(¥

Schema Design, Views and Incomplete Information
in Object-Oriented Databases

KATSUMI TANAKA,* MasaTosHI YOsHIKAWA** and Kozo ISHIHARA*

“‘Object-oriented computing’’ is one of the most active research fields in computer science, and this notion
has become an important paradigm in the areas of programming languages, artificial intelligence and databases.
In the area of databases, although the relational approach achieved a great success, the weakness of this model
has been also pointed out as the database application area extends to CAD/CAM application and software ver-
sion control etc. As an alternative candidate of the relational approach, much attention has been focussed on
‘‘object-oriented database (abbreviated by OODB)’’, and the OODBs have been investigated by several resear-
chers.

However, the study of the OODB has just begun, and there are few investigations about the database schema
design in the OODB. In this paper, we show fundamental ideas and methods to achieve schema design, update
propagation, view implementation and the treatment of incomplete information in the OODB. Especially, we
show some methods written in Smalltalk-80 to perform these and also discuss the weakness of Smalltalk-80

from the viewpoint of the OODB.

1. Introduction

““Object-oriented computing’’ has become an impor-
tant paradigm in several areas of computer science,
such as programming languages, artificial intelligence
and databases. Recently, in the area of database
research, much attention has been focussed on ‘‘object-
oriented database (abbreviated by OODB)”’ [1-3].
Although the relational approach achieved a great suc-
cess in the area of business-oriented data processing,
the weakness and the disadvantages of the relational ap-
proach have been identified in non-business data ap-
plications (CAD databases, office information systems,
and multimedia databases).

Although there is neither a consensus nor a definition
about what the OODB is, we can claim the following ad-
vantages of the OODB:

(1) Direct representation of objects

In the OODB, each ‘‘entity’” or ‘‘object’”’ is
represented directly. Users can directly interact with
and manipulate these objects, not by using the notion
of tuples, attributes, and attribute values. Since
everything can be regarded as objects in the OODB, the
information about database schema and application
programs can be treated as objects.

(2) Operational semantics of database objects

In the OODB, each database object is a mixture of

data and operations which are possible to apply to the

*Dept. of Instrumentation Engineering, Faculty of Engineering,
Kobe University.
**Institute for Computer Science, Kyoto Sangyo University.

Journal of Information Processing, Vol. 12. No. 3, 1989

object itself. This is a powerful capability for expressing
the semantics of data. That is, we can specify the ‘opera-
tional’ semantics of data, and encapsulate it into the
database object.

(3) Generalization hierarchy of database objects

Database objects are classified and organized as a
generalization (“‘is-a’’) hierarchy in the way similar to
Smalltalk-80 [4]. Properties and operations given at an
upper-level object are inherited by its lower-level ob-
jects. This is also a powerful capability for expressing
structurally the semantics of data.

(4) Realization of extensible databases [5, 6]

By the approach of the OODB, there is a possibility
to decompose a database schema and DBMS facilities
into smaller parts (objects), and to combine necessary
parts into an application-oriented database system.
This possibility is very important to realize the notions
of extensible DBMSs [5, 6].

Although there are a few studies about what is lack-
ing in Smalltalk to construct the OODB systems [1-3],
there are few investigations about the database schema
design in the OODB. For example, in GemStone [2], no
general methodology for schema design of OODB is
given. In this paper, we discuss fundamental ideas and
basic methods for achieving the schema design, the up-
date propagation, the view implementation and the
treatment of incomplete information in the OODB.
Especially, we show several methods to perform these
in Smalltalk-80 and also discuss the weakness of
Smalltalk from the viewpoint of the OODB.

Section 2 discusses the concept of the OODB and
some basic issues. In Section 3, we first introduce the

240

notion of ‘‘object database schema (abbreviated by
ODS)’’. Then, we show how to design an ODS from
Chen’s ER model [7] with some additional semantic con-
straints. Also, a method to realize an ODS in Smalltalk
is shown. Section 4 introduces the notion of ‘‘views’’
over the OODB. Intuitively, views are virtual objects.
Here, we show some basic operations to construct ‘‘vir-
tual’”’ classes and ‘‘virtual”’ is-a hierarchies in the
OODB, and methods to realize them in Smalitalk. In
Section 5, we investigate the methods to handle in-
complete information in the OODB and Smalltalk. Sec-
tion 6 is a concluding remarks.

2. Object-Oriented Database and Smalltalk

The notions of ‘‘object-oriented database (OODB)”’
and ‘‘object-oriented data model’’ are still vague and
their definitions depend on several researchers. In this
section, we will clarify our standpoints for the OODB.
Also, a brief introduction of Smalltalk is given.

There seems to be the following two promising ap-
proaches towards costructing an ‘‘object-oriented
database’’:

(a) ‘‘Semantic data model’’ approach

This approach is based on the semantic data models
such as ER model [7] and IFO model [8], and is to pro-
vide several semantic constructs for modeling objects
and object-relationships directly, for example, entities,
complex objects, attributes, relationships, and
generalization/aggregation hierarchies.

(b) ‘‘Object-oriented programming’’ approach

This approach tries to model the application domains
by encapsulating data and the associated procedures
with the notion of types and inheritance structures.
We believe it is important to integrate these two ap-
proaches naturally to realize the ultimate ‘‘object-
oriented database’’. However, it is not known complete-
ly how this integration can be achieved. In this paper,
we mainly took the approach (b), and try to clarify how
several constructs in (a) corresponds to those of object-
oriented programming languages. As a representative
of object-oriented programming languages, we adopted
Smalltalk-80. However, we believe many of the ideas
and results of this paper can be applied not only to
other object-oriented programming languages but also
to exploiting fundamental constructs for realizing the
ultimate object-oriented database systems.

