Roughly Sorting: Sequential and Parallel Approach
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We study sequential and parallel algorithms on roughly sorted sequences. A sequence a=(a,, @, . -

., a,)is k-

sorted if for all 1 <i, j<n, i<j—k implies a,<a;. We first show a real-time algorithm for determining if a given sequence is k-
sorted and an O(n)-time algorithm for finding the smallest k for a given sequence to be k-sorted. Next, we give two sequential
algorithms that merge two k-sorted sequences to form a k-sorted sequence and completely sort a k-sorted sequence. Their run-
ning times are O(n) and O(n log k), respectively. Finally, paralle!l versions of the complete-sorting algorithm are presented.
Their parallel running times are O(f(2k) log k), where f(¢) is the computing time of an algorithm used for finding the median

among ¢ elements.

1. Introduction

The concept of roughly sorting has appeared in the
context of parallel sorting on a mesh-connected pro-
cessor array. Igarashi and Sado have designed fast
parallel sorting algorithms in which roughly sorted
subfiles are merged [9, 10]. Fundamental properties of
roughly sorted sequences and some sequential
algorithms have been studied in [4, 5]. The notions of
presortedness and nearly sorted lists [3, 7, 8] are related
to the ideas presented in this paper, but are somewhat
different from the roughly sorted lists we will study
here.

A number of applications require only roughly or
nearly sorted sequences [5]. For example, consider a
sorted file in which the item values are occasionally up-
dated. In many cases, the new item values may not
differ greatly from the old ones. However, by replacing
the old items with new ones, the sorted order may be
disturbed. Since re-sorting the entire file is costly, it may
be more efficient to leave it in a roughly sorted order.
We may then use the algorithms described below to ob-
tain a completely sorted file.

In this paper, we present algorithms, that create and
manipulate roughly sorted sequences in both sequential
and parallel environments. In Section 2, we formalize
our notion of rough sortedness and k-sorted sequences.
Algorithms that determine if a sequence is k-sorted and
the k-sortedness of a sequence are given in Section 3. In
Section 4, we present an algorithm that merges two k-
sorted sequences into one k-sorted sequence. Finally, in
Section 5, we design sequential and parallel algorithms
that completely sort k-sorted sequences.
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2. k-Sortedness

We begin by formalizing our notion of roughly
sorted sequences. Let a=(ai, @, ..., a,) be a se-
quence of n items and 6=(a,, @,,, . . . , 4, ) the corre-
sponding completely sorted sequence of elements.
Definition 1 A sequence « is k-sorted if and only if the
following conditon is satisfied: for all i, j, 1 <i<j<n,
i<j—k implies a;<a;.

The above definition was introduced by Igarashi and
Wood [5]. The radius of « is define to be the smallest &,
such that « is k-sorted, and denoted by ROUGH(«x). As
shown by Estivill-Castro and Wood [4], the radius
presortedness measure satisfies the axioms introduced
by Mannila [7].

Observation 1 Suppose that a sequence o has no
duplicate entries. If o is k-sorted, then for all i,
li—o:l <k. Hence, if « is k-sorted, for all i, a; is no
more than k places away from its proper position in a
completely, or 0-sorted, sequence.

Observation 2[S] A sequence «a is k-sorted if and only
if every (2k+2) block of « (i.e., a sequence of (2k+2)
consecutive elements of «) is k-sorted. This plays a key
role in the design of our algorithms.

3. Determination of the Radius

Several interesting problems arise concerning k-
sorted sequences. In particular, we might ask if a given
sequence is k-sorted. Second, we might wish to com-
pute the radius of a given sequence. We show that both
of these questions can be answered efficiently.

Lemma 1 Given «, a sequence of n elements and a
positive integer k, we can decide in real time (i.e., in n
steps) whether « is k-sorted.

Proof: Imagine a bus with a passenger capacity of
k+1. Suppose that the bus started with £+1 initial
passengers and that at each stop, one passenger gets off
and another gets on (in a FIFO fashion). The driver
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always remembers max, the weight of the heaviest
passenger that got off the bus so far. If the weight of the
incoming passenger is less than max, the driver stops
the bus and declares: These people are not k-sorted.

