ELISE: Office Procedures Automation Tool
By State-Transition Model

HirosH1 Tsusr* and FuMIHIKO Morr*

ELISE (Electronic Intelligent Secretary System) is an experimental system to automate office procedures. The
basic premise of the system is that office procedures can be expressed as a set of state- transition models, which
specifies how an object is to be processed at an event’s occurrence, the choice among alternative processings be-
ing dependent upon the state of the object. Office procedures are stored in a relational data base as four types of
relations. The presented relational structure for storing the office procedure facilitates the consistency check of
the office procedures as well as its retrieval, addition, editing, and deletion. ELISE consists of six components:
event monitor, procedure monitor, dispatcher, state manager, observer, and procedure manager. These com-
ponents cooperate with each other to obtain, store, and execute procedures for automatic execution of office
work. The presented architecture allows the system and the user to cooperate for carrying the object from its in-
itial state to the final state. This paper describes the representation of office procedures, and the role and func-
tion of each component, together with an example of application.

1. Introduction

Office automation has a long history, longer than that
of business application of electronic computers. When
payroll processing was computerized, it was called
office automation. There are many more examples of
office work which have already been computerized. In
fact, when any office work is sufficiently structured,
routine, and therefore programmable, and if it is cost
effective to implement it in a computer, chances are that
the office work has already been computerized.
Therefore, the focus of the buzz word office automation
today is the possibility of computerization of a myriad
of small and semi-structured office tasks, the com-
puterization (by programming) of which has not been
cost effective until now.

Most office work can be viewed as processes to
transfer objects (such as forms and documents) from
their initial states (such as the state of being a blank
form) to their final states (completed and approved) [6].
This observation leads to the premise that most of the
potentially automatable office work can be represented
in the automaton state-transition model.

ELISE (Electronic Intelligent Secretary System) is a
system for automatic execution of the small and semi-
structured office tasks represented in the automaton
model. The objective in the design and development of
ELISE is two-fold: representation of automatable office
work, and functional division of software architecture
of a system for automatic execution of the office work.

Section 2 is devoted to the discussion of the survey of

*Systems Development Laboratory, Hitachi, Ltd., 1099 Ohzenji
Asao, Kawasaki, 215 Japan

Journal of Information Processing, Vol. 12, No. 1, 1988

the previous researches and scope of this research. In
section 3, it is shown that office procedures can be
represented by four types of relation (procedure rela-
tion, event relation, activity relation, and state relation).
Section 4 treats the role and function of the six com-
ponents of ELISE (event monitor, procedure monitor,
dispatcher, state manager, observer, and procedure
manager), as well as interface among them. An applica-
tion to secretarial work is also discussed in section 5.

2. Automation of Office Procedures

In spite of developments in computer and related
technologies, office worker’s productivity has shown
very little increase, as compared to the productivity im-
provements in the manufacturing sector. Office automa-
tion is a collective term pertaining to all endeavors to im-
prove office workers’ productivity and the quality of
their working environment.

Various software for office automation have been de-
veloped recently, including word processors for
documents creating and editing, spread sheet based
table processors with recalculation capability, and
record processors for retrieval and manipulation of
data stored in a database. These software systems are
effective for improvement of office productivity.

However, their functions are to mechanize some
works done in the office, but not to automate office pro-
cedures. The knowledge necessary to use these soft-
ware, such as 1) when and under what condition these
software should be used, and 2) which software should
be used in what sequence, is left to the discretion of
office workers. This kind of control information is
either stored in a person’s memory, or written in the

10

manuals, not in a machine-executable format.

This fact was pointed out by Zisman [11]. He
predicted that office automation would advance from
task mechanization to procedure automation. Figure 1
shows the difference between task mechanization and
procedure automation. The procedure automation has
received much research effort. Work in this field can be
classified into two categories as shown in Figure 2:

a) Office modelling methodologies.

These are researches on office description, modelling,
and analysis methodologies. Ellis, et al [2] proposed an
office model called ICN (Information Control Net),
while Hammer, et al [3] proposed a language called
OSL (Office Specification Language). Although based
on a rigorous mathematical model, ICN gives a
graphical representation of office procedures, which
facilitates understanding of the sequential control struc-
ture underlying office procedures. Based on the func-
tional view of the office, OSL gives a state-transition
description of focal objects, which can be an abstract or
concrete object processed in the office.

b) Systems for automation of office procedures.