Smalltalk [4] is a general purpose programming
language, and its basic components are as follows:

(1) classes

(2) instances

(3) class/instance variables

(4) class/instance methods

(5) subclass-superclass relationships
Each class is an object to describe a set of instances of
the same type. (Here, each instance is also an object.)
The description of a class C contains (a) definition of in-
stance variables, each of which is owned by its instance,

K. TANAKA, M. YOsHIKAWA and K. ISHIHARA

(b) definition of class variables that are referred by all
the instances of C, (c) definition of instance methods,
each of which is a Smalltalk program and actually ap-
plied to its instance, (d) definition of class methods,
each of which is also a Smalltalk program and applied
to the class C itself. Each variable contains an object as
its value. Between two classes, the sub-super class rela-
tionship can also be defined. This is an ‘‘IS-A’’ relation-
ship between two classes, and if C; IS-A C,, then the
variables and methods of class C; is automatically in-
herited to the class C,. Basically, a Smalltalk program is
a collection of message expressions, each of which con-
sists of an object (receiver) followed by an appropriate
message. According to the message sent to a receiver ob-
ject, an appropriate method of the receiver or an in-
herited method is executed. Furthermore, a Smalltalk
program by itself can also be an object called ‘block’,
whose execution is done by sending the message ‘value’
to it. In order to refer to a unique object in Smalltalk
system, the ‘‘global variable”’ is also used.

3. Schema Design of OODBs

3.1 Problems of Schema Design in OODBs

As described in Section 2, several semantic database
models are already offering some constructs to repre-
sent objects and relationships between objects, for ex-
ample, Chen’s ER model [7] and the IFO data model [8].
In designing a database schema in the OODB, further-
more, the following problems should be coped with:
(a) Although Smalltalk offers a mechanism to realize
entity sets, attributes and is-a relationships between enti-
ty sets of the ER model, no general framework is given
to represent relationships between entity sets in ER
model and to maintain semantic constrains about rela-
tionships, such as 1-1, many-1, many-many.

(b) In representing some data semantics, Smalltalk is
superior to conventional semantic database models. For
example, the notions of ‘‘class variable’’ and ‘‘block’’
in Smalltalk [4] is powerful to represent some data
semantics. The former notion can represent a value
which is common to all the entities in an entity set. The
latter one allows users to store a procedure (program) as
a value of an attribute. However, no framework is
known to design a database schema using these con-
structs in OODBs.

(c) Although Smalltalk is a candidate for realizing
OODBs, it is not known to what extent Smalltalk offers
enough capabilities to construct the database schemata
of OODBs.

(d) We need some general methodology to design
‘methods’ (instance methods and class methods in
Smalltalk) contained in the OODB schema.

To discuss and cope with the above problems, we first
introduce the notion of Object Database Schema (ab-
breviated by ODS). Then, we show a method to
transform a schema described by the ER model together

I

Schema Design, Views and Incomplete Information in Object-Oriented Databases 241

with some additional semantic constraints into an ODS.
This is because we wish to investigate how several con-
structs of a typical semantic data model (ER model,
here) corresponds to those of our ODS. Also, we show
how to realize a given ODS on Smalltalk.

3.2 Object Database Schema

In this section, we define the ‘‘object database
schema”’. Intuitively, an object database schema con-
sists of classes and several relationships. First, we define
the components of the object database schema as
follows.

A class is a 7-tuple (class-name, Voass, Vinstances Vieriveds
Vderived-objec(; Mchss; Mns!ancc)) Where

(1) “‘class-name’’ is the name of the class,

(2) Vs is the set of class variables,

(3) Vinstance 1 the instance variables,

(4) Vierivea is the set of derived instance variables,
where ‘‘derived’’ means that the value of the instance
variable for each instance object is computed from
other objects,

(5) Vierivea-ovject 18 the set of derived-object included
instance variables, where ‘‘derived-object included”’
means that some instance of this class is allowed to have
a block (program) to compute the value of the instance
variable,

(6) M. is the set of class methods, and

(7) Mipsance is the set of instance methods.

Except the notion of Vicrivea and Verived-object, the other
notions are the same as those in Smalltalk. For simplici-
ty, if we say a class C, then C means both the class name
and the class itself. In our diagrammatic notion, a box
O denotes a class.

A subclass-superclass relationship from a class C, to
a class C; is an ordered pair (C,, C;), which means that
C, is-a C;, and that each instance of C, is a C,. This no-
tion is also the same as that of Smalltalk. In our
diagrammatic notion, C,= C, denotes the relationship
“C is-a Gy’

An instance-of relationship from an instance variable
V of a class C, to aclass C; is a triple (Cy, V, C;) (C, and
C; are not always distinct), which means that each value
of the instance variable V of class C is an instance of
class C;. In our diagram, y st~ denotes the rela-
tionship. An association relationship for a class C is an
ordered pair (C, C*), where C* denotes a class whose
instance is the set of instances of class C. In our
diagram, C=»C* denotes the association relationship.

By these constructs, we define an object database
schema as follows:

An object database schema (abbreviated by ODS) is a
4-tuple (C, Risa, Rinstances Rassociation), Where C is the set of
classes, R, is the set of subclass-superclass relation-
ships defined over C, Riysunce is the set of instance-of
relationships defined over C, and Rassociation 15 the set of
association relationships defined over C.

For each class C, its instance variable (or the set of in-
stance variables) is said to be a key of class C if the

value of the instance variable uniquely identifies its in-
stance.

3.3 Transformation from ER schema to ODS

Here, we discuss a method to transform a database
schema described by ER model into our ODS. Also, we
show some methods to support an ODS by Smalltalk.

First, we illustrate the process of the transformation
by an example. Suppose that the ER schema in Fig. 1
is given. Also, we add the following semantic con-
straints:

(a) If an employee belongs to ‘toy’ department, then
his salary is equal to the salary of the department
manager multiplied by 0.6.

(b) Every manager’s salary is fixed at $60000.

(c) The department which each manager manages is
the same as the department which he belongs to as an
employee.

