Some Properties of an Algorithm for Constructing
LL(1) Parsing-Tables Using Production Indices

KE1ncHI YOsHIDA* and YOSHIKO TAKEUCHI**

This paper reveals five valuable properties of Algorithm H discussed in the paper [2]). Algorithm H can con-
struct parsing-tables for LL(1) grammars only by table-handling using the indices given to the productions of
the grammars without set-calculations, which are needed by conventional methods.

Furthermore, based on the property revealed in this paper, it has been shown that Algorithm H can be revised
into an algorithm to point out the non-LL(1)ness of input grammars.

1. Introduction

If taking into account the fact that Pascal is a good
and practical example of the grammar which can be
written in LL, the usefulness of LL grammar is underes-
timated just because it is a subset of LR. In addition,
the latest article [1] reports that an LL parser generator,
LLgen, was developed, that it generated a new C com-
piler, and that it is being used in a natural-language
parser project.

We proposed an algorithm for constructing LL(1)
parsing-tables using production indices in the paper [2].
Outstanding features of our algorithm, that no other
algorithm has, are:

1. Implementation is very easy. Conventional
methods® - need set-calculations to find the values for
FIRST and/or FOLLOW, and then construct parsing-
tables with these values. Our algorithm can construct
parsing-tables without set-calculations, but only by
table-handling using the indices given to the produc-
tions.

2. The time spent to construct parsing-tables can be
reduced to 1/100, and the required memory size saved
to 1/3 through 1/4 compared with the conventional
methods.

Conventional algorithms can detect non-LL(1)ness
by either testing if following formula is true:

FIRST,(BFOLLOW,(A))
N FIRST(yFOLLOW,(A))=¢

where A—p and A—y are distinct A-production, or
checking whether multi-definitions occur for the same
entry in constructing parsing-table. On the other hand,
it is not necessary for algorithm to apply the above men-
tioned formula since our algorithm makes parsing-table

*College of Engineering, Shizuoka University, 3-5-1, Jyohoku,
Hamamatsu City, Shizuoka Pref., 432, Japan
**Hamamatsu Polytechnic College

Journal of Information Processing, Vol. 11, No. 4, 1988

directly. Both conventional algorithms and ours can
detect non-LL(1)ness by multi-definitions. But our pro-
cess to detect non-LL(1)ness is different from that of
conventional algorithms because their ways of con-
structing parsing-tables are different.

This paper describes five properties of our algorithm,
and by the properties our algorithm can be easily revis-
ed into an algorithm to point out non-LL(1)ness for a
CFG. For convenience, we name our new algorithm
Algorithm H. It does not require the grammar to be in
the precise form of LL(1).

2. Symbols and Definitions

According to conventions, , and N denote a set of
terminals, a set of nonterminals of a given CFG G, re-
spectively. A, B, and C are elements in N; X, Y, and Z
are elements in NUX; a, b, and ¢ are elements in X; s
and ¢ are elements in 2*; a, 8, ¥, and ¢ are elements in
(NUZ)* unless otherwise specified. Each symbol is able
to have a subscript if necessary. ¢, and ¢ are a null str-
ing, and an empty set, respectively. Finally, p in A —>
a or a => f denotes an index of the corresponding pro-
duction. All derivations in this paper are done by the
leftmost. Other concepts and symbols used without any
definition are based on the paper [3].

Definitions for FIRST, FOLLOW, and END-
FOLLOW are:

[Definition 1]
FIRST of X is defined by:

FIRST(X)={alae =, X = aa, ac (NUD)*}

This definition form is not common, but we use it
because all e-productions are deleted before the calcula-
tion of FIRST(X) in Algorithm H and the same defini-
tion form can be seen in article [6].

[Definition 2]
FOLLOW of A is defined by:
FOLLOW(A)={alaec X, S = aAfB, S is the start

Some Properties of an Algorithm for Constructing LL(1) Parsing-Tables Using Production Indices 259

symbol of G,
B = av, ve (NUX)*}

For constructing an efficient parsing-table, $ is used
as an element of FOLLOW(S), where $ is an end mark
of an input text.