These are researches on event-based systems for
automatic execution of office procedures, including
OBE (Office procedure By Example) by Zloof [12],
FORMAL (Form ORiented MAnipulation Language)
by Shu [6], OFS (Office Form System) by Tsichritzis [8],
and SCOOP (System for COmputerization of Office
Procedures) [10] by Zisman. These systems mostly treat

Person’s memory

/jj\e——,
d

When and under what
2) When and under wha (8) Task mechanization

Ll

(b) Procedure automation

condition OA modules
should be used ?
b) Which tools should
be used in what

sequence 7

Control
| software || OA modules

Fig. 1 From Task Mechanization to Procedure Automation.

Clarification range Establishment of

of automatable office Methodologies for
work description, analysis
and estimate of office

work

improvement of office

productjvity

Development of
Mechanism for control software
procedure automation executing office

work automatically

Fig. 2 Theme of Procedure Automation.

H. Tsusn and F. Mor1

data processing-based procedure automation.

This paper concerns the latter category.

OBE [12] is an extention of QBE (Query By Example),
a query language for relational databases. It is easy for
non-programming user to use OBE because OBE unifies
OA software, such as data processing, word processing
and electronic mail, and a trigger program. OBE im-
plicitly assumes that, when a trigger event occurs, the
object to be processed exists in a certain predetermined
state. However, an object naturally exists in various
states: a form may be approved or not yet approved, or
approved with a certain condition, or returned from a
manager to his/her secretary with a memo attached to
it. Therefore, the function for automating office pro-
cedures in OBE is limited.

FORMAL (6] and OFS [8] are form-based systems.
Forms are considered to be the focal object in the office
and the most suitable object to be used as an interface
between the system and the user [5]. Since most of the
business applications are form-processing, these
systems concentrate on automation of the routine parts
of form-processing. Much attention is paid to the struc-
tural representation of various forms. However, office
workers use various OA software as well as form-pro-
cessing.

SCOOP [10] is based on APN (Augmented Petri Net)
model representation of the office procedures. In APN
model, the process is represented by Petri net, and the
knowledge concerning the control is represented by the
production rules. This representation is powerful
enough to represent the state-transition model.
However, it is not so easy for a non-programming user
to specify the office procedures and to verify them for
SCOOP.

The target system ELISE considered here should
have the following characteristics:

1) The class of automatable office work is broader
than that of OBE,

2) Office procedure includes wide class of tasks ex-
ecuted by OA software,

3) Non-programming user can specify and verify the
automatable office procedures.

3. Office Procedures Representation

3.1 Model for Automatable Office Procedures

The office worker must teach ELISE how to do the
automatable part of the office work. This will be done
by a non-programmer. Accordingly, ways other than
the use of conventional programming languages must
be employed. Thus, simple representation of the
knowledge concerning how to perform the automatable
part of office procedures is required.

An office procedure can be viewed as a process of
transferring an object from an initial state to a final
state, with a number of intermediate states in between.
In the example of travel expense account processing, an

ELISE: Office Procedures Automation Tool By State-Transition Model

PROCESS
—_—

Fig. 3 State-Transition Model.

expense form is transferred from the initial (blank) state
to the final (paid) state, with the filled, approved, check-
ed and computed states in between. Therefore, the
state-transition representation should be the basis of
office procedure automation.

Office procedure has been defined the following
automaton format such as Figure 3:

IF event When state-1 THEN process GOTO state-2.

This means that if ‘‘event” occurs, perform ‘‘process”’
on objects in ‘‘state-1’’ and update the state of the ob-
ject to ‘‘state-2”’.

The following definitions are in order here:

Definition 1: Object

An object is a “‘thing”’ to be processed during the ex-
ecution of office work. When an object is processed, its
state is updated. Forms, sheets, and files are objects,
among others.

Definition 2: Event

An event is an occurrence of a trigger to activate a
process. Arrival of a specific time or date, reception of
mail, command input by the user, a counter counted up
to a specified number, and a change in the state of cer-
tain other object are examples of events.

Definition 3: State

A state is a label attached to an object to identify the
current status of the object. At each state, except for
the final state, an object waits for occurrence of one or
more events. When an event occurs, the object receives
the specified processing.