It is possible to implement the above with two
pointers (always k£ + 1 positions apart) to the sequence o
and a variable max in which the value of the largest en-
countered element, outside the current (k+ 1) is stored.
Going left to right, the procedure will always identify
the first occurrence of a violation of k-sortedness of
a. o

Below, we present an efficient algorithm for determin-
ing ROUGH(«), i.e., the radius of «.

Definition 2 Let a=(ai, az, . . . , a,) be a sequence of
n items. The LR characteristic sequence of « is defined
to be (b1, . . ., b.), where for each i(1 <i<n)b;=max
{a, . . ., a;}. This sequence is denoted by LR(c). The
RL characteristic sequence of « is defined tobe (cy, . . . ,
¢n), where for each i (1<i<n) ¢;=min{a, ..., a,}.
This sequence is denoted by RL(x).

Definition 3 Let a=(a), a5, . . . , a,) be a sequence of
nitems. Let LR(a)=(by, . . . , b)and RL()=(c), . . . ,
¢n). The disorder measure sequence of « is defined to be
(, ...,d,), where for each i (1<i<n) di=max
({i—jlci<b;}U{0}). This sequence is denoted by
DM(a).

Theorem 1 Let a=(ay, as, . . . , a.) be a sequence of
n items. Then ROUGH(x)=max {d;|d; is an item of
DM(«x)}.

Proof: Suppose that ROUGH(a)=k. If k=0, then «
is completely sorted and LR(a)=RL(c). Hence, in this
case for any i(1 =i<n), di=0, and the assertion of the
threorem holds.

Suppose that k= 1. Then, there exists a pair of i and j
such that i—j=k and a;<a;. Hence, for such i,
d;=i—j=k. On the other hand, a;=gq; for any pair of i
and j such that i—j=k+1. Therefore, for any
i(l=si<n), di<k+1. a

Below, we present three procedures which construct
the LR, RL, and the DM sequences of a=(ay, a, . . . ,
a).

procedure LR(a, B[l . . n]);
begin
B[l]:=a;;
fori:=2ton
if B[i—1]<a; then Bli]):=a;
else Bli}:=B[i—1]

end.
procedure RL(a, C[1 . . n));
begin

Cinl:=a,,

for i:=n—1 downto 1
if Cli+1]>a; then Cli]:=a;
else C[i]:=C[i+1]
end.
procedure DM(B[1 . . n], C[1 . . n], D[1 . . n));
begin
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Fig. 1 The LR and RL sequences, and the max d; from DM.

ii=n;
for j:=n downto 1 do
while (j<i) and (i>0) and (C[i]1<B[/j))
and ((j=1) or (C[i]=B[j—1])) do

begin
Dli):=i~j;
ii=i—1;
end

end.

Using procedure LR, RL, and DM, we can decide
max {d;ld; is an item in DM(a)} in linear time to n.
From Theorem 1, that value is equal to ROUGH(«a). An
example of a 5-sorted sequence «, its LR and RL se-
quences, and the maximal element d;, from the se-
quence DM, is shown in Fig. 1.

4. Sequential k-Sorting

In this section, we present three algorithms that
operate on k-sorted sequences. First, we describe pro-
cedure HALVE, which takes as input a 2k-sorted se-
quence y and returns a (k— 1)-sorted sequence J. Next,
in procedure MERGE, we show how two k-sorted se-
quences, o and £, can be merged to produce a k-sorted
sequence y. Finally, procedure QMSORT shows how a
k-sorted sequence «a is sorted in time O(n log k).

procedure HALVE(y, J, k);
{Suppose y=(ai, @, . . . , a,). Assume n=2kr. If n is
not a multiple of 2k, the procedure needs a minor
modification.}
begin
1. fori:=1tor
begin
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Fig. 2 The order of w;, during the computation by HALVE(y, J,

k).
Qi = Aaki—-1y+1 - « « Q2kis
PARTITION(«i, o, o)
end;
2, fori:=1tor—1
begin

Bi=aiai+y,;
PARTITION(B,, B, B:)
end;

3. ar=a i an=Pr-n0n;

4. fori:=2tor—1
ai=Be-nBi;

5. fori:=1tor
PARTITION(w;, i, aii);

6. 6:=a.,a|2 N

end.

The median of n items is defined as that item which is
less than or equal to half of the n items and which is
larger than or equal to the other half of the n items.
Here, PARTITION(«, B, y) finds the median m of «
and constructs a partition (8, y) of @ by m (i.e., any
item in f<m<any item in y). A computation process
by HALVE(y, d, k) is depicted in Fig. 2.