[Definition 3]
END-FOLLOW of B is defined by:

END-FOLLOW(B)

={AlAeN, A =% oBS, f = ¢}.

In our definition, FOLLOW does not contain &. In
the case of B =% ¢ where S = aAf, FOLLOW of A
can be found by END-FOLLOW, FOLLOW, and
FIRST. For example, in the following derivation

St 1 BX = hAfX, f2¢

FOLLOW of A can be calculated by using END-
FOLLOW(A), FOLLOW(B), and FIRST(X).
[Definition 4]
P and Q are defined by:
P={plp is a unique index for a production
represented by a positive integer}
Q={(A,p)|A =« = g}

3. Algorithm

This section describes algorithm for detecting non-
LL(1)ness. Before going further, a brief definition to it
is provided.

If A— B and A—y are distinct A-productions and the
following condition holds, then it is called that the
grammar with such the production has non-LL(1)ness:

FIRST,(SFOLLOW (A))
N FIRST,(yYFOLLOW,(A)) # ¢.

When a grammar has non-LL(1)ness, two or more pro-
duction indices are defined for the same entry while con-
structing parsing-table.

It is assumed that all grammars input to Algorithm H
do not contain any useless productions. A set Q of (A,
p) such that A = o =% ¢ is required in Algorithm H,
and the set could be calculated by R. Hunter’s
Algorithm [7]. Instead, here, we use Algorithm K devel-
oped by us and it has a much simpler procedure de-
scribed below. Algorithm K works as a preprocessor for
Algorithm H.

By close observation on K, it is clear that K is capable
of detecting if an input grammar G contains a non-
LL(I)ness caused by A such that A = « =% gand A

=> B =% ¢, where a#f and i#j.
Algorithm K: {finding set Q}
[Step 11 {finding subset of Q, or {(A, p)} such that A
= &}
begin

Q-¢;

for each A such that A—>¢

Q—QU{(A, p};

end

[Step 2] {adding {(A, p)} such that A = « = ¢ to
Q}
repeat
for each production such that A —> Y, Y. .
begin
k<1;
repeat
if (Yu, pde Q
then delete Y, from the righthand side of p;
else go to /; {A 4% ¢ because Y ¥& ¢}
k—k+1
until k> n;
{checking if an element (A, p;) such that A =>
o’ =2 ¢ is already in Q, where i#j}
if Q¥ (A, p) such that A => o’ <% ¢ and i/
then Q< QU {(A, p)}
else begin write ‘G is not LL(1)’;
end of program
end;

.Yin do

I: end
until no change occurs in Q.

Before discussing Algorithm H, we explain some addi-
tional symbols used in it.

(1) FIRST: although this symbol is defined to repre-
sent a set in section 2, in Algorithm H it is also used as a
name of the table corresponding to the set. The rows of
the table are named by non-terminals, and the columns
are named by both terminals and non-terminals. Each
entry of the table has either a value 0 or a member of
P(i.e., a production index).

(2) FOLLOW: this symbol, in H, is also defined to
represent a name of the table corresponding to the set,
FOLLOW. Its table structure is similar to FIRST except
for its entries. Each entry of the table is either nil or =.
The symbol * indicates that there is FOLLOW-relation
between symbols naming the column and row including
the entry, but nil indicates that there is no such relation.

(3) END-FOLLOW: this symbol, in H, is also used
to represent a name of the table corresponding to the
set, END-FOLLOW. The rows and columns of the
table are named by nonterminals only, and their entries
are either nil or =».

The following is an outline of Algorithm H and its de-
tailed steps.

Algorithm H consists of the following three parts
with eight steps.

PART I: Steps for constructing FIRST-table

Step 1: Initializing FIRST-table by the production
such that A—~a(a#¢€). T,y denotes the part of the
FIRST-table filled in by Step 1.

Step 2: Computing the closure of entries filled in by
Step 1. T, denotes the part of the FIRST-table filled in
by Step 2 alone.

