1.6) is

equivalent to solving the normal equation of the form

(T'T+ulf=T'g,. (3.2)

The formulation of the regularization may be made
by more general setting with a stabilizer L of the form
of (1.5). The normal equation (3.2) is called standard
form and the equation in the form of (1.5) can be
transformed to the standard form. This can be done by
using an algorithm given in Voevodin [19] in the case
where L is nonsingular and in Elden [2] in the case
where L is singular. For the completeness of the
algorithm, we here briefly sketch the Voevodin’s pro-
cedure and see how (1.5) can be transformed to (3.2).
First we factor L'L in the normal equation by the
Cholesky decomposition as

L'L=R'R 3.3)
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where R is upper triangular matrix. Then normal equa-
tion (1.5) becomes

(TT+uR'R)f=T3. (3.4)

Operating (R")™! from left and setting T=TR"!, f=Rf
and gs=g, we have the standard form of (3.2).

This enables us to reduce our problem to the combina-
tion of (3.2) and (3.1). Our main concern in developing
an efficient algorithm involves the following points:

i) Since we should seek the minimizer f(u) of (1.6)
for various values of u, arithmetic operation count re-
quired to obtain f(u) for each regularization parameter
u is of great concern.

ii) Since the function {(f; u) is neither convex nor
concave, at what points of 4 we should evaluate the
values of { to find the minimizer.

In our approach, usage of the singular value decom-
position is essential from above two aspects. As for (i),
if we solve (3.2) by conventional method like Gaussian
elimination, then O(n®) arithmetic operations are re-
quired to obtain f for each u. We should vary u for a
wide range to seek the minimizer of (3.1). Moreover we
note that, as is well known, the condition number of a
matrix T is squared when one make T'T explicitly. We
should avoid this situation.

By performing singular value decomposition on T in
the normal equation of the standard form (3.2), we
have T=UZV' where U=[u,, u, . . . . Uy}, 2=diag
(01,02, ...,0y) and V=[v;, v5, . . ., v,] with u;’s and
v;’s are singular vectors and o;’s are singular values. Us-
ing the matrices U, V and 2, we can transform the nor-
mal equation of the standard form (3.2) into

CT+u)f=2'g,. 3.5)

where f=V'f and g,=U'g,. Corresponding to (3.5), we
transform the function ¢(f; u) to ((f; u). Since the
matrix V is orthogonal, we have IIfll=IIV'fI=Iifli, and
accordingly the minimizer in (3.1) is invariant under the
transformation V. Thus we can replace ((f; u) by £(f,
u). Note that once the normal equation (3.2) is
transformed to (3.5), the arithmetic operation count re-
quired to obtain f(x) and {(f; u)for each u is only O(n).
Moreover, since T(u«) can be calculated by the formula
(2.4), we do not have to construct T'T explicitly and can
avoid extra numerical instability.

As to (ii), since Theorem 6.1 of [12] asserts that under
some conditions the minimizer of {(u) among ue P,
lies in the optimal region §,, we may seek the minimizer
only in the set P, which is the set of singular values of
T*T. Since the set P, consists of at most n elements and
the arithmetic operation count required to calculate
L(F; p) for each u is O(n), the total operation count for
L(F; 1) to find its minimizer over P, amounts to Oo®m?).

Taking all these in consideration, our final algorithm
is the combination of (3.5) and

min { G w (3.6)



266

instead of (1.6) and (3.1). After finding the pair (u,
f(u)), we transform f to f by f=VT which requires O(n?)
arithmetic operations. We also note that the solution
f(u) of (3.5) can be computed by the formula (2.4).
All in all, the major part of calculation resides in the
transformation of (3.2) to (3.5) by the singular value
decomposition which costs O(n®) operations [2].

4. Summary of the Numerical Algorithm

Suppose that the problem is given in the standard
form of (1.6) or (3.2), otherwise convert it to the stan-
dard form by Voevodin’s or Elden’s procedure {2, 18].
Note that we require only g4 for our algorithm and ex-
act g is not necessarily known in practice.

Step 1. By singular value decomposition T=UZXV',
transform it to (3.5).