First, each entity set is transformed into a class with
the same name. (see Fig. 2). The attributes name and
birthday are transformed into the instance variables of
class Emp. Since some employees’ (employees belong-
ing to ‘toy’ department) salaries are automatically com-
puted according to (a), we regard ‘‘salary’’ as a ‘‘deriv-
ed-object included’’ instance variable of Emp. Also,
since every employee’s age can be computed from his

[: entity set , O :relationship, O : attribute
Emp : Employee , Dept : Department, Mgr : Manager

Fig. 1 An Example ER schema.

<

O :Class, O :instance variable, :derived instance variable
O* : derived-object included instance variable, © : class variable

Fig. 2 An ODS obtained from Fig. 3.1.

242

birthday, the attribute age is regarded as a ‘‘derived in-
stance variable.”” One method to represent a relation-
ship between class A and B is to prepare instance
variables ‘‘b’’ in class A and ““@’’ in class B. For exam-
ple, we prepare an instance variable ‘‘dept” in class
Emp and an instance variable ‘‘emp’’ in class Dept. By
the values of these two instance variables, it is possible
to represent the mutual relationships between an
employee object and a department object. Since the rela-
tionship ““work”’ is many-to-1, we add the class Emp*
and introduce the instance-of relationships (Dept, emp,
Emp*) and (Emp, dept, Dept) and the association rela-
tionship (Emp, Emp*). As for representing the is-a rela-
tionship between Emp and Mgr, we can use the
subclass-superclass relationship from class Mgr to
Emp. Note that the department value for each manager
is inherited from Emp’s instance variable ‘dept’ by the
subclass-superclass relationship ‘‘Mgr is-a Emp”’. From
the semantic constraint (c) stated above, the relation-
ship ‘““‘manage’’ can be represented by introducing an in-
stance variable ‘‘mgr’’ in the class Dept and the follow-
ing instance method ‘‘manage’’ in the class Mgr.: Here,
‘dept’ is an instance method to return the value of the in-
stance variable ‘dept’.

manage
tself dept

Since the relationship manage is 1-to-1, the attribute
year associated with manage can be transformed into
the instance variable with the same name of class Mgr.
or class Dept. (In Fig. 2, the instance variable year is
attached to the class Mgr.) Since every manager’s salary
is fixed at $60000, we add a class variable salary to class
Mgr, whose value is $60000. Also, note that the class
Mgr has the class variable salary and the instance
variable salary inherited from Emp. In this case, we can
give a higher priority to the class variable salary by refer-
ing to it in the instance method salary. Fig. 2 shows a
diagrammatic representation of the obtained ODS.

The derived instance variable age is implemented as
the following instance method age of class Emp:

age
lagel
age+ (date today elapsedMonthsSince: birthday)/
12,
Date today monthName =birthday monthName
if True:[Date today dayOfMonth < birthday
dayOfMonth ifTrue: [age<—age-1]].
tage

The derived-object included instance variable is in-
tuitively implemented as a form of block, which is
stored as a value of the instance variable. That is, for
each Emp instance, if he belongs to ‘toy’ department,
the following block is stored as the value of the instance
variable salary:

[(self dept mgr salary)*0.6]

K. TANAKA, M. YosHikAwA and K. ISHIHARA

To do this, we define the following instance method
salary:. Here, ‘dept’, ‘mgr’, and ‘salary’ are instance
methods to return the value of instance varlables ‘dept’,
‘mgr’, and ‘salary’, respectively.

salary: x

dept=Toy

if Ture:[salary < [(self dept mgr salary)*0.6]]
ifFalse:[salary < x]

In creating a new Emp instance, the following expres-
sion can automatically set up this block.

(emp new dept:Toy) salary:arbitraryNumber

Finally, in order to maintain the instance-of relation-
ships, we add a type checking mechanism for each in-
stance method to store a value of each instance
variable. For example, the instance method dept: of
class Emp is defined as follows:

dept: x
(x class)=Dept
if True:[dept «x]

Here, ‘class’ is a built-in method to return the class
name of the receiver.

We summarize a general procedure of the above
transformation in the following:

(1) For each entity set, create a class with the same
name.

(2) For each ordinary attribute of all entity sets, create
an instance variable with the same name for the class
corresponding to its original entity set.

(3) If all entities of an entity set E have the same value
for attribute A, then create a class variable A of class E
and store the value to it.

(4) For each attribute 4 whose value is always com-
puted from others, create a derived instance variable 4
in ODS, and realize it as an instance method A4 to com-
pute and return the value.

(5) For each attribute 4 whose value is computed
from others for some instances, create a derived-object
included instance variable 4 in ODS, and store a block
for computing the value to A.

(6) For each is-a relationship from entity set E; to E,,
create a subclass-superclass relationship (E,, £,) in ODS
and realize it as a sub-super class relation in Smalltalk.
(7) For each binary and many-to-many relationship
with more than one attribute, replace all the attributes
by entity sets with the same names, and apply (8). Other-
wise, for each binary relationship between two entity
sets E| and E), create an instance variable V; in class E,
and an instance variable V, in class E,. Also, create an
instance-of relationship in the following manner:

(i) 1to 1:(E\, V2, E3) and (E,, V,, E)

(ii) many to 1:(E\, V3, E;) and (E,, Vi, E})

(iii) many to many:(E,, V;, E¥) and (E,, V1, E})
Here, E* denotes a class whose instance is the set of in-
stances of class E;. For each attribute A (if it exists) asso-
ciated with the binary relationship, according to the rela-

Schema Design, Views and Incomplete Information in Object-Oriented Databases

tionship types, apply the following:

(i) 1to 1: Create an instance variable with name A
in class E) or E,.

(ii) many to 1: Create an instance variable with
name A in class E).

Add a type checking mechanism (described in the above
example) to each instance method to store or update the
value of V.

(8) For each n-ary relationship with more than one at-
tribute, replace all the attributes by entity sets with the
same names. Next, for each n-ary relationship between
n entity sets E;(i=1,- - -, n), the other method to realize
it in ODS and in Smalltalk is the use of *‘relationship ob-
ject’’. This is done according to the following steps:

(i) Create a class E; for each entity set E;

(ii) Create a class R which has the instance variable
Ve(1=i=n). (Here each Vg has an instance object of
class E).