Theorem 2 Let y be a 2k-sorted sequence of length n.
Then HALVE(y, J, k) returns a (k— 1)-sorted sequence
d of y in O(n) time.

Proof: We use the following notation: For x and y, a
pair of sequences, x<y means that any item in x is not
greater than any item in y. Since p is initially 2k-sorted,
after Step 1, for each i,

a ... a(,-_z)ZSa,»lSa(H.)z B and aj <oy,

Hence, after Step 2, for each i,
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Therefore, ¢ is a (k—1)-sorted sequence of y after Step
6. Since the median of n items can be found in O(n)
time (e.g., see [1]), the computing time of HALVE(y,
4, k) is O(n). o

Procedure MERGE below takes as input two -
sorted sequences a=(ai, @, . . . , a,) and B=(b,, b,,
. . ., bs), and returns the resulting merged k-sorted se-
quence y of length 2n. For simplicity, we assume that k
is even and n=kr. For n and k not satisfying these con-
ditions, the procedure with a minor modification is still
valid.

procedure MERGE(x, B, y, k);
{y is a queue and initially empty}
begin
1. HALVE(w, o', k/2); HALVE(B, B', k/2);
{a'=a,...,a,and g'=b,, ..., b,}
2. fori:=1to2r
begin
Qi = Qri-1)/2+1 - « « kif2;
B:=bii-vns2+1 . . . buirz
amax;:=max (o;); bmax;:=max (B:)
end;
3. pi=q:=1;
4. while (p<2rand ¢g=<2r)
begin
if amax, < bmax, then
begin
add «, to y;
all elements in £, not greater than amax,
are removed from g, and added to y;
p:=p+1; if ,is empty then qg:=qg+1
end
else
begin
add g, to y;
all elements from «, not greater than bmax,
are removed from «, and added to y;
q:=q+1; if o, is empty then p:=p+1
end
end;
5. if p<2rthenqp, ...
6. ifg<2rthen g, ...
end.

, ay are added to y;
, Bo- are added to y

Theorem 3 Let  and S be two k-sorted sequences of
length n. Then MERGE(cx, B, y, k) returns in O(n) time
a k-sorted sequence of length 2n which is merged from
o and 8.

Proof: After Step 2, for any pair of i and j, such that
1<i<j=<2r, a;<co;and B;<f; (see Fig. 2). For each ¢, at
the beginning of #-th iteration of while statement of
Step 4, any element in y is not greater than any element
inap, ..., ay By ....pBx On the other hand, dur-
ing the #-th iteration, the number of items transferred
from «, and B, to y is at most k. Therefore, the se-
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quence in y is always k-sorted. Hence, at the end of com-
putation, y is a k-sorted sequence of length 2n.

From Theorem 2, the computing time at Step 1 is
O(n). Step 2 obviously takes O(n) time as well. For each
iteration of the while statement, the computing time is
O(k). Since r=0(n/ k), the computing time at Step 4 is
O(n/k)O(k)=0(n). Therefore, the time for
MERGE(a, B, v, k) is O(n). u}

Using procedure HALVE, we can design a very sim-
ple algorithm that completely sorts a k-sorted sequence
in time O(nlog k). It is a variation of the quicksort
algorithm in which the partitioning element is chosen to
be the median of a given subsequence. For this reason,
we call the algorithm QMSORT. As shown in [4] and
[S], the running time O(n log k) is optimal within a con-
stant factor. The proof is based on the decision tree
argument. Algorithm RHEAPSORT (5] also complete-
Iy sorts a k-sorted sequence in O(n log k) time. Its con-
stant factor is smaller than the constant factor for
OMSORT. However, as shown in the next section,
OQMSORT has a very natural and direct implementation
for parallel environments, whereas the parallel im-
plementation of RHEAPSORT seems to be imprac-
tical.

procedure QMSORT(«, k);
begin

for i:=k/2, k/4, . .. downto 1 HALVE(a, a, i)
end.

Observe that the procedure HALVE reduces a 2k-
sorted into a (k—1)-sorted sequence. Hence it is
pointless to invoke HAL VE(a, «, 0). Moreover, to sort
1-sorted sequences, one may use algorithm ONESORT
[5], which has been shown to be optimal in the worst
case and to be close to the known lower bound in the
average case.