Step 2. Fori=1, 2,..., n, set u=o? and compute corre-
sponding f (not f) by the formula (2.4).At the same time
compute the corresponding value of {(f; u).

Step 3. Find y in P, which minimizes ¢(f; #) and using
the u obtain the final regularaized solution f by f(u)
=Vi(u).

Remark: The strategy to estimate the optimal
parameter u, may be modified in the final stage. For ex-
ample, one can seek the minimal point of {(f; u) at the
neighborhood of the minimizer #e P,. This modifica-
tion seems to be reasonable since we have the inequality
(2.8) and the estimation might be more reliable. We
employ this modification in the numerical examples.

S. Numerical Examples

5.1 Discretization

For the example of the algorithm in practice, we test
Fredholm integral equations of the first kind with
smooth kernel. Theoretical foundation of the algorithm
has been given in the previous paper {12] under some
assumptions on ag;, 8, 4§ etc. Although we cannot
verify the assumptions in practical problems, results of
the numerical experiments show that the algorithm
gives good estimations for wide range of Ag.

We employ ‘cubic B-spline’ [16] as the basis for the
solution f(t) since (i) spline’s local supportedness results
in quick computation of the integrals for the discretiza-
tion, (ii) spline’s local supportedness also leads to a
band structured matrix for the stabilizer L. The
discretization proceeds as follows: Given an original in-
tegral equation of the form

b
S K(S, t)?(t) dt= g(S), Smin § s § Smax (5 1)

We approximate the solution f(t) by the linear combina-
tion of spline’s functions ¢i(t), i=1, ..., n,

?(t)=§ Fi(0).
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For the first variable s we employ m equidistant points.
Then we have the normal equation in general form

(TT+uL'L)f=Tg. (5.2)

where

T=(fij), fij=Y K(si, t)g;(t) dt,

L'L=(py). pkj=§ SuDB(1) dt
b

withi=1,2,...,m,k,j=1,2,...,n, and

g=1{g6), 862, - - ., EGm},
f={f

{fb ?2’ ) ‘f‘n}!-

Making use of Voevodine’s procedure, we transform
the normal equation (5.2) to the standard form. In the
following examples, the integration is done by 3-point
Gaussian quadrature.

To examine the effectiveness of the algorithm, we con-
taminate the given g by some perturbation Ag, where
A48 is independent and normally distributed with mean
0 and standard deviation 4.

5.2 Explanation of notations and notions

(1) The true solution f(t): The solution of given
Fredholm integral equations of the first kind.

(2) n: Number of basis functions (Cubic B-spline).
Number of subdivision of the domain of the solu-
tion+ 3. For instance, n=19 means the number of sub-
division is 16.

(3) m: The number of the collocation points.

(4) si: The location of the m equidistant points
where g(s) is given. i=1,2,...,m.

(5) IITI: The spectral norm of the discretized matrix
T in the standard form, or the largest singular value of
T.

(6) Numerical Rank of T: The number of singular
values larger than the round off level of computation.

(7) Noise Level: The standard deviation J of the per-
turbation 4g which is a vector of normally distributed
random numbers with mean 0. In the case where Ag is
the round off error, we write noise Level=round off.

(8) lle(uo)ll: Max norm error of the optimal solution
which is computed using the optimal parameter uo,
namely

le(ua)ll =1T() = 3 Fi( o)),
i=1
(9) lle(u)ll: Max norm error of the solution which

is computed using the estimated parameter u; which is
the minimizer of {(f; u), namely

le(ul =1F)~ 33 ECuds O,

(10) Ratio of precision: This is a measure of perfor-
mance of the estimation of the parameter defined by
Ratio of Precision=log.(lle(u;)!l)/logelle(uo)ll. This in-
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dicates how accurately u, is estimated. If the ratio=1,
the estimation attains the full accuracy.

