Some Properties of an Algorithm for Constructing LL(1) Parsing-Tables Using Production Indices

KEIICHI YOSHIDA* and YOSHIKO TAKEUCHI**

This paper reveals five valuable properties of Algorithm H discussed in the paper [2]. Algorithm H can construct parsing-tables for LL(1) grammars only by table-handling using the indices given to the productions of the grammars without set-calculations, which are needed by conventional methods.

Furthermore, based on the property revealed in this paper, it has been shown that Algorithm H can be revised into an algorithm to point out the non-LL(1)ness of input grammars.

1. Introduction

If taking into account the fact that Pascal is a good and practical example of the grammar which can be written in LL, the usefulness of LL grammar is underestimated just because it is a subset of LR. In addition, the latest article [1] reports that an LL parser generator, LLgen, was developed, that it generated a new C compiler, and that it is being used in a natural-language parser project.

We proposed an algorithm for constructing LL(1) parsing-tables using production indices in the paper [2]. Outstanding features of our algorithm, that no other algorithm has, are:

- 1. Implementation is very easy. Conventional methods[3]~[5] need set-calculations to find the values for FIRST and/or FOLLOW, and then construct parsingtables with these values. Our algorithm can construct parsing-tables without set-calculations, but only by table-handling using the indices given to the productions.
- 2. The time spent to construct parsing-tables can be reduced to 1/100, and the required memory size saved to 1/3 through 1/4 compared with the conventional methods.

Conventional algorithms can detect non-LL(1)ness by either testing if following formula is true:

 $FIRST_1(\beta FOLLOW_1(A))$

 \cap FIRST₁(γ FOLLOW₁(A))= ϕ

where $A \rightarrow \beta$ and $A \rightarrow \gamma$ are distinct A-production, or checking whether multi-definitions occur for the same entry in constructing parsing-table. On the other hand, it is not necessary for algorithm to apply the above mentioned formula since our algorithm makes parsing-table directly. Both conventional algorithms and ours can detect non-LL(1)ness by multi-definitions. But our process to detect non-LL(1)ness is different from that of conventional algorithms because their ways of constructing parsing-tables are different.

This paper describes five properties of our algorithm, and by the properties our algorithm can be easily revised into an algorithm to point out non-LL(1)ness for a CFG. For convenience, we name our new algorithm Algorithm H. It does not require the grammar to be in the precise form of LL(1).

Symbols and Definitions

According to conventions, Σ , and N denote a set of terminals, a set of nonterminals of a given CFG G, respectively. A, B, and C are elements in N; X, Y, and Z are elements in NU Σ ; a, b, and c are elements in Σ ; s and t are elements in Σ^* ; α , β , γ , and δ are elements in $(N \cup \Sigma)^*$ unless otherwise specified. Each symbol is able to have a subscript if necessary. ε , and ϕ are a null string, and an empty set, respectively. Finally, p in A α or $\alpha \Longrightarrow \beta$ denotes an index of the corresponding production. All derivations in this paper are done by the leftmost. Other concepts and symbols used without any definition are based on the paper [3].

Definitions for FIRST, FOLLOW, and END-FOLLOW are:

[Definition 1]

FIRST of X is defined by:

 $FIRST(X) = \{a \mid a \in \Sigma, X \implies a\alpha, \alpha \in (N \cup \Sigma)^*\}$

This definition form is not common, but we use it because all ε -productions are deleted before the calculation of FIRST(X) in Algorithm H and the same definition form can be seen in article [6].

[Definition 2]

FOLLOW of A is defined by:

FOLLOW(A) = $\{a \mid a \in \Sigma, S \stackrel{*}{\Longrightarrow} \alpha A\beta, S \text{ is the start }\}$

^{*}College of Engineering, Shizuoka University, 3-5-1, Jyohoku, Hamamatsu City, Shizuoka Pref., 432, Japan
**Hamamatsu Polytechnic College

symbol of G,
$$\beta \stackrel{*}{\Rightarrow} av$$
, $v \in (\mathbb{N} \cup \Sigma)^*$

For constructing an efficient parsing-table, \$ is used as an element of FOLLOW(S), where \$ is an end mark of an input text.