Definition 4: Process

A process is a manipulation of an object. A process
consists of a series of activities. An activity corresponds
to a command to activate a processing module, in-
cluding database retrieval, table processing, word pro-
cessing, and electronic mailing.

3.2 Storing Office Procedures

The state-transition representation of office work pro-
cedures are stored in a relational database. There are
three reasons why a relational database is used:

(1) The state-transition model is represented by a
relation P(IF, WHEN, THEN, GOTO) straightfor-
ward,

(2) It is easier for an office worker to define rela-

11

tions than to write program,

(3) The relational algebra described later is useful
for procedure validation.

The relation ‘‘P’’ is called procedure relation. ““IF”’
is an event code, “THEN’’ is a process code.
“WHEN”’ and ‘“GOTO’’ are states.

Consider the “‘IF’’ part of the procedure relation.
Since an occurrence of an event is always instan-
taneous, simultaneous occurrences of events need not
be considered here. For instance, a complex event such
as receiving mail at a specified data can be divided into
two distinct events as arrival of the time and reception
of the mail. A suitable state representation can be set up
so that if either state occurs first the object in question is
transferred to a new state waiting for the other state. As
shown in Table 1, there are several types of events.

Event occurrence can be detected by checking the rela-
tion between the event instance and prespecified con-
stants. For instance, an event identifier ‘‘el’’ means
that the ‘‘date’ is ‘‘later than or equal to’’ ‘‘February
21"’ Therefore, the ‘‘IF’’ part in the relation ‘‘P’’ can
be defined as relation E(Eid, Type, R, C), where ¢‘‘Eid”’
is an event code and its domain is the same as that of the
“IF” part in the relation *“P’’. ““Type’’ is an event type,
“R” is a logical operator, and ‘‘C”’ is a constant.
Logical operator ‘‘R’’ is one of the following: Equal to
(=), greater than (>), greater than or equal to (=), less
than (<), less than or equal to (<), or not equal to (#).
Relation ““E”’ is called event relation. When an event
type ‘‘typel’’ occurs with instance ‘‘c1’’, it can be deter-
mined using this relation if an event corresponding to
the ““IF’’ part of the procedure relation has occurred or
not. The following retrieval condition is used:

Type=“‘typel”” AND (R=*="" AND C="*‘cl"
or R=*>" AND C>“cl”
or R=*2" AND Cz*“c1”
or R=*<” AND C<“c1”
or R=“s” AND Cs*“cl”
or R=*“3" AND Cx*“cl").

Consider the ““THEN’’ part of the procedure relation.
Since any processing which does not contain branching
by decision can be expressed as a combination of serial
and parallel processing (Fig. 4), relation A(Pid, Pp, Ps,
Aid) is defined to represent the process. ‘‘Pid”’ is the
process code whose domain is the same as that of the
“THEN”’ part in the relation ‘“‘P’’. ‘“Pp’’ is the

Table 1 Types of Events.

Type Explanation

Command Event
Receive Event
Time Event
State Event

A command is used by the user

An electronic mail is received

A specified date and/or time has arrived
A specified object is transferred to

a specified state

12

: : series N

Fig. 4 Parrallel and Serial Processing of Office Work.

identification code for parallel processing. ‘‘Ps’’ is the
identification code for serial processing. ‘‘Aid’’ is an ac-
tivity which corresponds to a command for suitable soft-
ware module. This relation is called activity relation.
Lastly, consider the state management for the ob-
jects. Each object has a state attached to it. An object is
transferred from one state to another, depending upon
the occurrence of events and execution of processing
corresponding to the object, state, and event. Relation
S(0id, Sid) is used to represent the state of the objects
where ‘“Oid”’ is the identification code for object and
¢‘Sid”’ is the state. This relation is called state relation.

4 Architectural Analysis

4.1 System Architecture

The problem considered here is the analysis of func-
tional components of ELISE. ELISE is an office pro-
cedure’automation system, based on the state-transition
representation of office work.

In a series of office activities, which carries an object
from its initial state to the final state, some parts can be
automated, and other parts must be done by office
workers. The latter part includes complex decisions and
exception handling. Automation of semi-structured
office work should be carried out through cooperation
between office workers and the system. The system
assists the office worker by carrying out the
automatable part of the work. Figure 5 illustrates
general structure of ELISE and office automation
modules (software such as word processing, electronic
mailing).