Note: T,=T;+T)

PartII: (II-a) Steps for constructing FOLLOW-table

260

Step 3: Initializing FOLLOW-table. The part added
to the FOLLOW-table by Step 3 alone is referred to F,.
Step 4: Computing the closure of entries filled in the
FOLLOW-table by Step 3. The part constructed by
Step 4 alone is referred to Fi,.

Note: F|=F1|+F|2

(II-b) Steps for constructing END-FOLLOW-table
Step 5: Initializing END-FOLLOW-table. If A—aBg,
and B =% ¢, then END-FOLLOW(B, A)="‘+’. Here,
END-FOLLOW(B, A) is the entry on the row B and the
column A of the table END-FOLLOW. In the follow-
ing steps, the same notations are used for the tables
FIRST and FOLLOW. The part constructed by Step §
alone are referred to E,.

Step 6: Computing the closure of the entries con-
structed by Step 5 alone. The part constructed by Step 6
alone is referred to E,.

(II-¢) Completing the FOLLOW-table using END-
FOLLOW-table

Step 7: If END-FOLLOW(A, B)=‘s’ and FOLLOW
(B, a)="»’ then FOLLOW(A, a) is filled with * for any
ac 2, Ae N and Be N. The part of the FOLLOW-
table filled in by Step 7 alone is referred to F,.

Note: F=F,+F;

Part III: Completing FIRST-table using FOLLOW-
table when A = ¢
Step 8: For any Ae N and ae 2, if FOLLOW(A, a)
=‘x’ then FIRST(A, a) is filled with p such that (A, p)
in Q. The part added to FIRST-table by Step 8 alone is
referred to T,. T=T,+T,. Then, terminal (T), the part
on columns of T named by terminals, is the required
parsing-table.

It is assumed that all productions are such that A—¢
is excluded before applying Algorithm H.

Algorithm H:
Construction of FIRST-table
[Step 1]
{Let every entry of the FIRST-table be 0 before the
following operations are performed.}
begin
for each production such that A —> Y,Y..
begin j<1;
repeat FIRST(A, Y;)<p;
Jeit+l;
until (Y;—;, pj-1)& Q or j>n; {p;-, is an index
given to a production Y,;-,—«a}
end;
end.
[Step 2]
begin
repeat
for each Ae N do
for each Be N do
if FIRST(A, B)e P then

..Y,do

K. YosHIDA and Y. TAKEUCHI

for each Ce N do
if FIRST(B, C)e P then
FIRST(A, C)<FIRST(A, B);
until no change occurs in the FIRST-table;
for each Ae N do
for each Be N do
if FIRST(A, B)e P then
for each ae X do
if FIRST(B, a)e P then
FIRST(A, a)<FIRST(A, B);
if Q is empty then skip Step 3 through Step 8
end.

Construction of local-FOLLOW-table
[Step 3]
{Let every entry of the FOLLOW-table be nil before
the following operations are performed. }
begin
for each production such that A—Y,Y,. .
begin j<1; k+j+1;
while j<n do
begin if Y,e N then
repeat FOLLOW(Y,, Y,)« ‘*’;
k—k+1;
until (Ye-1, pe-1)& Q or k>n;
Jej+1; k—j+1

.Y, do

end;
end;
end.
[Step 4]
begin

for each Ae N do
for each Be N do
if FOLLOW(A, B)="‘s’ then
for each ae X do
if FIRST(B, a)e P then
FOLLOW(A, a)«‘«’;
end.

Construction of END-FOLLOW-table
[Step 5]
{Let every entry of the END-FOLLOW-table be nil
before the following operations are performed.}
begin
for each production such that A—-Y,Y,. .
Jjen;
repeat if Y,e N then
END-FOLLOW(Y,, A)«“*’;
Jei=1
until (Y;+1, pj+1)& Q or j=0;
end.
[Step 6]
begin
repeat
for each Ae N do
for each Be N do
if END-FOLLOW(A, B)="‘x’ then
for each Ce N do

.Y, do

Some Properties of an Algorithm for Constructing LL(1) Parsing-Tables Using Production Indices 261

if END-FOLLOW(B, C)=*#’ then
END-FOLLOW(A, C)«**’
until no change occurs in the END-FOLLOW table
end.

