Analysis of Parallel Garbage Collection
with Multiple List Processors
and Garbage Collectors

SHINSUKE TERAMURA™*

This paper presents the performance analysis of a list processing system with multiple Lisp Processors and
Garbage Collectors. The analysis is intended to be of great use when we design a high performance list process-
ing system with multiple processors, in which several list processes can be executed simultaneously without inter-
ruption for garbage collection.

Hickey et al. have described a detailed analysis of a system which has one List Processor and one Garbage Col-
lector. Our analysis is based on Hickey’s analysis. We introduce two parameters and evaluate performance of
the parallel garbage collector by comparing it with a sequential garbage collector. We also extend the result to
the system with / Lisp Processors and g Garbage Collectors. It is shown that the rate of reduced execution time
due to the parallel garbage collection to the total execution time in the sequential garbage collector gets near to
g/(g+2l). Moreover, the optimal number of the Garbage Collectors according to the given application can be
estimated.

We also show the number of cells created by List Processor without waiting is not constant but those of each
cycle form a kind of sequence by taking the time to append the collected cell into account. As a result, we can

determine the condition where Lisp Processors never run out of cells.

1. Introduction

One of the most serious problems of the list process-
ing system such as Lisp is the long interruption caused
by Garbage Collection (abbreviated to G.C.), especially
in the case where real time response is required. To
solve this problem, real-time G.C. was designed. An ap-
proach to the real-time G.C. is parallel G.C.

Dijkstra [1], Kung [3] have described parallel G.C.
algorithms. Both algorithms use one list processor (ab-
breviated to LP) and one garbage collector (abbreviated
to GQC).

Lamport [4] extended Dijkstra’s algorithm to incor-
porate multiple LPs and multiple GCs. Newman {7] de-
scribed an algorithm using stacking, chaining [6] and
Lamport method together.

For a parallel G.C. algorithm to be efficient, not only
its correctness should be proved, but the condition that
the LPs never run out of cells should be satisfied. In this
sense, it is very important to analyze the performance
of the parallel garbage collection. Detailed analysis of
Dijkstra’s algorithm and Kung’s algorithm have been
done by Hickey [2].

The system with multiple LPs and GCs can be analyz-
ed similarly except that the access conflict should be con-
sidered. In addition, time to append the collected cells
to the free list, which is disregarded in Hickey’s

*R & D Laboratory, RICOH Ltd., 16-1 Shin-ei cho, Kohoku,
Yokohama 223, Japan.

Journal of Information Processing, Vol. 12. No. 3, 1989

analysis, produces a nontrivial effect especially when
multiple GCs append the collected cells exclusively, that
is, appending procedure contains the critical region, or
the collecting process is not equally distributed among
multiple GCs.

In these days, there are many computers adopting
multi-processor architecture, and the research on the
parallel list processing has been in progress. In addi-
tion, these computers may be used as multi-user list pro-
cessing systems where several independent processes
run. From viewpoint of cell consumption, these 2
usages can be regarded as identical. Multiple LPs run-
ning simultaneously produce more garbage cells than
can be reclaimed by one GC effectively. It is clear that
the use of multiple processors for G.C. is one solution
to improve collecting performance. We should choose
the number of GCs carefully, since too many GCs
disturb the list processing by the access conflict rather
than performance advantage.

In section 2, Hickey’s analysis is surveyed briefly, as
our analysis is based on it. In section 3, two new
parameters are introduced to analyze the system with
one LP and one GC. We extend the result for multiple
LPs and GCs with and without access conflict in section
4. We also discuss the method to determine the optimal
number of GCs. We report the result of experiment car-
ried out on real machine in section 5. Finally, conclu-
sion is discussed in section 6.

230

2. Hickey’s Analysis

2.1 The Algorithm

Hickey analyzed Dijkstra’s algorithm (called three
color collector) and Kung’s algorithm (called four color
collector). Here we outline Kung’s algorithm because
our analysis is essentially for the four color collector.

Kung’s algorithm consists of the root insertion
phase, the marking phase and the collecting phase. In
the root insertion phase, all the roots are inserted into
the deque by which cells are marked. In the marking
phase, the GC takes a cell and marks (blacken) all the
cells accessible from the cell using recursive trace. If the
LP modifies the list structure during this phase, it in-
serts the corresponding cell since the cell may have to be
marked. To avoid access conflict between the LP and
the GC, they use different end of the deque. Free cells
are not marked since they have special color (off-white).