The next theorem is an immediate consequence of
Theorem 2.

Theorem 4 QMSORT sorts a k-sorted sequence in
time O(n log k).

QMSORT may, of course, be used to sort an ar-
bitrary sequence of n elements, which by definition is at
least (n—1)-sorted, in time O(n log n).

S. Parallel k-Sorting

In this section, our model of computation is the stan-
dard PRAM without concurrent reads or writes. First,
let us examine the problem of transforming a 2k-sorted
sequence of n elements into a (k— 1)-sorted sequence.

The procedure PHALVE takes as input a 2k-sorted
sequence y and returns a (k— 1)-sorted sequence J.

procedure PHALVE(y, &, k);

{Suppose y=(a, az, . . . , a,). Assume n=2kr. If n is
not a multiple of 2k, the procedure needs a minor
modification. }
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begin
1. fori:=1 to r do in parallel
begin
Ot = Qapi-1)+1 « « « A2kis
PPARTITION(«;, ai,, i)
end;
2. fori:=1to r—1 do in parallel
begin
Bii =i,
PPARTITION(B,, Bi, B:)
end;

3. a1!=an,ﬁ1,; ar:=ﬂ(r—l)2ar2;
4. for i:=2to r—1 do in parallel
ait=f- l)zﬂil;
5. for i:=1 to r do in parallel
PPARTITION(ai, i, ),
6. d:i=anay, . ..
end.

Let f(¢) denote the time for finding the median of ¢
elements used in procedure PPARTITION.
Lemma 2 The computing time for PHALVE(y, 6, k)
by the PRAM is 3f(2k)+O(1).

We now present a parallel algorithm that sorts a k-
sorted sequence o.

procedure POMSORT(«, k);

begin
for i:=k/2, k/4, k/8, ..., downto 1
PHALVE(«, a, i)

end.

Theorem 5 PQMSORT sorts a k-sorted sequence of
size n in time O(f(2k) log k), using O(n) processors.
Proof: The proof of correctness follows directly from
Theorem 2. The overall running time for PQMSORT is
O(f(2k) log k) by Lemma 2. o

As stated in Theorem 5 the computing time of
POMSORT depends on the efficiency of the median
finding algorithm used. For example, if we choose an
O(log k) median finding algorithm, the time complexity
of POMSORT becomes O(log? k).

The next procedure is a variation of PMQSORT, but
a hybrid of parallel and serial computation for sorting
k-sorted sequences. .

procedure HOMSORT(«, k)

{Suppose a=(ai, . . . , a.). Assume n=2kr. If nis not
a multiple of 2k, the procedure needs a minor modifica-
tion. }

begin
1. fori:=1 to r do in parallel
begin
Uit = Qo(i-1)+1 « + « Aokiy
PARTITION(ai, o, otiy)
end;
2. fori:=1to r—1 do in parallel
begin
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Bi=aioi+n,;
PARTITION(B;, Bi,, Bi,)
end;
3. for i:=1 to r—1 do in parallel
begin
ai2:=ﬂil;
a(i+|),1=ﬂi,
end;
4., for i:=1 to r do in parallel
begin
OMSORT(«;,, k);
OMSORT(«;,, k)
end;
5. a = a, . .
end.

. 0Oy,

Theorem 6 HQMSORT sorts a k-sorted sequence of
size n in time O(k log k), using (n/k) processors.

Proof: At Step 1 and Step 2 the determination of the
medians of each o; and f; can be performed by a single
processor in O(k) time. Step 4. takes O(k log k) steps.
Therefore, the computing time is O(k log k). At Step 4
of HOQMSORT the subsequence in each block of size &
is sorted sequentially by OMSORT(w;, k) and
OMSORT (a;,, k). Hence, the number of processors
needed is O(n/ k). o

6. Concluding Remerks

We have designed a number of algorithms for
roughly sorted sequences. These algorithms, with the ex-
ception of POMSORT and HQMSORT, are optimal to
within constant factors. We do not yet know the op-
timal factors for the time complexities of these prob-

T. ALTMAN and Y. IGARASHI

lems except for the algorithms given in the proof of
Lemma 1. We are interested in accurate evaluations of
these factors. It would also be of interest to redesign
our algorithms using a simpler parallel model, e.g., the
mesh-connected processor array, rather than the
PRAM model of computation.
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