5.3 Keys to figures and tables

u: The regularization parameter.
x-axis: —logo(regularization parameter u).
y-axis: logjo(maximum error of the regularized solu-
tion fle(u)ll.
lie(u)ll: Maximum error of the regularized solution de-
fined by

Table 1 Example 1 Noise Level=round off

u S(w) lieCa)ll
0.100E —09 0.131E—05 0.8303E—05
0.316E—10 0.142E—05 0.5832E—05
0.100E—10 0.874E—08 0.2882E—-05
0.316E—11 0.366E — 06 0.1033E—05
0.100E—11 0.128E—08 0.3166E — 06
0.316E—12 0.420E—07 0.1312E—-06
0.100E—12 0.180E —07 0.1426E — 06
0.316E—13 0.286E —07 0.1405E — 06
0.100E—13 0.444E—07 0.1086E — 06
0.316E—14 0.393E—07 0.1295E—06
0.100E—14 0.206E —07 0.1673E—06
0.316E~-15 0.795E —08 0.1872E—06
0.100E—15 0.301E—08 0.1947E—06
0.316E—16 0.421E—08 0.1969E —- 06
0.100E—-16 0.117E—-07 0.1963E—06
0.316E—17 0.275E-07 0.1925E —06
0.100E—-17 0.432E-07 0.1829E - 06
0.316E—18 0.386E — 07 0.1675E - 06
0.100E—18 0.276E —07 0.1524E - 06
0.316E—19 0.607E — 07 0.1392E—06
0.100E—19 0.189E—06 0.1182E—06
0.316E—-20 0.583E—06 0.3539E — 06
0.100E—20 0.171E-05 0.1254E—05

log g |letw ||
o \,\ et ||

. \/\/

[ 5 10| 15 20 25 30

- logg v

2 2
O a9y

Fig. 1 Example 1 Noise Level=round off.
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le(u)ll = max i?(t)——g, B!

¢(u): The function to estimate the optimal regulariza-
tion parameter given by (3.1).

In figures Fig. 1-6, the vertical lines show the location
of the squares of the singular values of T in logarithmic
scale with basis 10. In the following examples, the
numerical rank of T is smaller than n. This means the
smallest singular value of T is smaller than the round off
error level and the matrix T is extremely ill-conditioned.
The tables show only critical part of the neighborhood
of the minima of {(u) and lle(u)ll for brevity. The
global behaviors of them can be observed by figures. All
the numerical experiments are done by double presicion
of Apollo Domain DN-3000 which has accuracy of

Table 2 Example 1 Noise Level=1.D—8

u {w lle(o)l
0.100E — 04 0.244E—-03 0.3202E — 03
0.316E—05 0.821E—04 0.2955E—~03
0.100E — 05 0.523E—04 0.4091E—-03
0.316E—06 0.765E — 04 0.3600E — 03
0.100E — 06 0.721E—04 0.2115E—-03
0.562E —07 0.567E —04 0.1296E —03
0.316E—07 0.398E —04 0.6011E —04
0.178E—07 0.259E —-04 0.8939E — 05
0.100E —07 0.166E —04 0.2756E — 04
0.562E — 08 0.131E—04 0.5254E—04
0.316E—08 0.171E—04 0.7223E-04
0.178E-08 0.282E-04 0.9221E—04
0.100E—-08 0.476E — 04 0.1186E —03
0.316E—09 0.122E—-03 0.2251E—03
0.100E—09 0.226E —03 0.4898E—03
0.316E—10 0.246E ~- 03 0.9807E — 03

log, o |letw]|
[leG|

1 /
T )
-1 e

) /|
\J/

— 5

ot - logy ¥

0 5 10| 15 20 25 30
2 2 2
01 % - - e - - %

Fig. 2 Example 1 Noise Level=10"%,
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about 16 decimal digits (double precison of IEEE stan-

dard).
Example 1.