In the collecting phase, the GC scans the whole cell
space sequentially to find unmarked (white) cells and ap-
pends them to the free list. GC also unmarks (whiten)
the marked cells unless they are free cells. There are two
types of garbage cells existing at the end of marking
phase: one is white garbage and another is non-white
garbage. The former, called white (unmarked) garbage,
will be collected during the collecting phase of the cur-
rent G.C. cycle. The latter, called black (marked) gar-
bage, will not be collected until the collecting phase of
the next cycle.

Kung’s algorithm has better marking performance
than other parallel G.C. algorithm. Unfortunately, it is
difficult to implement this algorithm because the deque
cannot be effectively dealt with, and the roots are
treated as fixed cells in this algorithm while they are not
in the real system. We have proposed a parallel G.C.
algorithm including less overhead than Kung’s one, and
implemented a real system using the algorithm to
evaluate its performance [5].

2.2 The Model

Table 1 shows the parameters used in Hickey’s
analysis. The assumptions required to analyze are
shown below:

* While the free list is not empty, the LP creates
cells at a constant rate of one cell every r time units
and produces garbage cells at the same constant rate.
Therefore, the number of active cells and the propor-
tion of active cells are always constant.

+ The GC marks and scans cells at a constant rate
of one cell every m time units to mark and every s
time units to scan.

« Every newly created garbage is marked. By this
assumption, the worst-case analysis can be given.
The parameter F;, B; and W; are used to describe the

state of the memory at the end of the marking phase.
These parameters determine the state of memory of the

S. TERAMURA

Table 1 The parameters in Hickey*‘s analysis.

Time Variables

m time to MARK a cell
s time to SCAN the next list cell
r time to RELEASE a garbage cell or

RETRIEVE a new cell

tmark; length of the ith marking stage

tscan; length of the ith scanning stage

teycle; length of the ith cycle
Space Variables

N number of list cells in the memory

L number of accessible cells

n proportion of list cells that are accessible
(L/N)

F; number of cells in the free list

W; number of unmarked garbage cells

B, number of marked garbage cells

B largest possible value of B before a non-
critical cycle

G amount of marked garbage produced dur-

ing a stable cycle

Parameters

average proportion of execution time where
LP is not waiting

average rate at which cells are taken from
the free list

length of garbage collection interruption
ratio of productivity of parallel collector to
productivity of sequential collector

speed of LP relative to marking speed

productivity p
throughput t

wait time
productivity speedup o

relative speed 4

next cycle. Therefore, a G.C. cycle is defined to begin
with the collecting phase and end with the marking
phase.

If the LP never has to wait, the amount of newly
created cells during a G.C. cycle is constant and called
G, Let Av; be the amount of available cells during the
ith cycle. There’s a relation Av,=F_,+W,_.,=
N—L—B,;_,. Hickey also defined B as B;_, where Av;
equals to G, B and G is

Gcm:sN+mL
r—m
chzr(N—L)—(m +sN
r—m

Hickey describes three types of performance of
parallel G.C. according to the value of the parameters:
1. stable: the LP never needs to wait

B™M=(N—-L)/2

2. alternating: the LP must wait every other G.C. cy-
cle

r>m and

r>m and B"'<(N—L)/2

and By is not in "
3. critical: the LP is forced to wait every cycle

r<m or B"'<(N—L)/2 and B,isin I"

Analysis of Parallel Garbage Collection with Multiple List Processors and Garbage Collectors 231

where I is the interval B**< B< N—L—B™

Figure 1 shows these three types. In the figure,
horizontal axis and vertical axis correspond to G.C. cy-
cle and the number of cells respectively.

In his analysis, next three parameters are used to ex-
amine the efficiency of the system:

1. productivity p: the average proportion of execu-
tion time where the LP is active .

2. throughput 7: the average rate at which cells are
taken from the free list by the LP

3. wait time: the length of the G.C. interruption

The ratio of the productivity of the parallel collector
p to that of a sequential collector p,' is called produc-
tivity speedup, and the ratio of r to m is called relative
LP speed. They are denoted as ¢ and A respectively.
Hickey described how the value of ¢ is affected accord-
ing to the value of A and n, and showed that productivi-
ty of the parallel collector is at most 150 percent of the
sequential one. g can be represented as a function of A
and 1:

. ((r+s)-—(r—m)n (r+s)—(r—m)n)
CEMIM\ s+ A+mm ° rd—-n)

mA+1-n+2 mA+l-n+s
=min s
(1+n)/1+2%

1—n

Both the relation between o and A when 7 is fixed and

1. stable

Number of Cells
z
-

marking
collecting

2. alternating

7 ..
! w 17 W
A Ve Pl Pa a1

3. critical

NL[EZT s\ W NE B \w NETR \ W

Fig. 1 The three types of the parallel G.C. performance.