Construction of FOLLOW-table
[Step 7]
begin
FOLLOW(S, $)« ‘#’{S: start symbol,
$: end mark of an input text}
for each Ae N do
fot each Be N do
if END-FOLLOW(A, B)="‘+’ then
for each ae Z do
if FOLLOW(B, a)="‘#’ then
FOLLOW(A, a)« ‘¥’
end.

Construction of Parsing-table
[Step 8]
begin
for each Ae N do
if (A, p)e Q then
for each ae 2 do
if FOLLOW(A, a)=‘#’ then
FIRST(A, a)<p
end.

4. Properties of Algorithm H

We explain properties of Algorithm H in this section.
Based on its properties, we show Algorithm H can
detect non-LL(1)ness for any input grammar CFG.
[Property 1]

When Step 1 is applied to CFG G, if Tii(A, X)={p,

P2 - - -, D}, n=2, then G cannot be LL(1), where
peP, l=<i=n.
[Proof]

TII(A’ X)={p., P2 ... pn}: ngz
«=there exist n productions such that A —>
aXpi, o =¢, ..., A—>auXf an>¢,
nz=2. However, oa;Xf#a:Xf:x when j#k,
1</, k=sn,nz2.
Therefore, Property 1 is concluded. [Q.E.D]
[Property 2]
When Step 2 is applied to G to construct T, if Ti(A,

X)={p,, P2 . - ., Pn}, and nz2, then G cannot be
LL(1), where pie P, 1<i=<n.
[Proof]

TA, X)={pi, P2s - . -, Dn}, NZ2
«= there exist n derivations such that A == o, =
BXy 2 Xp,. .., A=>o,=5 Xy, >
Xya, n=2. However, o;# o when j#k, 1</,
k=n, nz2.
Therefore, Property 2 is concluded. [Q.E.D]
[Property 3]
Even if a step from Step 3 to 7 in H constructs a table
with a multi-defined entry at some time while applying

these steps to G, it cannot be concluded that G is not
LL(1).
[Proof]

Suppose that at least one step from Step 3 to 7 con-
structs a table with a multi-defined entry in any M(X, Y)
of the table. M denotes a part of the table local-
FOLLOW or END-FOLLOW produced by one of
those steps.

Since these steps calculate FOLLOW, such entry sim-
ply means that there exists XY at several places on a
derived strings or right-hands of productions.
Therefore, Property 3 is concluded. [Q.E.D]
[Property 4]

In Step 8 of H, if T(X, @)= {p;, p;} for some G, then
G is not LL(1), where p;, p;e P, i%j.

[Proof]
No pair of (X, a@) such that
TiX, a)=¢
T«X, a)={ps p;}
exists in Step 8. If such a pair of (X, a) exists, there
could exist an X such that X =»> 6, % &, X => §, = ¢
in the derivation such that S =% aXgy, and 8 =% at.
Such an X, however, cannot be found at the stage of
Step 8, because G is checked by Algorithm K at the
calculation for set Q.
If G is LL(1), then the following cannot be true:

Tu(X, a)={p;, p;j} @4.1)

because in Property 1 and Property 2 it has been proved
that the G is not LL(1) when Eq. (4.1) holds. Therefore,
if T(X, a)={p;, p;}, Eqgs. (4.2) should hold because
T=T,+T..

TiX, a)={p} and T«X, ®)={p;} 4.2)

Based on Eqs. (4.2), there exists a derivation X = J;
=% at; for T\(X, a)={p;}. Moreover, for TxX, a)
= {p,}, the following should be true:

S aXp, Bt ay, and X = 5, ¢

Hence, G cannot be LL(1).[Q.E.D]
[Property 5]

G is not LL(1) = at least, one of properties among
Property 1, Property 2, and Pro-
perty 4 is true.

[Proof]

<= : obvious

= : Iff G is not LL(1), at least, one of the equations
below is true for an X in Algorithm H:

(1) X?aléatl,...,X?ané’m‘m and

nz2

(2) X = B =% atiinaddition to S = aXf, X =

y=2 ¢, and f 2 at;

B X=a=e.. ,X=a =¢andnz2.