The

1
§ ef(tydt=(*'—1)/(s+1), 0=s=1.0
[}

true solution f(t)=¢'

n=19 m=20

5=0.05, i=1, 2, ..., 20,

IITI=6.0

Numerical Rank of T=9

The computed singular values ¢i, i=1,2, ..., n:

Table 3 Example 1 Noise Level=1.D-4
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01=6.0%x10°, 0,=4.7x10"!, 0;=1.6%x1072,
0,=3.3%x107%, 05=5.2x107% 0Gs=6.3%107%,
0:=6.3x107"°, g5=5.3x1073, gy=3.8x107%,

Singular values from o to g} are numerical zero, or

less than ITH x 107,
1-1) Noise level=round off error

lle(uo)ll =1.08 x 1077
lle(u)li=1.96 x 1077
Ratio of precision=0.96

1-2) Noise level=1.0x 1078

lle(uo)ll =8.94 x 10~¢

Table 4 Example 2 Noise Level=round off

u §(u) lle(u)

H {w Nle(u)! 0.100E—~16 0.351E—05 0.6940E — 05
0.100E+00 0.383E—01 0.7780E — 01 0.562E— 17 0.249E — 05 0.4734E — 05
0.582E—01 0.284E—01 0.4484E —01 0.316E—17 0.162E — 05 0.3113E—05
0.316E—01 0.168E—01 0.2497E—01 0.178E—17 0.998E ~ 08 0.2028E—05
0.178E—01 0.102E—01 0.1439E—01 0.100E—17 0.592E—06 0.1350E—05
0.100E—01 0.603E—02 0.7860E — 02 0.562E—18 0.343E—06 0.9443E— 08
0.562E—02 0.36TE—02 0.8987E — 02 0.316E—18 0.196E—06 0.7097E — 06
0.316E—02 0.277E—02 0.1140E—01 0.178E—18 0.111E—06 0.8120E — 08
0.178E—02 0.305E—02 0.1181E—~01 0.100E—18 0.832E—07 0.5589E —08
0.100E—02 0.378E—02 0.1060E ~ 01 0.562E—19 0.368E—07 0.5265E — 06
0.582E—03 0.430E—02 0.7999E - 02 0.316E—19 0.261E—07 0.5107E — 06
0.316E—03 0.425E—02 0.4373E~02 0.178E—19 0.317E—07 0.5044E — 06
0.178E~03 0.364E—02 0.3796E—03 0.100E—19 0.530E—07 0.5054E — 06
0.100E—03 0.280E — 02 0.3187E—02 0.562E — 20 0.93SE—07 0.5139E—06
0.562E—04 0.221E—02 0.5721E—02 0.316E~20 0.165E—06 0.5330E - 06
0.316E—04 0.246E—02 0.6922E — 02 0.178E—20 0.292E—06 0.5691E —06
0.178E— 04 0.388E — 02 0.6616E — 02 0.100E 20 0.512E—06 0.6536E — 06
0.100E—04 0.666E—02 0.5136E— 02 0.562E—21 0.889E — 06 0.8519E — 06
0.562E—05 0.114E—01 0.6022E — 02 0.316E—21 0.152E — 05 0.1199E—05
0.316E—05 0.191E—01 0.9941E — 02 0.178E—-21 0.252E—05 0.1800E—0S
0.178E—05 0.308E—01 0.2466E — 01 0.100E—21 0.397E—05 0.2819E—05
0.100E 05 0.464E —01 0.5051E —01 0.582E—22 0.583E — 05 0.4493E — 05
0.562E—06 0.637E—01 0.9144E — 01 0.316E-22 0.772E ~ 05 0.7174E 08

tog g 1wl
10510“=<V)”
|

[leqwl]

S

g ()

- logyg

0 5 10 15
2 2 L. o2
1 2 6

Fig. 3 Example 1 Noise Level=107*.
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|

lleQu)ll=5.25 %1073
Ratio of precision=0.85
1-3) Noise level=1.0x107*
lle(uo)i=3.80x 10*
lle(u)ll=5.72%x 1073
Ratio of precision=0.66
Example 2.