(iii) Add an instance variable R to each class E;.
In fact, the n-ary relationship is decomposed into n
binary relationships between E; and R.

(9) According to given semantic constraints, if we can
find redundant instance variables, then remove them.

In Fig. 2, there originally existed the instance variable
dept in class Mgr, but it was regarded as redundant and
removed by applying the above (9), since the superclass
of Mgr (i.e. Emp) also has the instance variable dept
and the semantic constraint (c) holds.

As a special case, some binary relationships may be
defined over the same entity set. As shown in Fig. 3(a),
the relationship mother-of is of this type. To represent
it in ODS, first, we transform Fig. 3(a) into a loop-
free form. That is a many-to-1 relationship ‘‘mother-
of”’ from ‘‘Children’’ entity set to ‘“‘Mother’’ entity set.
Here, both of ‘‘Children’’ and ‘‘Mother’’ are the names
of roles of ‘‘Person’’ in this ‘‘mother-of’’ relationship.
Then, the above step (7) can be applied, and we obtain
an ODS in Fig. 3(b).

3.4 Update Propagation

When an update request is issued to an OODB, it is
important to check whether the update is valid with
respect to given semantic constraints and to reject in-
valid updates. For example, see a type checking
mechanism in the instance method dept: x shown in Sec-
tion 3.3. Also, it is important to update the contents of
the OODB so that the given semantic constraints may
be satisfied.

Consider the previous Employee-Department exam-
ple, where there is a many-to-1 relationship from Emp
class to Dept class. [This can be regarded as a ‘“func-
tional dependency’’ from class Emp to class Dept.] Sup-
pose that currently Bob’s department is a Sales object.
Assume that we wish to update Bob’s department from
Sales to R&D. In order to make the contents of the
OODB after this update satisfy the constraint, the
following actions should be executed:

(1) Send a message to ask Sales object to delete the

243

instance;

o)

instafice-of

(a) (b)
Fig. 3 Recursive relationship.

Bob object from the value of the instance variable emp.
(2) Send a message to self (Bob object) to change the
value of the instance variable dept from Sales to R&D.
(3) Send a message to ask R&D object to add self (Bob
object) to the value of the instance variable emp.
These actions can be realized by the following instance
methods. Each number in the instance method dept:
corresponds to the above number.

[Instance method of class Emp]

dept: x

dept removeEmp: self. -+ -ccciiiaaiian)
depte—x., -« vcrerre e)
X se[Emp: self «cc v (3)

[Instance methods of class Dept]
removeEmp: y
emp+<emp remove: y
setEmp: z
emp<+<emp add: z

By using the above methods, for example,
Bob dept: R&D

will perform the update correctly.

The above is just an example, and we will need a
general methodology for designing ‘methods’ to
achieve updates so that the given semantic constraints
may be satisfied after updates.

Here, we show a set of general methods which is used
to achieve the update propagation for maintaining a
class of relationship types, such as 1-to-1, 1-to-many,
and many-to-many relationships. Just by adding some
““/data definition”’ facility, it is easy to let the system
automatically generate the methods for each class
which achieve the update propagation correctly for 1-
to-1, 1-to-many and many-to-many relationships.

Suppose that there is a binary relationship R between
the instances of class A and the instances of class B.
Following the previous transformation from ER model
to ODS, we assume that both class 4 and B have an in-
stance variable named ‘7’ which contains each counter-
part of the relationship.

(@) If the relationship R is 1-to-1, then the four
methods in Fig. 4(a) are defined in both class 4 and
class B.

(b) If R is 1-to-many, then the four methods in Fig.
4(a) are defined in only class 4. Also, the four methods
in Fig. 4(b) are defined in class B.

(¢) If R is many-to-many, then the four methods in

244

Fig. 4(b) are defined in both class 4 and class B.

The method “‘setR”’ in Fig. 4 is used to update the
relationship R. Suppose that the relationship R is 1-to-1
and that an instance al of class A is related to the in-
stance b1 of class B (here, we denote it by (al, R, b1)).
When we wish to update the relationship (al, R, bl)
into (al, R, b2), we do the following:

al setR: b2

Since the relationship R is 1-to-1, the execution of the
method setR (in Fig. 4(a)) invokes the following three
message expressions:

bl removeR’: al
r<b2
rsetR’: al

The first line is to assign NIL to the instance variable
of the instance b1. The second line is to assign 52 to the
instance variable r of the instance al. The third line is to
assign al to the instance variable r of the instance b2.
During the execution of the third line, if the relation-
ship (a2, R, b2) already exists for a certain instance a2,
first, the following message expression is executed (see
the definition of the method setR’):

Fig.3.4(a)

setR: x
(r isNil) ifFalse: [r remover’: self] .
rex.
rsetR’: self

setR’: x

(risNil) ifFalse: [r removeR": self].
rex.

removeR: x
(r==x) ifTrue: [r removeR": self. r «nil.)
removeR’: x

(r==x)ifTrue: [r « nil].

Fig.3.4(b)
setR: x

radd: x.
x setR’: self.

setR”: x
radd: x.
removeR: x

r remove: X.
x removeR": self.

removeR’: x

rremove: x.

Fig. 4 Methods for maintaining 1-to-1 1-to-many, many-to-many
relationship types.

K. TANAKA, M. YosHIKAWA and K. ISHIHARA

a2 removeR’: b2

This message expression is to drop the relationship (a2,
R, b2) by assigning NIL to the instance variable r of the
instance a2.

In the similar manners, the methods in Fig. 4(a), (b)
can correctly maintain several (l-to-1, 1-to-many,
many-to-many) relationship types when update requests
occur. Since the methods in Fig. 4(a), (b) are general
ones, it is an easy task to let the system automatically
generate the corresponding methods when users specify
only types of his relationships.