"It is called p,.y in Hickey’s analysis.

the relation between ¢ and n when A is fixed are frac-
tional expressions. So they are depicted as hyperbolas.
Hickey showed these figures by giving the values to each
parameter.

3. GC Ratio and Improvement Ratio

It is not so easy to depict the relations described
above because they are fractional expressions and the
value of several parameters are needed even if we’d like
to know the outline of the figure.

We introduce two parameters to compare the parallel
G.C. system (from now on, we call parallel system) with
the sequential G.C. system (sequential system):

e GC ratio G: the ratio of the time spent for G.C.

to the total execution time of the sequential system

G=-Tas

Tseq,lotal
« Improvement ratio I: the ratio showing the im-
provement of the parallel system over the sequential
system

I= Tﬂ.lolal - Tgara
Tseq.(otal

where Tiqom @and Teqqc are the total execution time and

G.C. time of the sequential system respectively, and

Trara is the total execution time of the parallel system.
The relation between I and ¢ is

r=1-1
ag

because ¢ is defined as Tpara/ Teeqoa- The throughput of
the sequential system, denoted as 7., is

_ 1-n
Tsea r+s)—(r—m)n

Let C be the number of cells required to achieve some
given process, then Tiq o iS

T;eq.tolﬂ =
Tseq
_rts—(@r—mn

1—-n ¢

In the parallel system, 7. is equal to 1/r when the
system is stable, i.e., LP never waits for cells to be
reclaimed. If the system is not stable, T, is calculated
as follow: the amount of created cells during two con-
secutive G.C. cycles is N—L, so the time needed for
creating these cells is {N—L), and the total length of
two G.C. cycles is 2sN+m(N+ L). Hence, the produc-
tivity in non-stable state is

_ r(l1—-n)
P s+ +mm

So the throughput and total execution time are

232

. 1 1—n
T =MUR | 20 S ¥ A+ m)m
2s+(1+a)m
Tpae=max | rC, _1_—_7!_ C

The improvement ratio is

Tll‘l
I=1—-—2""=min (

seq. total

s+mn

r+s—(r—m)n’
r—s—m-rn
r+s—(r—m)7t>
. r—s—m-—rn
—min (G’ r+s—(r—m)7t) ()

r and 7 can be represented as the function of G
_(stmm)(1-G)
T G(-n)
_ (r+s)G—s
n_(r—m)G+m

The formula (1), together with the equations above
takes the form below:

reafoi2)--2))

n(0.1-(2+4357) o
=min|{G,1—-[2+———]| G A3)

s+mn

The graphic representation of the right expression of
minimum operator in (2) is a line through the point (1,
—1) with a coefficient of (—2+m/r). (2) is the relation
between / and G where the value of G is varied by
means of changing the value of n. If A=m/r=0, then
the line also goes through the point (0,1). G
monotonously increases being regarded as a function
of n. When 0<n<1, s/(r+s)<G=1. Figure 2 shows
the graph of this relation. When A gets larger, I-in-
tercept and the absolute value of the coefficient get
smaller. Therefore, the maximum improvement ratio
Inax and the corresponding value of G also get smaller.

When G=s/(r+s5),

I=min S r=s=m
r+s’ r+s
If s/(r+s)<(r—s—m)/(r+s), i.e., r>2s+m, then
the intersecting point of the two lines is where the im-

provement ratio has the maximum value. If r<2s+m,
then

I= (1 —ﬂ) - (2—3) G for —=—<G=<l1
r r r+s

_r—s—m

Tnax r+s

When r—s—m<0 in addition to the condition
above, 1< 0 independent of the value of n. So r=s+m
is the necessary condition where the parallel system is
not worse than the sequential system. Although 1—0

S. TERAMURA

-]
w
- {0,1) (1.1)
€
[
E
2
3 1=G
a
£

3

r-moL)

3r-m d

(0,0) [s * (1,0 GC ratio

(1.-1)
Fig. 2 GC ratio and Improvement ratio.

when m—0 or r—+, the discussion above is mean-
ingless in the latter case because G=0 regardless of the
values of other parameters.