1

2cos (st)f(t) dt=sin (s +2)/ (s +2)+sin(s —2)/ (s —2)
0

The true solution f(t)=cos 2t
n=19m=20
si=0.1(i—1),i=1, 2, ..., 20,
ITH=8.5
Numerical Rank of T=7
The computed singular values a;, i=1,2, ..., n:

0'|=8.5x100, (71:3.8)(10_
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', 0;=2.0x107%

0=s=1.0 Table 6 Example 2 Noise Level=1.D-4
U {w) fleCa)t
Table 5 Example 2 Noise Level=1.D-8 0.316E—01 0.481E-01 0.1216E +00
0.100E — 01 0.181E—01 0.6695E—01
u 4™ lle(u)1 0.316E—02 0.608E — 02 0.4906E—01
0.316E—08 0.247E—04 0.1219E—02 0.160E—~02 0.212E—02 0.4213E-01
0.100E —08 0.502E — 04 0.1181E—02 0.316E—03 0.255E—02 0.3909E—01
0.562E—09 0.843E—04 0.1156E —02 0.178E—03 0.424E —02 0.3765E—01
0.316E—09 0.137E—03 0.1118E—02 0.100E - 03 0.701E 02 0.3565E—01
0.178E—09 0.212E-03 0.1058E—02 0.562E —04 0.111E-01 0.3255E~01
0.100E — 09 0.300E—03 0.9628E — 03 0.316E—04 0.164E — 01 0.2762E—01
0.562E—10 0.379E - 03 0.8203E—03 0.178E —04 0.218E-01 0.2004E—01
0.316E—10 0.416E—03 0.6270E - 03 0.100E —04 0.256E—01 0.9270E - 02
0.178E—10 0.493E — 03 0.3968E — 03 0.562E — 05 0.258E-01 0.4365E—02
0.100E—10 0.321E-03 0.162SE—03 0.316E—05 0.224E-01 0.1927E-01
0.562E—11 0.233E—03 0.4090E — 04 0.178E—05 0.171E—01 0.3317E—01
0.316E—11 0.154E—03 0.1938E—03 0.100E 05 0.117E~01 0.4433E—-01
0.178E—11 0.965E — 04 0.2956E— 03 0.582E— 08 0.743E—02 0.5229E—01
0.100E—11 0.628E —04 0.3560E 03 0.316E—06 0.452E—02 0.5753E—01
0.562E—~12 0.581E—04 0.3853E—03 0.178E 06 0.277E-02 0.6087E— 01
0.316E—12 0.871E—04 0.3895E—03 0.100E —06 0.216E—02 0.6308E—01
0.178E—12 0.152E—03 0.3689E — 03 0.562E—07 0.285E—02 0.6477E 01
0.100E—12 0.269E - 03 0.3159E—03 0.316E—07 0.486E—02 0.6648E — 01
0.562E—13 0.478E—03 0.2124E—03 0.178E—07 0.858E —02 0.6677E—01
0.316E—13 0.848E — 03 0.2163E—03 0.100E — 07 0.152E-01 0.7242E-01
0.178E—13 0.151E—02 0.3679E—03 0.562E —08 0.269E—01 0.7665E —01
0.100E—13 0.267E—02 0.9202E — 03 0.316E —08 0.474E—-01 0.8956E — 01
0.178E— 08 0.829E—01 0.1088E+00
1og, o |letw) ]| logq lleCw) ]|
Jletu) ]|
Tu)
| [feGll
' o) ™~
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Fig. S Example 2 Noise Level=10"%.
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Fig. 6 Example 2 Noise Level=10"*.
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0'4=4.1 X 10_6, 0'5:4.3 X 10_9, 0’6=2.7 X 10—12,

U7=1.2x 10"5.

Singular values from gs to s are numerical zero, or

less than IITHl X 107",

2-1) Noise level =round off error
lle(uo)ll =5.04 x 1077
lle(u)15.11x 1077
Ratio of precision=1.0

2-2) Noise level=1.0x 108
lle(uo)ll =5.8 x107°
le(u)ll=1.3x10%

Ratio of precision=0.96

2-3) Noise level=1.0x 107*
lle(uo)ll =4.37 %1073
lleuc)ll =4.04 x 1072
Ratio of precision=0.59

6. Concluding Remarks

In this paper, we proposed an algorithm to estimate
the optimal regularization parameter. Results of the
numerical experiments show that the algorithm gives
good estimations for wide range of Ag. On the other
hand, some statistical approaches are available for this
problem of estimating the parameter. Among others,
generalized cross validation method is noted for its pro-
minence [5, 8, 11]. A comparison between our
algorithm and the method including numerical ex-
periments shall be made elsewhere.
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