4. Views

In database systems, views play an important role [9)].
They provide the immunity of users’ application pro-
grams to the change of a conceptual schema. Users can
reorganize a conceptual schema to obtain their own
schema by defining views. Realizing the view
mechanism is very important in the OODB as well. Very
little attention, however, has been paid to this topic.

In this section, we will discuss the realization
mechanism of views in OODB, especially in the environ-
ment of Smalltalk. Since Smalltalk was designed as a
programming language, it does not support the view
mechanism of databases directly.

Therefore we take an approach to define a new class
to manage all the views defined in the OODB.

In relational databases, the requirements for views
are as follows:

(a) Users can handle views as if they were base rela-
tions.

(b) Only the definitions of views are stored in the
system, so that the effects of update to the base relations
are directly reflected on the views.

Later, we will see how our mechanism satisfies these re-
quirements.

Basically, in relational databases, a view can be re-
garded as the answer of a query. So, a view definition
can be represented by a query, and the relational
algebra consists of basic operations to represent a
query. In the OODB, subclass-superclass hierarchies
are important construct of database schemata. So, we
believe that the views in the OODB should basically
have the following two functions:

(i) Creation of new (virtual) classes.

(ii) Reorganization of subclass-superclass hierar-
chies of conceptual schemata.

The function (i) is almost the same as in relational
databases. The query in this case, however, is a
Smalltalk program in general. So, we can define a wide
variety of views in the OODB. This kind of view is
called a virtual class in this paper. The function (ii) is
unique to OODBs. This function, in fact, means to
change all the classes, in which a user is not interested,
into abstract classes (classes which cannot have their
own instance objects) in the subclass-superclass hierar-

Schema Design, Views and Incomplete Information in Object-Oriented Databases

chy. We call the subclass-superclass hierarchies ob-
tained in this way structural views. For the definition of
structural views, the operations to change normal
classes into abstract ones and vice versa are considered
to be primitive operations. For this purpose, we will
define two methods ‘‘union:’’ and ‘‘difference:”’ in the
following.

In this section, basic methods to obtain all the in-
stances or classes in a subclass-superclass hierarchy are
given in Section 4.1. In Section 4.2 and 4.3, we will
discuss virtual classes and structural views, respectively.

4.1 Basic Methods Used in View Definitions

First, we will define the following instance methods
(of the class ‘“‘Behavior’’) to obtain all the instances of a
class (and of all its subclasses).

«alllnstances [return all instances of a
class.]

*allSublnstances [return all instances of a class
and of its direct and indirect
subclasses.]

«allSublnstancesList [return all instances of a class

and of its direct and indirect
subclasses as a form of list
structure.}

Similarly, the following methods obtain all the direct
(and indirect) subclasses of a class.

*subclasses [return all direct subclasses of a
class.]
+allSubclasses [return all (direct and indirect)

subclasses of a class.]

«allSubclassesList [return all (direct and indirect)
subclasses of a class as a form of
list structure.]

The methods ‘‘subclasses’’, ‘‘allSubclasses’> and
‘‘alllnstances’’ are Smalltalk built-in methods. Other
methods can be easily defined. For example the method
‘‘allSublnstances’’ is implemented as follows:

allSubInstances

[templ temp2|

templ «self allSubclasses.

temp2 «self alllnstances asOrderedCollection.
templ do:[:a|temp2 «temp2 addAll: (a allInstances)].
Ttemp2

Let us consider an example of University Faculty whose
subclass-superclass hierarchy is shown in Fig. 5. Given
each of the above defined messages, the class ‘‘Faculty’’
returns the following answer:

subclasses (EngineeringFaculty
LinguisticFaculty)

allSubclasses (EngineeringFaculty EEFaculty
CSFaculty LinguisticFaculty)

allSubclassList (EngineeringFaculty (EEFaculty

CSFaculty) LinguisticFaculty)

245

O :class

C :instance
=> :subclass-
superclass
relationship

Engineering
Faculty

® @ © @

Fig. 5 A subclass-superclass hierarchy of university faculties.

alllnstances (0, 0)
allSubInstances (01 Oz 03 04 05 06 07 Os 09)
allSublnstancesList (O, O(O; O(Os O)(O; O5))(Os))

4.2 Virtual Classes

We define a new class called ‘“View’’ to manage all
the views in OODB. The class ‘‘View’’ defined here is
different from the built-in class ‘‘View’’ of MVC
mechanism in Smalltalk-80. The important methods
and variables defined in the class ‘““View’’ are as
follows:

instance variables: viewdef
class methods
define: aSymbol as: aBlock
|temp|
temp<Smalltalk at: aSymbol put: View new.
temp setview: aBlock

instance methods

" setview: aBlock
viewdef«aBlock
alllnstances
tviewdef value

For each view defined by users, an instance of the class
‘“view”’ is created, and the instance variable ‘‘viewdef”’
stores the definition of that view as a Block.

For example, if we want to define a view
“YoungFaculty”” which consists of all the faculty
members under 30 years old,

View define:#YoungFaculty
as:[Faculty allSublnstances select:[:x|x age <30]]

is executed. This message has the following two effects.
(i) create a new instance of the class ‘‘View”’ and

substitute it into the global variable YoungFaculty.
(if) set the block defining this view in the instance

variable ‘‘viewdef”’.

Once the view YoungFaculty is created, users can use it

as if it were a class, except for defining methods and

variables of its own. Therefore, if we want to know all

246

instances of YoungFaculty,
YoungFaculty alllnstances

responds them.

As shown above, the function of the instance method
‘“‘allInstances” of the class ‘‘View’’ is to evaluate the
block in the instance variable ¢‘viewdef”’. Furthermore,
since a view behaves like a class, we can define a view us-
ing other views. For example, if we want to define a
view “‘YoungWomanFaculty’’ wusing the view
“YoungFaculty’’, the following message expression is
executed.