The right expression in (3) is a line through the point
(0, 1). In this case, G is considered as a function of r
decreasing monotonously. Note that 0<r=<oo,
1>G=0. Let o be the coefficient of this expression,
when 7 varies from 0 to 1, the range of « is

—2-Z<a<-2
s
This implies that G can be chosen so that /=0

whatever value 7 has. Let G° be the maximum value of
G that satisfies the condition above:

1— (2.;.&22’1) G'=0

s+mn
o Stmm
2st+mn+m
When G=<G°, =0, so
s+mn s+mn

_r+s—(r—m)n52s+mn+m rd=mzs+m

After all, n(1—n)=s+m is the necessary and
sufficient condition where the parallel system shows bet-
ter or equal performance to the sequential system.
Under this condition, Im. is given when both expres-
sions in (1) are equal, so next equation can be
calculated:

2s+(1+n)ym=r(1—mn))

By combining equations (1) and (4), we can express
I.ax by means of r and m:

—m
I = r—m _ r 5
max 3"—”2_ m ()

J——
r

-t

Analysis of Parallel Garbage Collection with Multiple List Processors and Garbage Collectors 233

Or by means of s, m and n:

_ stmmn 1

= = =
3s+2mn+m 3+(n)m

s+mn

When m=0 in (5) and (6), Inx—1/3. Note that I

#1/3 when r— or =1 in (6) because G=0 or G=1

respectively. We can see that I,..=1/3 from the figure

also. This corresponds to the result of Hickey’s analysis
that Gma=150%.

(6)

max

4. Multiple LPs and GCs

4.1 Analysis of the Case Where Access Conflict is
Ignored

We discussed the system with an LP and a GC in the
previous section. In this section, the system with the
multiple LPs and GCs will be considered.

A deque cannot avoid the access conflict in the mark-
ing phase when there are multiple GCs. Therefore, we
use the stack the access of which is the indivisible opera-
tion. Each GC pops a cell from the stack and marks the
linked list from the cell. In the collecting phase, the
whole cell space is divided into subspaces sequentially
to be assigned to each GC. They scan each subspace and
reclaim the garbage cells of the space. Note that every
GC should synchronously change their phase. Consider
that a GC enter the collecting phase while others are still
in the marking phase. Those cells scanned by the GC
are not necessarily marked yet, and possibly reclaimed
even if they are alive. All the GC should find the mark-
ing stack empty to exit the marking phase. Similarly all
of them should complete scanning to exit the collecting
phase.

Firstly, we ignore the delay caused by the access con-
flict. Let / and g be the number of the LP and the GC re-
spectively. We observe the improvement ratio over the
sequential system. Special care should be taken that the
more LP is, not only the smaller r is but the larger L is.
7 can be greater than 1 and all the LPs are forced to
cease if N is the fixed value.Therefore we should keep 7
constant by changing N according to the number of the
LPs when the parallel system with multiple LPs is com-
pared with sequential system.

Each LP creates a cell every r time units and produces
a garbage cell at the same rate. Each GC marks and
scans a cell every m and every s time units respectively.
The number of cells contained in each subspace is N
and the number of active cells possessed by each LP is
L. The parameters of the total values of the system are
denoted by adding apostrophe (’) to the parameters de-
scribed in Table 1:

‘=rfl
m=m|g
s’=s/g

L'=IL
N'=IN
The formulas shown in the previous section can be
expressed as functions of / and g.

The improvement ratio can be calculated the same as
in the previous section:

r(l—m)
r+s—(r—m)n’
[{2s+(1+m)m}
—g{r+s—(r—-m)7r}) M

=min(c,(1—i-ﬂ>—i(2—ﬂ)c) ®
9 r) g r

=min (G, 1—é (2+ﬂ‘_")> G) ©

I(l, g)=min (1—

s+mn

(8) and (9) are the lines through the point (1, 1—2//g)
and (0, 1) respectively. I, is given when both expres-
sions in (7) are equal.

-
Io= gr—Im _ g r (10)
" gr—Im+2r
gr—Iim+2lr g+2l—li;'—
Or
Lo g(s+mn) _ g
max ™ - - 1—m)i
(g+21)(s+mn)+(1—n)im g+21+(n)lm
s+mn

an

When m—0, In.—g/(g+2!) in (10) and (11). The
dependence of the GC ratio and the improvement ratio
is illustrated in Figure 3, where (/,g)=(1, 1), (1,2)
and (1, 3). Inax is 1/3, 1/2 and 3/5 in each case.