[Definition 3]

END-FOLLOW of B is defined by: END-FOLLOW(B)

$$= \{A \mid A \in \mathbb{N}, A \stackrel{*}{\Longrightarrow} \alpha B \beta, \beta \stackrel{*}{\Longrightarrow} \varepsilon\}.$$

In our definition, FOLLOW does not contain ε . In the case of $\beta \stackrel{*}{=} \varepsilon$ where $S \stackrel{*}{=} \alpha A \beta$, FOLLOW of A can be found by END-FOLLOW, FOLLOW, and FIRST. For example, in the following derivation

$$S \stackrel{*}{\Longrightarrow} t_1 BX \stackrel{*}{\Longrightarrow} t_2 A \beta X, \quad \beta \stackrel{*}{\Longrightarrow} \varepsilon$$

FOLLOW of A can be calculated by using END-FOLLOW(A), FOLLOW(B), and FIRST(X). [Definition 4]

P and Q are defined by:

P={p|p is a unique index for a production represented by a positive integer}

$$Q = \{(A, p) | A \Longrightarrow \alpha \stackrel{*}{\Longrightarrow} \epsilon\}$$

3. Algorithm

This section describes algorithm for detecting non-LL(1)ness. Before going further, a brief definition to it is provided.

If $A \rightarrow \beta$ and $A \rightarrow \gamma$ are distinct A-productions and the following condition holds, then it is called that the grammar with such the production has non-LL(1)ness:

 $FIRST_1(\beta FOLLOW_1(A))$

$$\cap$$
 FIRST₁(γ FOLLOW₁(A)) $\neq \phi$.

When a grammar has non-LL(1)ness, two or more production indices are defined for the same entry while constructing parsing-table.

It is assumed that all grammars input to Algorithm H do not contain any useless productions. A set Q of (A, p) such that $A \Rightarrow \alpha \stackrel{*}{\Rightarrow} \epsilon$ is required in Algorithm H, and the set could be calculated by R. Hunter's Algorithm [7]. Instead, here, we use Algorithm K developed by us and it has a much simpler procedure described below. Algorithm K works as a preprocessor for Algorithm H.

By close observation on K, it is clear that K is capable of detecting if an input grammar G contains a non-LL(1)ness caused by A such that $A \Longrightarrow_{\mathbb{P}'} \alpha \stackrel{*}{\Longrightarrow} \varepsilon$ and $A \Longrightarrow_{\mathbb{P}'} \beta \stackrel{*}{\Longrightarrow} \varepsilon$, where $\alpha \neq \beta$ and $i \neq j$.

Algorithm K: {finding set Q}

[Step 1] {finding subset of Q, or $\{(A, p)\}$ such that A $\Rightarrow \varepsilon$ }

begin

Q←φ:

for each A such that A $\rightarrow \varepsilon$

 $Q \leftarrow Q \cup \{(A, p)\};$

end

```
[Step 2] {adding {(A, p_i)} such that A \Longrightarrow \alpha \Longrightarrow \varepsilon to
Q}
repeat
   for each production such that A \xrightarrow{p} Y_{i1}Y_{i2}...Y_{in} do
       begin
          k \leftarrow 1;
          repeat
              if (Y_{ik}, p_k) \in Q
                  then delete Y_{ik} from the righthand side of p_i
                  else go to l; \{A \Leftrightarrow \varepsilon \text{ because } Y_{ik} \Leftrightarrow \varepsilon\}
              k \leftarrow k + 1
           until k > n;
           (checking if an element (A, p_i) such that A \Rightarrow
          \alpha' \stackrel{*}{\Longrightarrow} \varepsilon is already in Q, where i \neq j
          if Q \ni (A, p_j) such that A \Longrightarrow \alpha' \stackrel{*}{\Longrightarrow} \varepsilon and i \ne j
                                then Q \leftarrow Q \cup \{(A, p_i)\}
                                else begin write 'G is not LL(1)';
                                       end of program
                                    end;
```

l: end

until no change occurs in Q.

Before discussing Algorithm H, we explain some additional symbols used in it.