For the case (3), such an X has been already detected

by K during the calculation for a set Q. Therefore, we
have only to discuss (1) and (2) mentioned above. The
proof of non-LL(1)ness of G in (1) is based on Property
1 and Property 2, and the proof in (2) based on Proper-

262

ty 4.
Case (1):

The case (1) consists of the next two cases.
(1)-(a): a grammar G has a set such that {p;| X —> aat;,
a; =% ¢, 1 =i=n, n=2}. In this case, Property 1 can be
applied, since T(X, @)={pi, P2, . . -» P»}, and n=2 in
Step 1 of Algorithm H.
(1)-(b): a grammar G has a set such that {p;|X => «a;
= at;, 1 <i=<n, n=2}. In this case, Property 2 can be
applied, since Ti(X, @)={pi, P2, - - -, Dn}, and n=2 in
Step 2 of Algorithm H.
Case (2):

For derivation such that X = §; =% at,,

Ti(X, 11)={pi} 4.3)

is true in Step 1 through 2. Now, being F=F, +F,, the
case is divided into the following two.

(i) Whenever S =% tDf = taXyB, and y =% ad,
then F,(X, a@)={*} by Step 3 through 4.

(i) Whenever S =% (DS = taXyf, y => ¢, and §
=%, 44, then Fy(D, a@)={x}, and Ex(X, D)={»} by Step
3 through 4, and Step 5 through 6, respectively. Thus,
Fx(X, a)={*} by Step 7. Therefore, according to
F=F1 + Fz

F(X, a)={s} 4.4

According to Eq. (4.3), and the calculation by Step 8
for Eq. (4.4) and X = J; =% ¢, we can obtain T(X,)
={p;, p;}. Thus, Property 4 can be applied.

Since the cases, (1)-(a), (1)-(b), and (2), have no in-
teractions when they appear, Property 5 can be true.

[Q.E.D]

K. YosHIDA and Y. TAKEUCHI

5. Conclusion

This paper has revealed five valuable properties of
Algorithm H in the paper [2]. Furthermore, based on its
properties, it has been shown that Algorithm H can be
revised into an algorithm to point out the non-LL(1)
ness of input grammars. That means Algorithm H can
detect the non-LL(1)ness for input grammars without
any set-operation, except finding set Q in Algorithm K.

We will pursue our further research, into applying
the idea in Algorithm H to LL(k), k=2 and LR gram-
mar.

Acknowledgment

The authors would like to thank Prof. Kenzo INOUE
at Science Univ. of Tokyo who gave us a lot of valuable
advices and thank the referees for their valuable sugges-
tions.

References

1. GRruNE, D. and Jacoss, C. J. H. A Programmar-friendly LL(1)
Paser Generator, Software-Practice and Experimence, 18, Jan. (1988),
29-38.

2. YosHIDA, K. and TAKEUCHI, Y. An Algorithm for Constructing
LL(1) Parsing-Tables Using Production Indices (in Japanese), Trans.
IPS Japan 11 (1986), 1095-1105.

3. AHO, A. V. and ULLMAN, J. D. The Theory of Parsing, Transia-
tion, and Compiling, 1, Prentice-Hall, Inc., Englewood Cliffs, N. J.
(1972), 333-367.

4. GrIFFITHS, M. LL(1) Grammars and Analysers, In GOOS and
HARTMANIS ed., Compiler Construction, Lecture Notes in Com-
puter Science, Springer-Verlag, 21 (1976), 57-84.

5. Lewis 11, P. M., ROSENKRANTZ, D. J. and STEARNS, R. E. Com-
piler Design Theory, Addison-Wesley, (1976), 262-276.

6. BACKHOUSE, R. C. Syntax of Programming Languages, Theory
and Practice, Prentice-Hall, (1979), 117.

7. HuNTER, R. The Design and Construction of Compilers, John
Wiley & Sons, (1981), 71-73.

(Received May 6, 1987; revised March 22, 1988)