4.2 Analysis of the Case with Access Conflict

As we described, when m—0, I..—g/(g+2l). We
can see that any number of the LPs never have to wait
as far as the number of the GCs is large enough from
the fact that Jn.c— 1 when g— 00, But I, is never equal
to 1 because m cannot be reduced to 0 in the real
system. Moreover, the more the number of processors,
the worse the improvement ratio because of the delay
caused by the access conflict.

We define access rate to be the proportion of the time
used for accessing the shared resource among the total
execution time. Let x and y be the access rate of each
LP and GC. Consider that / LPs and g GCs access the
shared resource simultaneously. We also define P as the
LPs’ execution time if no access conflict occurs and Q
as the delayed execution time by access conflict. The
ratio Q/ P is the function of x, y, / and g, named ¢:

(Ix+gy){l+e(x, 1)-e(y, 9)}
e(x,l)+e(y, g)

where e(X, N) is the total access rate of N processors

{1 g)=

234

0.1)

Improvement ratio

GC ratio

(0,0) (1,0)

(1,-1)
Fig. 3 GC Ratio and Improvement Ratio of Multiple GCs.

whose individual access rate is X, given below:
1+X)V-(1-Xx)¥
a+x)"+a+x)"

m, s and r are multiplied by {=£&(x, y, /, g) times, so
the improvement ratio is

. ré(l1—n) _E. 2s+(1+n)m)
I=min (1—-————— s ——r+s—(r—m)n

e(X,N)=

(12)
=min (.f(;+1—5,(1—5~1"—)—E (2—ﬂ)c) (3)
g g\" s
. 1 (. mi-n)
=min (¢G+1—¢, 1= (2+~——) G) (14)

s+mn

Therefore,

m
_gr—lm+2(1—{)lr_g+{2(l ¢ T}’
T gr—im+20r

Imax m
g+a-1""

Or
g(s+mn)+(1—&){2s+(1+n)m}
max = (g+2l)(s+mm)+(1—n)im
+(1-¢) {2+w} !
_g s+mn

- (I—n)im
g+2U+——
s+mn

To make Inx—g/(g+2/), £~1 in addition to m—0is
required. The left expression in (13) is the line through
(1, 1) with a coefficient of £(=1). Let G, and G, denote
the GC ratio for which the value of the two expressions
in (12) become 0, and G; be G for which they intersect
‘each other.

G| is

S. TERAMURA

1
Gi=1-—
' ¢

We can determine the condition of r where /=0 by
considering the outline of the graph of (13). When
2r—m#0,

_gr—=Imé¢

12r—m)¢

Formula (13) shows 7 as n varies from O to 1, that is,
G varies from s/(r+s) to 1. We assume that 2r—m>0
because a GC marks a cell faster than an LP consumes a

cell in general. (We can analyze the case where
2r—m<0 or 2r—m=0 similarly.)

1. if G;=1(>G))

I=z0 when G, =<G=l1
2. if Gi=G<1

I=0 when G/ =G=G,
3. if G:<G,

2

I<0 when ——=<G=1 (always)
r+s

The necessary and sufficient condition where 7=0 is
G, = G,. Figure 4 is the graphic representation of the
case of 2.

Similarly, from the right expression in (14), we can
see

=9 _stmn
G, IE 2s+mn+m

The right expression in (14) is a line with negative
coefficient. Hence, the sufficient condition to be /=0 is
G, =< G,. The smaller ¢ is, the larger G, is, and conse-
quently the range of G where 7=0 becomes wider.

When the number of GCs increases, not only I
becomes larger, but G,, the lower limit of G where the

©.1) ¢ / (1.1)
\\

GC ratio

Improvement ratio

af .
0.0) G Q\(1 0

0,-1)

Fig. 4 GC ratio and Improvement ratio.

Analysis of Parallel Garbage Collection with Multiple List Processors and Garbage Collectors 235

parallel system has an advantage grows large.

The range of G in general list processing is known to
be 10~30% [9]. If G, exceeds 0.3 while running such an
application, the improvement ratio is always negative.
Especially when G, = 1, it is not desirable to increase the
number of GC because the range (G;, 1) where I=0
becomes narrower.