- (1) FIRST: although this symbol is defined to represent a set in section 2, in Algorithm H it is also used as a name of the table corresponding to the set. The rows of the table are named by non-terminals, and the columns are named by both terminals and non-terminals. Each entry of the table has either a value 0 or a member of P(i.e., a production index).
- (2) FOLLOW: this symbol, in H, is also defined to represent a name of the table corresponding to the set, FOLLOW. Its table structure is similar to FIRST except for its entries. Each entry of the table is either nil or *. The symbol * indicates that there is FOLLOW-relation between symbols naming the column and row including the entry, but nil indicates that there is no such relation.
- (3) END-FOLLOW: this symbol, in H, is also used to represent a name of the table corresponding to the set, END-FOLLOW. The rows and columns of the table are named by nonterminals only, and their entries are either nil or *.

The following is an outline of Algorithm H and its detailed steps.

Algorithm H consists of the following three parts with eight steps.

PART I: Steps for constructing FIRST-table

Step 1: Initializing FIRST-table by the production such that $A \rightarrow \alpha(\alpha \neq \epsilon)$. T_{11} denotes the part of the FIRST-table filled in by Step 1.

Step 2: Computing the closure of entries filled in by Step 1. T_{12} denotes the part of the FIRST-table filled in by Step 2 alone.

Note: $T_1 = T_{11} + T_{12}$

Part II: (II-a) Steps for constructing FOLLOW-table

260 K. Yoshida and Y. Takeuchi

Step 3: Initializing FOLLOW-table. The part added to the FOLLOW-table by Step 3 alone is referred to F_{11} . Step 4: Computing the closure of entries filled in the FOLLOW-table by Step 3. The part constructed by Step 4 alone is referred to F_{12} .

Note: $F_1 = F_{11} + F_{12}$

(II-b) Steps for constructing END-FOLLOW-table

Step 5: Initializing END-FOLLOW-table. If $A \rightarrow \alpha B\beta$, and $\beta \stackrel{*}{\Longrightarrow} \varepsilon$, then END-FOLLOW(B, A)='*'. Here, END-FOLLOW(B, A) is the entry on the row B and the column A of the table END-FOLLOW. In the following steps, the same notations are used for the tables FIRST and FOLLOW. The part constructed by Step 5 alone are referred to E₁.

Step 6: Computing the closure of the entries constructed by Step 5 alone. The part constructed by Step 6 alone is referred to E2.

(II-c) Completing the FOLLOW-table using END-FOLLOW-table

Step 7: If END-FOLLOW(A, B)='*' and FOLLOW (B, a) = '*' then FOLLOW(A, a) is filled with * for any $a \in \Sigma$, $A \in \mathbb{N}$ and $B \in \mathbb{N}$. The part of the FOLLOWtable filled in by Step 7 alone is referred to F₂.

Note: $F = F_1 + F_2$

Part III: Completing FIRST-table using FOLLOWtable when $A \stackrel{*}{\Rightarrow} \varepsilon$

Step 8: For any $A \in N$ and $a \in \Sigma$, if FOLLOW(A, a) ='*' then FIRST(A, a) is filled with p such that (A, p) in Q. The part added to FIRST-table by Step 8 alone is referred to T_2 . $T = T_1 + T_2$. Then, terminal (T), the part on columns of T named by terminals, is the required parsing-table.

It is assumed that all productions are such that $A \rightarrow \varepsilon$ is excluded before applying Algorithm H.

Algorithm H:

Construction of FIRST-table

{Let every entry of the FIRST-table be 0 before the following operations are performed.}

```
for each production such that A \longrightarrow Y_1Y_2 \dots Y_n do
      begin i \leftarrow 1;
         repeat FIRST(A, Y_i) \leftarrow p;
            j \leftarrow j + 1;
         until (Y_{j-1}, p_{j-1}) \notin Q or j > n; \{p_{j-1} \text{ is an index } \}
given to a production Y_{j-1} \rightarrow \alpha
      end:
   end.
[Step 2]
   begin
      repeat
         for each A∈ N do
```

for each B∈ N do

if FIRST(A, B)∈ P then

```
for each C \in N do
             if FIRST(B, C) \in P then
                FIRST(A, C) \leftarrow FIRST(A, B);
until no change occurs in the FIRST-table;
for each A∈ N do
   for each B∈ N do
     if FIRST(A, B) \in P then
        for each a \in \Sigma do
          if FIRST(B, a)\in P then
             FIRST(A, a) \leftarrow FIRST(A, B);
if Q is empty then skip Step 3 through Step 8
```

Construction of local-FOLLOW-table [Step 3]

```
{Let every entry of the FOLLOW-table be nil before
the following operations are performed.
     for each production such that A \rightarrow Y_1 Y_2... Y_n do
       begin j \leftarrow 1; k \leftarrow j + 1;
          while j < n do
```

begin if $Y_j \in N$ then repeat FOLLOW(Y_j , Y_k) \leftarrow '*'; $k \leftarrow k + 1$; until $(Y_{k-1}, p_{k-1}) \in Q$ or k > n; $j \leftarrow j+1; k \leftarrow j+1$ end; end: end.