Roughly speaking, ELISE should consist of two
parts: Office procedure acquisition part and execution
part. There are two cases of office procedure acquisi-
tion.

(a) The user teaches the office procedure explicitly.

(b) The system observes user’s activity, and ac-
quires office procedure automatically.

The component which learns the office procedure ex-
plicitly specified by the user is called procedure
manager. Another component, called observer, is
responsible for the second case.

Since the office procedure is specified in the produc-
tion rule format representing the state-transition upon

H. Tsus and F. MoRI

Complex decision

Exception handling
Procedure

ELISE

Office
Procedure

Base

Automatic operation

liffice A

Fig. 5 ELISE, Office Procedure Base and OA software modules.

ion Software modul

— - - —-) Event

————— Control /L/

z:_'—’ >Office Procedure

Procedure
Manager

\ Mail box / U

\ r
Al L
K - Observer <:
Receive event

\ !
\ v |
C I
Event . _Commend event _ _d___:
:_ - Monitor ¥ — — — — ——]

1
! t
| !
| State Procedure
| event ~———————| Dispatcher
! Monitor
| I
|
i

State

Time event

Manager

OA tools { software modules)

Word processing) (Table processing L) [o (Mail)

Fig. 6 Architecture of ELISE,

occurrence of an event, the execution part consists of
the following components: The part which monitors the
occurrences of events, called event monitor, the part
which executes the process, called the dispathcer, the
part responsible for the procedure retrieval, called pro-
cedure monitor, and the part responsible for the
management of the states of the objects, called the state
manager.

4.2 Role and Function of the Components

Component structure of ELISE is shown in Figure 6.
The role and function of each component is described
below:

(1) Event monitor

The event monitor observes occurrences of events

such as arrival of a specific time or date, reception of

ELISE: Office Procedures Automation Tool By State-Transition Model

mail, or command input by the user. When an event oc-
curs, the event monitor determines whether any of the
cataloged office procedures should be activated. If one
or more events which trigger office procedures are
found, the event monitor passes the information to the
procedure monitor.
(2) Procedure monitor

When an event is detected, this component searches
for procedures which should be activated by the event.
The procedure monitor also searches for objects which
are in a state waiting for processing with state manager.
If one or more objects are found to be processed, the
procedure monitor activates the dispatcher to perform
the activities defined in the procedure.
(3) Dispatcher

The dispatcher activates software modules to per-
form the processing found to be executed by the pro-
cedure monitor. A process usually consists of several
activities. The dispatcher is responsible for the orderly
execution of a series of activities.
(4) State manager

This component is responsible for the management
of the states of objects. When an event has occurred,
and the corresponding process have been performed on
an object, the state manager updates the object’s state
to a new one defined in the corresponding procedure.
(5) Procedure manager

This component accepts office procedures explicitly
given by a user, and stores them in the office procedure
base. When requested, the procedure manager displays
procedures on the screen for editing purpose. If either
any error or inconsistency is detected in the newly
specified procedures such as using undefined objects or
activities, the procedure manager engages in conversa-
tion with the user to clarify the problem.
(6) Observer

This component observes the activities of the user,
such as the history of the use of commands by the user,
and develops an office procedure to repeat the activities.

4.3 System Operation

As seen before, four types of relations are designed to
represent the office procedures. These relations are
stored in the office procedure base. The system, ELISE,
refers to these four types of relations and performs a
part of the office work automatically.

The event monitor continuously observes event occur-
rence, and if an event occurs, this monitor obtains the
instance and determines if the instance is a trigger for
cataloged office work by referring to the event relation.
The retrieval condition is the one given in section 3.2.

When the event monitor detects an event to trigger an
office procedure, the procedure monitor uses the pro-
cedure relation and the state relation to determine
whether any object is waiting for processing at this
event. To do this, the procedure monitor retrieves the
relation obtained by the JOIN operation [1] of the pro-
cedure relation and state relation with keys ‘““WHEN”’

13

and ‘‘Sid”’ respectively. There can be a case where no
record is obtained by this retrieval, since there may be
no object waiting to be processed corresponding to the
event detected by the event monitor. If a record is
retrieved, the process code of the ““THEN’’ part and
the object to be processed in the ‘“Oid’’ part are passed
to the dispatcher and the state specified in the “GOTO”’
part is passed to the state manager.