The optimal number of the GCs can be estimated ap-
proximately as follows. The GCs ratio depends only on
the program to be processed. So we can guess the range
of the GC ratio (G, Gn) beforehand. G,<G), and
Gri<G; is required if real-time response is indispen-
sable. But if it does not matter so much and only better
performance than sequential system is needed, then
G\ =Gy, and G, < G, is sufficient. This condition is not
always satisfied because the interval (G,, G») may be
wider than (G,, G;) in the real system. However, we
should not choose g for which there’s no (or little, if
any) intersection of these two intervals. Consequently,
g can be determined so that the relation described above
may be satisfied as much as possible.

The dependence of I« on the pair (/,g) are il-
lustrated in Figure 5. Some parameters are supplied
their value to draw this graph. The flat plane of the
graph is where the sequential system shows better per-
formance. There’s little effect by increasing the number
of the GCs if current number is more than 4.

4.3 Appending Collected Cells

In this section we analyze the effect of the time to ap-
pend collected cells, which was ignored in Hickey’s
analysis. We ignored this factor in 4.1 and 4.2 because
this does not affect the results obtained in these sections
so much. The number of the cells created in the stable
state is not constant, but the set of which is a sequence
of difference increasing every other G.C. cycle.

In collecting phase, the whole cell space is scanned to
examine the color field of each cell. If the color is white,
the cell is appended to the free list. If it is not white, the

Improvement Ratio
(20,20)

(20,1)

Improvement Ratio

Fig. 5 I, as(g,/) vary.

left pointer field is checked. If its value is f, which in-
dicates it’s a free cell, nothing is done while it is whiten
otherwise. It takes a longer time to process a garbage
cell than to process a non-garbage because of the appen-
ding procedure.

We use the parameters defined by Hickey. The G.C.
cycle is assumed to be zero-origin and the LP starts its
process at the very beginning of the Oth cycle. As all the
black garbage cells existing at the end of the previous cy-
cle are whiten in the collecting phase, we can see that
Wi;=B,;_,. The time required for the root insertion
phase is negligible.

Let a be the time needed to append a cell to the free
list. In the ith (i=2) G.C. cycle,

tcycle;=tscan;+tmark,=sN+aW,_,+m(L+B;)
=sN+mL+aB7-2+mB;
Hence,

B,=min (tcycle,-/r, N_L_B[-l)

. (sN+ mL+aB;_,+mB,;
=min

) N_L_Bi—l)
r

(15)

The left expression in (15) shows the stable case while
the right is the non stable case. Clearly, r>m is the
necessary condition for the LP not to wait. Under this
condition, the amount of the ith black garbage is

_SN+mL a

Bi=——+ B,
r-m r—m

Note that there’s no reclaimed cell when i=0 or 1,
_sN +mlL
T r-m

00— D)

i.e., {B,} forms a sequence of which value changes
every other G.C. cycle. Let A,=B,,, then B,,=B,,_,,

con gl

k=0 \I'—m
If a<r—m,

L& a ¥ 1 r—-m
lim >} | ——] = = —
n~o I \r—m a r-m-—a

r—m
r—m a
Aw=(———) Bo=(1+——) B, (16)
r-m—a r-m—a

and the sequence converges to some finite value. If
azr—m, then A, diverges, and the LP is forced to wait
when B; exceeds N— L — B;_,. It follows that the condi-
tion for the system to be stable is

N—-L
2

O0<a<r—m and Ao=<

and the condition to be critical is

236

azr—m or Ag> ILZ——IL

Let y denote the value of a/(r—m). Suppose that
y <1 and the number of the LP and the GC is multiplied
by n times. The value of r and m can be reduced to 1/n,
while @ cannot be always reduced to 1/n because the
distribution of the garbage is not uniform among every
subspaces. Hence y may exceed 1 where the system
would be non stable.

Ao shown in (16) is the maximum number of cells
created by the LP without waiting and corresponds to
G described in 2.2. A can be decreased by reducing
a. When a is small, less cell space is required to be stable
state. Figure 6 shows how the values of F;, B; and W;
change as time varies. The stable state is shown in (a)
and non stable state is shown in (b). The system does
not always settle into stable state even if the first two
cycles are stable. Moreover, if the LP is to wait even
once, it would be kept waiting afterwards, that is, the
system cannot be alternating.

Thus, the improvement ratio and its maximum value

are:

(m—a)(1—mn)
=mi 1-12+———7—"F |G
I=min (G’ (a(l—n)+s+mn

1+
_r+a—m__ r
" 3rtq-m _ a—m
3r+a—m 3+
Or
1. stable
w
®
[&]
s
2
[
Z

G.C. cycle
(a)

2. nonstable
f _______ Fo Wi\ _ w
N-L [T A \/’i
¢ L7 8\ T BN 1B |

(b)

Fig. 6 F,, B, and W, change as time varies.