[Step 4] begin

for each $A \in N$ do for each B∈ N do if FOLLOW(A, B)='*' then for each $a \in \Sigma$ do if FIRST(B, a) \in P then $FOLLOW(A, a) \leftarrow '*';$

end.

Construction of END-FOLLOW-table [Step 5]

{Let every entry of the END-FOLLOW-table be nil before the following operations are performed.} for each production such that $A \rightarrow Y_1 Y_2 \dots Y_n$ do repeat if $Y_i \in N$ then END-FOLLOW(Y_j , A) \leftarrow '*'; $j\leftarrow j-1;$ until $(Y_{j+1}, p_{j+1}) \notin Q$ or j=0; end.

[Step 6] begin

> repeat for each A∈ N do for each $B \in N$ do if END-FOLLOW(A, B)='*' then for each C∈ N do

```
if END-FOLLOW(B, C)='*' then
END-FOLLOW(A, C)←'*'
```

until no change occurs in the END-FOLLOW table end.

Construction of FOLLOW-table

[Step 7]

begin

FOLLOW(S, \$) \(\phi'*'\{S: start symbol,\\ \\$: end mark of an input text\}

for each $A \in \mathbb{N}$ do for each $B \in \mathbb{N}$ do if END-FOLLOW(A, B)='*' then for each $a \in \Sigma$ do if FOLLOW(B, a)='*' then FOLLOW(A, a)-'*'

end.

Construction of Parsing-table

[Step 8]

begin

for each $A \in N$ do if $(A, p) \in Q$ then for each $a \in \Sigma$ do if FOLLOW(A, a) = '*' then $FIRST(A, a) \leftarrow p$

end

4. Properties of Algorithm H

We explain properties of Algorithm H in this section. Based on its properties, we show Algorithm H can detect non-LL(1)ness for any input grammar CFG.

[Property 1]

When Step 1 is applied to CFG G, if $T_{11}(A, X) = \{p_1, p_2, \ldots, p_n\}$, $n \ge 2$, then G cannot be LL(1), where $p_i \in P$, $1 \le i \le n$.

[Proof]

 $T_{11}(A, X) = \{p_1, p_2, \ldots, p_n\}, n \ge 2$ $\iff \text{there exist } n \text{ productions such that } A \xrightarrow{p_1} \alpha_1 X \beta_1, \quad \alpha_1 \stackrel{*}{\implies} \varepsilon, \ldots, A \xrightarrow{p_n} \alpha_n X \beta_n, \quad \alpha_n \stackrel{*}{\implies} \varepsilon, \\ n \ge 2. \text{ However, } \alpha_j X \beta_j \ne \alpha_k X \beta_k \text{ when } j \ne k, \\ 1 \le j, k \le n, n \ge 2.$

Therefore, Property 1 is concluded. [Q.E.D]

[Property 2]

When Step 2 is applied to G to construct T_1 , if $T_1(A, X) = \{p_1, p_2, \ldots, p_n\}$, and $n \ge 2$, then G cannot be LL(1), where $p_i \in P$, $1 \le i \le n$.

[Proof]

 $T_1(A, X) = \{p_1, p_2, \ldots, p_n\}, n \ge 2$

 \iff there exist n derivations such that $A \Longrightarrow_{p_1} \alpha_1 \Longrightarrow_{\beta_1} X \gamma_1 \Longrightarrow_{\beta_2} X \gamma_1, \ldots, A \Longrightarrow_{p_n} \alpha_n \Longrightarrow_{\beta_n} X \gamma_n \Longrightarrow_{\lambda} X \gamma_n, n \ge 2$. However, $\alpha_j \ne \alpha_k$ when $j \ne k$, $1 \le j$, $k \le n$, $n \ge 2$.