View define:#YoungWomanFaculty
as:[YoungFaculty alllnstances select:[:x|x sex=
‘female’]]

As stated above, our implementation mechanism
satisfies the requirement (a) for views. Since our
mechanism keeps not the instantiated objects, but the
definition of a view, it also satisfies the requirement (b).

4.3 Structural Views

Now, we will define instance methods (of the class
“Class’’ or ‘‘Behavior’’) ‘“union:”’ and ‘‘difference:”’
to reorganize a subclass-superclass hierarchy virtually.
First we will give the definition of structural view and
clarify the objectives and implication of these opera-
tions.

[Def 4.1] (Structural Views)

(1) A class is a structural view.

(2) If both sv, and sv; are structual views, (sv; union:
sv,) is a structural view.

(3) If both sy, and sv, are structural views, (sv|
difference: sv,) is a structural view.

(4) Only the objects obtained by (1), (2) and (3) are
structual views.

As stated before, a structural view represents a virtual
hierarchy in which some classes are abstract ones. For a
given structural view sv, let GH(sv) denote the corre-
sponding virtual hierarchy, and let normal (GH(sv))
denote the set of normal classes in GH(sv). Also, for a
class C, let subtree(C) represent the C’s subtree (i.e. the
subtree of which root is C) in a virtual hierarchy.

[Def 4.2] (Virtual Hierarchies represented by Structural
Views)

For a structural view sy, GH(sv) is defined as follows:
Case 1: (svis a class C)

GH(C) is a virtual hierarchy in which all the classes in
subtree(C) are normal classes and all the other classes
are abstract ones.

Case 2: (sv is(sv: union:sv,))

GH(sv) is a virtual hierarchy whose normal classes are
the union of the normal classes in GH(sv;) and GH(sv2).
(i.e. normal(GH(sv1))Unormal(GH(sv.))).

K. TANAKA, M. YOSHIKAWA and K. ISHIHARA

Case 3: (sv is(sv, difference: sv,))
GH(sv) is a virtual hierarchy whose normal classes are
normal(GH(sv,))-normal(GH(sv.)).

In the University faculty example shown in Fig. 5, a
structural view

(@-1)

represents the virtual hierarchy shown in Fig. 6(a). In
this and the following figures, dotted rectangles repre-
sent abstract classes, and all the Smalltalk classes which
do not appear in the figures are assumed to be abstract
classes. Users of this structural view are only interested
in the instance objects of all the faculty members other
than engineering faculties. We cannot remove the
abstract classes which are ancestors of the class ‘‘Facul-
ty”’ in Fig. 6(a), because although these abstract classes
cannot have their own instances, some instances in
which users are interested (i.e. O,, O; and Oy) may in-
herit variables or methods of them. Any other abstract
classes could be removed, but we do not do this because
they might ‘‘survive’’ later on. Let us assume that we
want to start a new research project of automatic
language translation, and that we want to define a view
consisting of the objects of faculties related to this pro-
ject. Also assume that all faculties in this university
other than engineering faculties are related to the pro-
ject, and that although CS faculties are engineering
faculties, they are also related to the project. In other
words, we want to define a structural view consisting of
objects (O, O, O; Os Oy) in Fig. 5. This view can be de-
fined as follows:

(Faculty difference: EngineeringFaculty)

Faculty difference: EngineeringFaculty union:

CSFaculty 4-2)

The corresponding virtual hierarchy is shown in Fig.
6(b).

Next we will show how structural views are im-
plemented in Smalltalk environment. From the require-
ment (a) stated at the beginning of this section, views
have to behave like a normal class. So, if we send a
message ‘‘alllnstances’’ to the view in (4-1) and (4-2),
the response has to be a collection (O; O, Oy) and (O,
0; O; O; Oy), respectively.

Sending the message ‘‘union:’’ or ‘‘difference:’’ to a
class, an object of the class ‘“View’’ is obtained as a
response. This object behaves like a normal class as ex-
plained in Section 4.2. These two methods are im-
plemented as follows.

union: aClass

[temp |

temp+< View new.

temp setview: [self allSublnstances
(aClass allSublnstances)].

addAll:
ttemp

difference: aClass

Schema Design, Views and Incomplete Information in Object-Oriented Databases

i Engineering
: Faculty

o -
i Faculty : : Faculty

Engineering
: Faculty :

(b))

Fig. 6 Virtual hierarchies represented by structural views.

[templ|

temp < View new.

temp setview: [self allSublInstances
removeAll:(aClass allSubInstances)].

Ttemp

To allow the definition of a structural view using other
views, we introduce an instance method
‘““allSublnstances’’ whose definition is exactly same as
“‘allinstances’’, and define the above two methods as in-
stance methods of the class ‘“View’’.

5. Incomplete Information

5.1 Incomplete Objects and Their Classification

In OODBs, several types of incomplete information
are also represented as objects. Here, by ‘‘incomplete
objects’’, we mean objects which convey incomplete in-
formation. We classify ‘‘incomplete objects’’ into the
following three types:

(0) Null object

247

This corresponds to null values in conventional data
model. There are two kinds of null objects: nonexisting
objects and unknown objects.

(1) Unidentifiable object

For an object O, if neither the value of O’s key nor
the name of global variable referring to O is known,
then the object O is said to be an unidentifiable object.
(2) Disjunctive object

For an object O, if there exist n(z2) distinct objects
Oy, +, O, such that 0=0, or O=0; or- - -or 0=0,,
and O=0; is unknown for each i (1 <i<n), then the ob-
ject O is said to be a disjunctive object, and denoted by
o= Olv v VO,..

(3) Unclassified object

Suppose that there exist a class C, its subclasses
C.,- -, C, and an instance object O of the class C (see
Fig. 7). From the viewpoint of incomplete informa-
tion, this situation can be semantically interpreted as
follows: Although it is known that the ‘‘category’’ of
the object O is C, it is unknown whether the ‘‘sub-
category’’ of O is C, or C; or- - -or C, or others. Under
this interpretation of the sub-superclass hierarchy, the
object O can be regarded as an incomplete object, and it
is further classified into the following three types:

(3-a) Itis known that the instance object O does not
belong to any subclass C;(1 <i=n), and there
is no adequate subclass, to which O should be
classified, in the schema.