S. TERAMURA

s+mn+a(l—n) 1

3s+2mn+2a(l—7r)+m= (1—n)m—a)
s+mn+a(l —n)

Imaxz

The maximum value of the productivity speedmax
Omax 188

3r=m+a 3 m-—a
Omax = =

2r 2 2

It follows that when a—m >0 then I, >1/3 (i.e.,
Omax>3/2). In other words, the parallel system is more
efficient than the sequential system when the time to ap-
pend a cell is longer than the time to mark a cell. This
leads to the fact that parallelizing G.C. would give bet-
ter performance on such a Lisp machine which can
mark a cell faster by special hardware. From the condi-
tion G= G® where the parallel system is not worse than
the sequential system, (1 —n)=s+m is acquired. This
condition is independent of the value of a.

The analysis of the case of multiple LPs and GCs is
similar. The maximum improvement ratio is

m-—a
g+{2a—{)——77—}1

Ima)(:
+21—ﬂ1
g r
(1—n)(m—a)
=g+(1 © {2+s+mn+a(l-—n)}
g+2i+ (1—n)(m—a)l

s+mn+a(l—mn)

and we can see that when m—a—0 and ¢—1, I~
g/(g+21).

5. The Results of Experiment

We carried out some experiments to confirm the
analysis on the multiprocessor Lisp machine SYNAPSE
[5]. SYNAPSE has some special hardware to support
parallel G.C. One of them is a hardware stack of which
access is an indivisible operation. To reduce access con-
flict, SYNAPSE has 4 memory blocks with their own
bus according to their usage. A cell block is one of them
and it has 8 Mbytes memory (1 M cells).

We use six versions of Lisp as follow:

1. seq

The conventional sequential G.C. system
2. paral

The system with one LP and one GC

3. para2
The system with one LP and two GCs
4. local

Reducing access conflict of version 3 by ap-

pending the collected cell locally to each GC
5. fast

Modify the initial structure of the free list of

version 4 so that the distribution of the gar-

bage cells may be balanced among each

Analysis of Parallel Garbage Collection with Multiple List Processors and Garbage Collectors 237

subspace

6. qcons
Reducing some overhead of version 5§ by
dividing the free list into sublists

The modifications in version 4 and 5 are intended to
shorten the time to append the collected cells. Compiled
function produces no garbage at context switching, so
we use an interpreter. Among Lisp contest benchmark
programs [8], we choose bit-a [10] and TPU [11], of
which G.C. ratio is comparative large. In addition, we
define a function named cell-eater, which consumes a
lot of cells at a high speed. It is intended to simulate
multiple LPs running simultaneously, because we have
only one LP.

We measure the value of m, s and a of each version,
and the value of r of each program. Some of the results
are shown in Table 2 and 3. Table 4 shows the
value of B, y and A« of cell-eater when 7=0, where y
is @/ (r—m). From the table, the following are shown:
as to paral, B, diverges because y>1. So LP is forced
to wait. The value of y of other parallel versions is less
than 1, so B, converge. But the state of para2 will not be
stable because 24> N. In fact, paral takes longer
than seq to complete execution, and para2 takes a little
longer than local, fast or gcons(about 4%).

Only cell-eater runs faster in the two GCs system than
the one GC system when 7=0. Cell-eater consumes

Table 2 The value of m, s and a.

m s a
seq 46 18 15
paral 51 20 26
para2 28 10 38
local 28 10 18
fast 28 10 10
qcons 28 10 9
(usec.)
Table 3 The value of r.
cell-eater bit-a
seq 55 240
par! ~ fast 77 260
qcons 59 241
(usec.)

Table 4 The value of By, y and A .

B, Y Ay
paral 0.79N 1.39]
para2 0.2IN 0.77 0.91N
local 0.2IN 0.35 0.32N
fast 0.2IN 0.20 0.26N
qcons 0.33N 0.28 0.46N

cells at least 4 times faster than other benchmark tests.
As we described above, this is regarded as multiple LPs
running together, or a simulation of some compiled
function involving many cons. In other words, 2 GCs
can reclaim the garbage cells without interruption if 4
LPs execute these benchmark programs together. From
this experiment, we can see that excessive increase of
the number of the GCs reduces the performance of the
system.