Therefore, Property 2 is concluded. [Q.E.D] [Property 3]

Even if a step from Step 3 to 7 in H constructs a table with a multi-defined entry at some time while applying

these steps to G, it cannot be concluded that G is not LL(1).

[Proof]

Suppose that at least one step from Step 3 to 7 constructs a table with a multi-defined entry in any M(X, Y) of the table. M denotes a part of the table local-FOLLOW or END-FOLLOW produced by one of those steps.

Since these steps calculate FOLLOW, such entry simply means that there exists XY at several places on a derived strings or right-hands of productions. Therefore, Property 3 is concluded. [Q.E.D]

[Property 4]

In Step 8 of H, if $T(X, a) = \{p_i, p_j\}$ for some G, then G is not LL(1), where $p_i, p_j \in P$, $i \neq j$.

[Proof

No pair of (X, a) such that

 $T_1(X, a) = \phi$

 $T_2(X, a) = \{p_i, p_j\}$

exists in Step 8. If such a pair of (X, a) exists, there could exist an X such that $X \Rightarrow \delta_i \stackrel{*}{\Rightarrow} \varepsilon$, $X \Rightarrow \delta_j \stackrel{*}{\Rightarrow} \varepsilon$ in the derivation such that $S \stackrel{*}{\Rightarrow} \alpha X \beta \gamma$, and $\beta \stackrel{*}{\Rightarrow} at$. Such an X, however, cannot be found at the stage of Step 8, because G is checked by Algorithm K at the calculation for set Q.

If G is LL(1), then the following cannot be true:

$$T_1(X, a) = \{p_i, p_j\}$$
 (4.1)

because in Property 1 and Property 2 it has been proved that the G is not LL(1) when Eq. (4.1) holds. Therefore, if $T(X, a) = \{p_i, p_j\}$, Eqs. (4.2) should hold because $T = T_1 + T_2$.

$$T_1(X, a) = \{p_i\} \text{ and } T_2(X, a) = \{p_i\}$$
 (4.2)

Based on Eqs. (4.2), there exists a derivation $X \Rightarrow \delta_i$ $\stackrel{*}{\Rightarrow} at_i$ for $T_1(X, a) = \{p_i\}$. Moreover, for $T_2(X, a) = \{p_i\}$, the following should be true:

$$S \stackrel{*}{\Longrightarrow} \alpha X \beta$$
, $\beta \stackrel{*}{\Longrightarrow} at_j$, and $X \stackrel{*}{\Longrightarrow} \delta_j \stackrel{*}{\Longrightarrow} \varepsilon$

Hence, G cannot be LL(1).[Q.E.D]

[Property 5]

G is not LL(1) at least, one of properties among Property 1, Property 2, and Property 4 is true.

[Proof]

= : obvious

⇒: Iff G is not LL(1), at least, one of the equations below is true for an X in Algorithm H:

- (1) $X \Longrightarrow_{p_n} \alpha_1 \Longrightarrow at_1, \ldots, X \Longrightarrow_{p_n} \alpha_n \Longrightarrow_{n} at_n$, and $n \ge 2$
- (2) $X \Longrightarrow_{p_i} \beta_i \stackrel{*}{\Longrightarrow} at_i$ in addition to $S \stackrel{*}{\Longrightarrow} \alpha X \beta$, $X \Longrightarrow_{p_i} \gamma \stackrel{*}{\Longrightarrow} \varepsilon$, and $\beta \stackrel{*}{\Longrightarrow} at_j$
- (3) $X \Longrightarrow \alpha_1 \stackrel{*}{\Longrightarrow} \varepsilon, \ldots, X \Longrightarrow \alpha_n \stackrel{*}{\Longrightarrow} \varepsilon$, and $n \ge 2$.

For the case (3), such an X has been already detected by K during the calculation for a set Q. Therefore, we have only to discuss (1) and (2) mentioned above. The proof of non-LL(1)ness of G in (1) is based on Property 1 and Property 2, and the proof in (2) based on Property 4.

Case (1):

The case (1) consists of the next two cases.