The dispatcher retrieves activities from the activity
relation with the received process code as the key. The
dispatcher divides the retrieval results using the ‘‘Pp”’
which is the branching identifier for the parallel process-
ing. The results of division is sorted by the order iden-
tifier ““Pp”’. These sorted activities are executed sequen-
tially. When the process is completed normally, the
completion is posted to the state manager, which in turn
updates the state of the object according to the informa-
tion passed to the state manager from the procedure
manager.

Consistency of the office procedures stored in ELISE
must be considered. Any inconsistency or error contain-
ed in the office procedures should be pointed out to the
user. The procedure manager performs this task. The
use of the relational data base management system [1]
facilitates various checks of the procedures, as well as
the ease of catalog, adding, and modification opera-
tion, Several examples are given in the following:

(1) Detailed contents of the procedure can be ob-
tained using JOIN operation in the relational algebra
on the procedure relation, the event relation, and the ac-
tivity relation.

(2) Combination of event “IF’ and state
“WHEN”’ in the procedure relation must be unique.
This condition can be checked using the PROJECTION
operation.

(3) Element of the event ‘‘IF’’ catalogued in the pro-
cedure relation ‘“P’’ must also be cataloged in the
““Eid”’ in the event relation E, and the converse is also
true. These conditions can be checked using the
DIFFERENCE operation on the two sets.

(4) Elements of the process ‘“‘THEN’’ catalogued in
the procedure relation ‘‘P’’ must also be catalogued in
the ‘“Pid”’ in the activity relation ‘‘A’’, and the con-
verse is also true. These can be checked by the same
method as in (3) above.

5. Example

Suppose that a secretary for a department manager
asks each of several section managers how much ex-
pense budget will be necessary by the end of the fiscal
half year. The secretary sends a memo to each section
manager requesting his/her estimate.

To define the office procedure in ELISE, following
four steps are required.

STEP 1: Description of the office work.

(1) Approximately one month before the end of the
fiscal half year (that is February 21), the secretary sends
a memo to each of, say, three section managers for him

14

to fill in the estimated total expense budget required by
the end of the half year period.

(2) When a memo is returned from a section
manager, the secretary writes down the estimate on a
work sheet.

(3) A few days after sending the first memo (that is
February 24), the secretary sends a second prompting
memo to any section manager who has not returned the
first memo.

(4) When answer memos have been received from
all the section managers, the secretary computes the
total expense, using the work sheet.

STEP 2: Identification of the objects involved.

The focal object in this procedure is the work sheet.
STEP 3: Identification of the event involved.

This procedure involves the following three events:

el: arrival of the date, ‘‘February 21”’,
e2: arrival of the date, ‘‘February 24”’,
e3: return of the memo to the secreatary.

Step 4: Identification of the state of focal objects.
State of the work sheet:

—before February 21 (not-active),

—no section manager has turned in the reply
(waiting),

—one section manager has turned in the reply (one-
received),

—two section managers have turned in the reply
(two-received),

—three section managers have turned in the reply
(end).

As a result, this example procedure is represented in
Table II-V. OA software module in the prototype
system [9] is HITACHI VOS3/EXCEED (Executive
Management Decision Support System). EXCEED is a
command language for end-user: database manipula-
tion, statistical analysis, business graph, mailing, and
so on [4]. The command syntax in Table IV differs from
precise syntax of EXCEED for readability.

6. Conclusion and Discussion

The architecture of a system for office procedure
automation is discussed which stores office procedures
and executes them in an event-driven manner. Represen-
tation of office procedures is based on the state-transi-
tion model. Introduction of the state concept broadens
the range of office works which can be automated.

In our experimental system, office procedures are
represented not in a programming language, but as a
relation based on the state-transition model. The
representation based on this model is easy for a non-pro-
gramming user to specify, and the relational structure
for storing the office procedure facilitates the retrieval,
addition, editing, deletion, and consistency check of the

H. TsuJst and F. Morli

Table I1 Procedure Relation for the Example.

IF WHEN THEN GOTO

el not-active al waiting

e2 waiting a2 waiting

€2 one-received a2 one-received
€2 two-received a2 two-received
el waiting a3 one-received
e3 one-received a3 two-received
e3 two-received a4 end

IF: event code, THEN: process code, WHEN, GOTO: state, ‘‘end’’ is
final state

Table III Event Relation for the Example.