Figure 2 shows the relation between the improve-
ment ratio and the GC ratio as n varies. The function
used for evaluation is bit-a. From this figure, we can see
that the experiment supports our analysis on the whole.
That is, the figure corresponds to the graph of one GC
and two GCs in the figure 3 with some execution
delay. In version 2~5, I-intercept is about —0.1 and
hence £=1.1 from formula (14). More exactly, £ is less
than 1.1 because there is overhead of mutual exclusion.
In version 6, this overhead is reduced to nearly 0, and
from the graph £=1.04. This value is considerably
smaller and can be almost ignored in this case.

6. Conclusion

We have analyzed the parallel garbage collection by
introducing two parameters, the improvement ratio and
the GC ratio. The conclusions derived from our discus-
sion are:

1. The optimal number of GC varies according to
the application. To increase the number of GC without

.2 o
£ (o, 1) - paral
: a para2
5 o local
E " X fast
§ M ° gecons
[=% o
g
L
0,0) GC ratio
b
(1,1)
(07_1)

Fig. 7 The result of our experiment.

238

considering the application is not only meaningless but
causes access conflict to be longer processing.

2. Optimal number of GC can be estimated ap-
proximately if the value of 7 and r are provided.

3. Total execution time can be improved by
shortening collecting phase. In particular, it is impor-
tant for collecting process to be distributed equally
among multiple GCs and minimize the time to append
the collected cells.

4. The improvement ratio in the system with /
LPs and g GCs gets near to g/(g+2/) when m—a—0
and ¢£—1.

5. The condition for parallel G.C. system to be
stable is

N—-L

0<a<r—m and Aw—T

and the condition to be critical is

N-L
azr—m or Am>_2_

Though our analysis is correct as to some ex-
periments, it is not true in every case. This is due to next
two facts: one is that the value of some parameters in se-
quential G.C. version differ from those in parallel
system. Another, this one is considered the main
reason, is that the assumption *‘every newly created gar-
bage is marked garbage’’ may not be true if the lifetime
of the cell is very short. Consequently, this analysis is
meaningful in the sense that the worst case of the
parallel G.C. can be given as Hickey described.

We conclude that it is not only very effective but
necessary to use multiple processors for GC in the
parallel G.C. when the amount of cell consumption is

S. TERAMURA

large. Ultimately, parallel G.C. is one of the best way of
G.C. in the high performance multi-processor list pro-
cessing system.

Acknowledgement

The author wishes to thank Prof. Masakazu
Nakanishi for his comment.

References

1. Dijkstra, E. W. et al. On-the-Fly Garbage Collection: An Exer-
cise in Cooperation, in Lecture note in Computer Science, No. 46.
Springer-Verlag, New York (1976): Comm. ACM. 21(11) (1978), 966-
975.

2. Hickey, T. et al. Performance Analysis of On-the-Fly Garbage
Collection, Comm. ACM 27(11) (1984), 1143-1154.

3. Kung, H. T. et al. An efficient parallel garbage collection system
and its correctness proof, Tech. Note. Dep. Computer Sci., Carnegie-
Mellon Univ., Pittsburge (1977).

4. Lamport, L. Garbage Collection with Multiple Processes: An
Exercise in Parallelism, Proceedings of the International Conference
on ‘Parallel Processing’, Walden Woods (1976), 50-54.

5. Matsui, S. et al. SYNAPSE: A Multi-microprocessor Lisp
Machine with Parallel Garbage Collector, Proceedings of the Interna-
tional Workshop on Parallel Algorithms and Architectures (1987),
131-137.

6. Newman, 1. A. et al. Alternative Approach to Multiprocessor
Garbage Collection, Proceedings of the International Conference on
‘Parallel Processing’ (IEEE Computer Society) (1982), 205-210.

7. Newman, 1. A. et al. A Hybrid Multiple Processor Garbage Col-
lection Algorithm, The Computer Journal, 30, 2 (1987), 119-127.

8. Okuno, H., G. The Report of The Third Lisp Contest and The
Prolog Contest, 33, 4, IPS Japan (1985).

9. Wadler, P. L. Analysis of an Algorithm for Real Time Garbage
Collection, Comm. ACM 19(9) (1976), 491-500.

10. Nakanishi, M. Lisp nyuumon-SYSTEM TO PROGRAM
(Japanese), Kindai-kagakusha (1986).

11. Chang, C. et al. Symbolic Logic and Mechanical Theorem prov-
ing, Academic Press (1973).

(Received December 21, 1987; revised January 19, 1989)