It is known that the instance object O belongs
to either C, or---or Ch,(nz2), but it is
unknown to which C; it belongs.

(3¢) It is known that the instance object O is of
type (3-a) or type (3-b), but it is not known of
which type it is.

Since each subclass itself is also an object, in the case
of the above (3-a), the subclass, which O belongs to, is
regarded as a unidentifiable object. In the case of the
above (3-b), the subclass, to which O belongs to, is re-
garded as a disjunctive object CiV- - -VC.

(3-b)

5.2 Realization of Incomplete Objects

(0) Null Objects

In Smalltalk, a special object ‘nil’ is provided. To
represent a null object, we just use this ‘nil’ object.
(1) Unidentifiable Objects

It is straightforward to realize unidentifiable objects,
that is, by the use of instance variable. Suppose that a
person Smith has a child whose age is 3, and the child’s

/.

o

O :class, O :instance

Fig. 7 Unclassified Object.

248

name is not known. Then in order to store this in-
complete information, it suffices only to execute the
following:

Smith child: (Person new age: 3)

Here, child: and age: are instance methods of class Per-
son, where child:x stores the value x to the instance
variable child, and age:y stores the value y to the in-
stance variable age. As a result of this expression, a new
person object (denoted ‘‘a Person” in Smalltalk),
whose instance variable age has 3 as its value, is created
and stored as a value of the instance variable child of
Smith object. Also, suppose that child and age are in-
stance methods of class Person, which return the value
of instance variables child and age, respectively. Then,

Smith child
will return a Person (a Person object), and
Smith child age

will return 3 as its answer.
(2) Disjunctive objects

Basic requirements for manipulating disjunctive ob-
jects are as follows:

(i) Disjunctive objects should be able to be stored
as the values of instance variables.

(ii) Any message to a disjunctive object should be
propagated to each of its components.

(iii) When a disjunctive object is returned as an
answer for a request, the information that the object is
of disjunctive type should be explicitly returned.

For example, suppose that an employee object Bill is
working at the sales department or research & develop-
ment, where the sales department’s manager is Mary
and the research & development department’s manager
is John. Then, Bill’s department is represented as a dis-
junctive object Sales VR&D. Then, according to (i), the
disjunctive object Sales VR&D should be stored as the
value of Bill’s instance variable ‘‘department’’. As for
(ii), when a request to ask Bill’s manager, then this
message should be propagated to both of the Sales ob-
ject and the R&D object. Further, according (iii), the
answer for this request should be ‘“Mary v John’.
Here, we show two methods to realize the requirements.

[Method 1]

As shown in Fig. 8, we define the class Or, which is a
subclass of OrderedCollection class. The Or-
deredCollection class is a built-in class of Smalltalk,
each of whose instance is an ordered set of objects.
Also, the OrderedCollection class is a descendent of the
built-in class Object in Smalltalk. Each instance of this
Or class is used to represent one disjunctive object. In
order to make each instance of Or class behave as a dis-
junctive object, first, we define an instance method or:
for the class Object as follows:

K. TANAKA, M. YOsHIKAWA and K. ISHIHARA

ingtance Depart
method aDepartment S R&D
or: name:R&D
manager:John,
‘J‘ Sales

Department

aDepartment

/
OrderedCollection

John /\mEmplnyu
name:John
department:

instance
method
ask:

name:Bill
department:

name:Mary
department:

anOr
(Sales R&D)

O :class, O : instance object

Fig. 8 Realization of Disjunctive Objects (Method 1).

or: x
‘““/Create an Or instance whose elements are the
receiver and the argument x.”’

|temp

temp < Or new.[Creation of a new Or instance.]
temp add: self. [Add the receiver object to the Or in-
stance as its element.]

temp add: x. [Add the argument object x to the Or in-
stance as its element.]

Ttemp

To make our idea work well also for disjunctive objects
of more than three objects, we need to overwrite this in-
stance method or: in the class Or in the following man-
ner:

or: x

““Add the argument object x to the receiver Or in-
stance as its element.”’

self add: x.

Tself

Using the or: method, it is possible to create a disjunc-
tive object. For example, to store the ‘‘Sales V R&D’’ as
the value of Bill’s department (instance variable), we ex-
ecute the following:

Bill department: (Sales or: R&D)

When an arbitrary message is given to a disjunctive ob-
ject O, it is necessary to broadcast it to each element of
O. To do this, we define an instance method ask: in the
Or class as follows:

ask: aSymbol
|templ temp2|
templ «self size. [Store the number of elements of
the receiver to templ.}

[Create a new Or instance which

is to convey the answer.]

temp2+<Or new.

(templ1=0)
ifFalse:[1 to: templ
do:[:iltemp2 add:
aSymbol)]].
[Store the answer to temp2. Here,

((self at:i) perform:

249

Schema Design, Views and Incomplete Information in Object-Oriented Databases

‘‘self at:i>’ returns one element of
the disjunctive object. Then,
‘‘perform: aSymbol’’ is sent to
each of these elements, where per-
form: x is a built-in method to
send the message x.]

ttemp2 [Return the answer.]

Using the ask: method, for example,
Bill department ask:#name
will return

Or(Sales R&D)

as its answer. Here we assume that ‘‘name’’ is an in-
stance method of Department class and that it returns a
department name. Also,

Bill department ask:#manager
will return
Or(an Employee an Employee),

and
(Bill department ask:#manager) ask:#name

will return
Or(Mary John).

Intuitively, an Or instance is a list of pointers, each of
which points to an object, (i.e. a component of a dis-
junctive object). A disadvantage of this method is that
we must use the above special message ask: for disjunc-

tive objects.