(1)-(a): a grammar G has a set such that $\{p_i | X \xrightarrow{p_i} \alpha_i at_i, \}$ $\alpha_i \stackrel{*}{\Longrightarrow} \varepsilon$, $1 \le i \le n$, $n \ge 2$. In this case, Property 1 can be applied, since $T_{11}(X, a) = \{p_1, p_2, \ldots, p_n\}$, and $n \ge 2$ in Step 1 of Algorithm H.

(1)-(b): a grammar G has a set such that $\{p_i | X \Longrightarrow \alpha_i\}$ $\stackrel{+}{\Longrightarrow} at_i$, $1 \le i \le n$, $n \ge 2$. In this case, Property 2 can be applied, since $T_1(X, a) = \{p_1, p_2, \ldots, p_n\}$, and $n \ge 2$ in Step 2 of Algorithm H.

Case (2):

For derivation such that $X \Longrightarrow \beta_i \stackrel{*}{\Longrightarrow} at_i$,

$$T_1(X, a) = \{p_i\}$$
 (4.3)

is true in Step 1 through 2. Now, being $F=F_1+F_2$, the case is divided into the following two.

(i) Whenever $S \stackrel{*}{\Rightarrow} tD\beta \Rightarrow t\alpha X\gamma\beta$, and $\gamma \stackrel{*}{\Rightarrow} a\delta$, then $F_1(X, a) = \{*\}$ by Step 3 through 4.

(ii) Whenever $S \stackrel{*}{\Rightarrow} tD\beta \Rightarrow t\alpha X\gamma\beta$, $\gamma \stackrel{*}{\Rightarrow} \varepsilon$, and β \Rightarrow $a\delta$, then $F_1(D, a) = \{*\}$, and $E_2(X, D) = \{*\}$ by Step 3 through 4, and Step 5 through 6, respectively. Thus, $F_2(X, a) = \{*\}$ by Step 7. Therefore, according to $\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2$

$$F(X, a) = \{*\}$$
 (4.4)

According to Eq. (4.3), and the calculation by Step 8 for Eq. (4.4) and $X \Longrightarrow \delta_j \stackrel{*}{\Longrightarrow} \varepsilon$, we can obtain T(X, a)= $\{p_i, p_i\}$. Thus, Property 4 can be applied.

Since the cases, (1)-(a), (1)-(b), and (2), have no interactions when they appear, Property 5 can be true. [Q.E.D]

5. Conclusion

This paper has revealed five valuable properties of Algorithm H in the paper [2]. Furthermore, based on its properties, it has been shown that Algorithm H can be revised into an algorithm to point out the non-LL(1) ness of input grammars. That means Algorithm H can detect the non-LL(1)ness for input grammars without any set-operation, except finding set Q in Algorithm K.

We will pursue our further research, into applying the idea in Algorithm H to LL(k), $k \ge 2$ and LR grammar.

Acknowledgment

The authors would like to thank Prof. Kenzo INOUE at Science Univ. of Tokyo who gave us a lot of valuable advices and thank the referees for their valuable suggestions.

References

- 1. Grune, D. and Jacobs, C. J. H. A Programmar-friendly LL(1) Paser Generator, Software-Practice and Experimence, 18, Jan. (1988), 29-38.
- YOSHIDA, K. and TAKEUCHI, Y. An Algorithm for Constructing LL(1) Parsing-Tables Using Production Indices (in Japanese), Trans. IPS Japan 11 (1986), 1095-1105.
- 3. AHO, A. V. and ULLMAN, J. D. The Theory of Parsing, Translation, and Compiling, I, Prentice-Hall, Inc., Englewood Cliffs, N. J. (1972), 333-367.
- GRIFFITHS, M. LL(1) Grammars and Analysers, In GOOS and HARTMANIS ed., Compiler Construction, Lecture Notes in Computer Science, Springer-Verlag, 21 (1976), 57-84.
- 5. LEWIS II, P. M., ROSENKRANTZ, D. J. and STEARNS, R. E. Compiler Design Theory, Addison-Wesley, (1976), 262-276.

 6. BACKHOUSE, R. C. Syntax of Programming Languages, Theory
- and Practice, Prentice-Hall, (1979), 117.
- HUNTER, R. The Design and Construction of Compilers, John Wiley & Sons, (1981), 71-73.

(Received May 6, 1987; revised March 22, 1988)