Eid Type R C

el time = February 21
e2 time = February 24
e3 receive = memo-1

Eid: event code, Type: event type, R: logical operator, C: constant

Table IV Activity Relation for the Example.

Pid Pp Ps Aid

al pll 1 create memo-1 for section-a

al pll 2 send memo-1 to section-a-manager

al pl2 1 create memo-1 for section-b

al pl2 2 send memo-1 to section-b-manager

al pl3 1 create memo-1 for section-c

al pi3 2 send memo-1 to section-c manager

a2 pa2 1 send memo-2 to section manager
who did not return memo-1

a3 pa3 1 load work-sheet from file-0

a3 pa3 2 copy memo-1 to work-sheet

a3 pa3 3 save memo-1 to file-1

a3 pal 4 save work-sheet to file-0

ad pad 1 load work-sheet from file-0

a4 pad 2 copy memo-1 to work-sheet

ad pa4 3 calculate work-sheet

a4 pad 4 save work-sheet to file-0

ad pad 5 save memo-1 to file-1

Pid: process code, Pp: code for parallel processing, Ps: order for
serial processing, Aid: command for processing

Table V State Relation for the Example.

Oid Sid

not-active

work-sheet

Oid: object, Sid: state

office procedures.

A prototype system, called ELISE, was developed to
implement the architecture. The proposed architecture
consists of the event monitor, procedure monitor,
dispatcher, state manager, procedure manager, and
observer. The function of each components and inter-
faces between the components are discussed in some
detail. And function described were confirmed by
automating example procedure. The presented architec-
ture allows the system and the user to cooperate with

ELISE: Office Procedures Automation Tool By State-Transition Model

each other to obtain, store, and execute office pro-
cedures. Until now, the observer function has not yet
been implemented in the prototype system. It is not easy
for us to implement the observer, but how to implement
it will be an interesting topic.

Improvements in office productivity will be realized
by a cooperative execution of office work by office
workers and integrated systems for office automation.
There must be a simple but powerful representation
language for office procedures.

Acknowledgement

Authors would like to express sincere thanks to Dr. J.
Kawasaki, Mr. Y. Aoyama for their valuable guidance
and encouragement. Special thanks are also due to Dr.
T. Sato for his useful advices and valuable discussion
on the manuscript.

References

1. DATE, C. J. An Introduction of Database Systems, Third Edi-
tion, Addision Wesley (1981).

2. ELus, C. A. and NutT, G. J. Office information systems and
computer sciences. ACM Comput. Surv. 12, 1 (1980), 3-36.

3. HaMmMER, M. and KuNIN, J. S. Design principles of an office

15

specification language, AFIPS Conference, Proc. of NCC (1980),
541-547.

4. Isosg, H. and YAMASHITA, K. EXCEED—Exective Management
Decision Support System, Proc. of APL Users Meetings, 1 (1982),
296-324.

§. LEerkovitz, H. C. et al. A Status Report on the Activities of the
CODASYL End User Facilities Committee (EUFC), SIGMOD
RECORD, 10 (1979).

6. SHu, N.C. FORMAL: A Form-Oriented Visual Directed Applica-
tion Development System, JEEE COMPUTER, August (1985), 38-
49.

7. SirBU, M., ScHoicHET, S., KuniN, J. S., Hammer, M. and
Sutherland, J. OAM: An Office Analysis Methodology, AFIPS Office
Automation Conference (1982), 317-330.

8. TsicHritzis, D. C. Form Management, Comm. ACM. 25, 7
(1982), 453-478.

9.Tsuin, H. and Mori, F. Table-Based Expert System for Office
Automation, Proc. 34th Annual Convention IPS Japan (1987), 1593-
1594,

10. Zisman, M. D. Representation, Specification, and Automation
of Office Procedures, Ph. D. Dessertation. Department of Decision
Sciences, The Wharton School, University of Pennsylvania (1977).
11. ZismaN, M. D. Office Automation: Revolution or Evolution ?,
MIT Sloan Management Review, 19 (1978), 1-16.

12. Zioor, M. M. Office-by Example: A Business Language that
Unifies Data and Word Processing and Electronic Mail, IBM SYST
J., 21, 3 (1982), 272-304.

(Received April 26, 1987; revised August 10, 1988)