[Method 2]
This method does not use any new class for disjunc-

tive objects. Instead, we assume that each class has an
instance variable ‘or’, and we define the following in-
stance method or:

for the class Object (see Fig. 9).

or: x
[temp|
temp «self copy. [Make a copy of the receiver object

and store it into temp.]
temp setOr: x. [Store x as the value of the instance

variable ‘or’ of the object temp.]
Ttemp [Return temp as its answer.]

If A is an instance of class C, then (A4 or: B) denotes an
instance object of class C and its instance variable ‘or’
has B as its value. Each message sent to the object (4
or: B) is automatically propagated to the object B. For

example,

(Sales or:R&D) manager name
will return

Or(Mary John).

’

e A
-
A AN
I Employee J I[)epartment I
T aDepartment
; #R&D
Bill ," name:R&D
k H manager:John
/
/
/ Sales
!
anEmployee ',' aDepartment o~
name:Bill ‘:'
department:[S; !
lesor:R&D} aDepartment
:::::S;l.e;" Produced at the
or: R&EDA Y) ———— execution time of
§ [Sales or: R&D].

Fig. 9 Realization of Disjunctive Objects (Method 2).

Next, in order to store the information ‘‘Sales Vv
R&D”’ into the Bill object, we execute

Bill department:[Sales or: R&D].

where department: is an instance method to store a
value to the instance variable department. Here the
square brackets denote a ‘‘block’’ in Smalltalk, whose
execution is postponed until the ‘‘value’’ message is
sent to it. To retrieve the names of Bill’s departments,
we need to execute the following:

Bill department value name.

Using the block [A or: B] to store disjunctive objects,
we need not propagate any updates performed for A
and/or B to the disjunctive object because of the
delayed execution mechanism of blocks. Of course, the
major disadvantage of this method is that users must ex-
plicitly send ‘‘value’” message to disjunctive objects.
(3) Unclassified Objects

In Fig. 5.1, when a classified object O is of type (3-a),
it is necessary to define a subclass whose name is not
known, and to make O be an instance of this subclass.
In Smalltalk, it is not easy to define a subclass whose
name is unknown. Also, whenever an instance of class
C is to be added, we need some mechanism to check
whether or not the instance belongs to conventional sub-
categories C), - -, C,.

In the case of type (3-b), it is necessary to define a
new class ‘““C; or C; or- - -or C,”’ to which unclassified
objects of type (3-b) belong. The class “C, or C,
or---or C,”’ is a subclass of C. Also, we need some
mechanism to propagate class variables of each C; to
the subclass ““C, or C; or---or C,”’. That is, if each
subclass contains a common class variable ¥V and its
value »;(i=1,---, n) for each class C;, then each in-
stance of “‘C, or C; or- - -or C,”’ class must be able to
refer to the class variable ¥ and to obtain the value ‘‘»,

Or v2 Or* - 0T v,”".
6. Concluding Remarks

In this paper, we discussed schema design, update

250

propagation, view implementation and the treatment of
incomplete information in the OODB. Also, we showed
some methods to realize these issues by Smalltalk.
Especially for the schema design, we introduced the no-
tion of ODS (Object Database Schema) and the
transformation of an ER schema into an ODS. As for
views, we introduced the notions of ‘virtual class’ and
‘structural view’ for the OODBs, and identified basic
operations to define these views. Also, we discussed a
method to realize these views in Smalltalk. Finally, we
introduced the notion of incomplete objects, which are
objects conveying some incomplete information. The
classification of the incomplete objects and their realiza-
tion methods are discussed.

Since this paper is a starting paper to discuss several
problems of schema design, views and incomplete infor-
mation in the OODB, the following probiems need fur-
ther research.

(a) Identification of required basic operations and the
criteria about the representation power of query
languages for the OODB.

(b) A more general methodology for designing
““methods’’ needed for the OODB.

(c) Design criteria for ODSs, which will be useful to
discuss what design of OODB is good.

(d) Identification of what is lacking in Smalltalk to

K. TANAKA, M. YosHIKAWA and K. ISHIHARA

realize the OODB and what is needed for the extension
of Smalltalk language.

References

1. Zanoro, C., Ait-Kaci, H., BEecH, D., CAMMARATA, S,
KERSCHBERG, L. and MAIER, D. Object Oriented Database Systems
and Knowledge Systems, In Expert Database Systems, Kerschberg, L.
Ed. Benjamin/Cummings, Menlo Park (1986), 49-65.

2, CorPeELAND, G. and MAIER, D. Making Smalltalk a Database
System, Proc. ACM-SIGMOD International Conference on Manage-
ment of Data (June, 1984), 316-325.

3. DitTRICH, K. and DayaL, U. (ed.), Proceedings of the 1986 Inter-
national Workshop on Object-Oriented Databse Systems (Sept, 1986).
4. GOLDBERG, A. and ROBSON, D. Smalltalk-80: The Language and
its Implementation, Addison Wesley, Reading, Mass. (1983).

5. Carey, M. J., DEwiITT, D. J., RICHARDSON, J. E. and SHEKITA,
E. J. Object and File Management in the Extensible Database System,
Proc. 12th International Conference on VLDB (August, 1986), 91-
100.

6. MaNoLA, F. and ORENSTEIN, J. A. Toward a General Purpose
Spatial Data Model for an Object-Oriented DBMS, Proc. 12th Inter-
national Conference on VLDB, (August, 1986), 328-335.

7. CHEN, P. P. S. The Entity-Relationship Model-Toward a Unified
View of Data, ACMTODS, 1 (1) (March, 1976), 9-36.

8. HuLt, R. and KING, R. Semantic Detabase Modeling: Survey, Ap-
plications, and Research Inssues, Technical Report, Computer
Science Department, University of Southern California, TR-86-201
(Apr. 1986).

9. CHAMBERLIN, D. D., GrAY, J. N. and TRAIGER, 1. L. Views,
Authorization, and Locking in a Relational Database System, Proc.
AFIPS National Computer Conference (May, 1975), 425-430.

(Received January 11, 1988; revised January 25, 1989)

