Analysis of Accuracy Decreasing
in Polynomial Remainder Sequence
with Floating-point Number Coefficients

TATEAKI SasAKI* and MuTsuko Sasaki®

Let (P, P;, P;,...) be the univariate polynomial remainder sequence with floating-point number
coefficients. Let A roots of P, be close to u roots of P,, and let deg (P;)=min {4, u}. Then, the accuracy of the
coefficients of P .;, i>0, decreases significantly. The accuracy decreasing in P, was investigated in a previous

paper. This paper almost clarifies the phenomenon of accuracy decreasing in P+, i=1, 2,. ..

, under the

restriction that degrees of initial polynomials are not large. It is shown that if the close roots are concentrated at
one point then the accuracy decreases at each calculation of Py, i>0. If the close roots are distributed around r
points, r>1, which are mutually well-distant then the accuracy decreases each time the degree of remainder
decreases by r. Furthermore, the amount of decrease of accuracy is clarified, with emphasis on the case Py(x)

< dPy(x)/dx.

1. Introduction

Let F and G be polynomials in single variable x.
Fx)=fix'+-+fo, fi#0,
G(X)=gnx™+---+go, gn#=0, Izm. (1.1)

The / and f; are called degree and leading coefficient, re-
spectively, of F and abbreviated to deg (F) and Ic (F):
deg (F)=I, Ic (F)=/f. By quo (F, G) and rem (F, G),
we mean the quotient and the remainder, respectively,
of Fand G. Given F and G, we calculate the polynomial
remainder sequence (PRS in short)

(P\=F, P,=G, P5, --)
by the iterative formula (¢; is a number specified in 2.)
ciPiyy=rem (Pi-, P}), i=2,3,.... (1.2)

The PRS has been used for many years to separate
real roots of univariate real polynomial (in this case,
PRS must be calculated as a Strum sequence [1]), and
so on. Furthermore, one of the authors and Noda show-
ed recently that PRS can be used to separate close as
well as multiple roots nicely [2]. In these applications,
PRS is often computed efficiently by treating its
coefficients as fixed-precision floating-point numbers.
In this paper, we call PRS with floating-point number
coefficients approximate PRS.

It is known that the accuracy of the coefficients of ap-
proximate PRS decreases significantly in some cases,
and such a case happens when the initial polynomials P,
and P, have mutually close roots. Therefore, we must
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treat approximate PRS carefully, otherwise we may be
lead to a wrong answer. On the other hand, the
phenomenon of accuracy decreasing gives us good infor-
mation about the initial polynomials, which may be uti-
lized variously. In fact, in [2], we showed that approx-
imate PRS allows us to calculate not only the number of
but also the mutual distances of close roots of a given
polynomial. Similarly, [3] discusses the usefulness of ap-
proximate Strum sequence. In order to get such infor-
mation, analysis of accuracy decreasing is indispen-
sable.

The phenomenon of accuracy decreasing has been
analyzed considerably in [2] from the viewpoint of ap-
proximate GCD (greatest common divisor), but the
analysis is quite incomplete. This paper almost clarifies
the phenomenon, under the restriction that degrees of
initial polynomials are not large. We will see that the
phenomenon of accuracy decreasing is not simple but
changeable according to the distribution of close roots.
Furthermore, the amount of decrease of accuracy is
related closely with the distance of mutually close roots.

In 2. we define necessary notions and discuss the treat-
ment of polynomials with floating-point number
coefficients. In 3. ~6. we analyze the accuracy decreas-
ing in four typical cases: 1) the close roots are concen-
trated at one point, 2) the close roots of different
mutual distances are concentrated at one point, 3) the
close roots constitute r distant clusters, with the same
number of roots in each cluster, and 4) the close roots
constitute r distant clusters, with different number of
roots in each cluster. Two examples are given for each
case.
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2. Treatment of Approximate Polynomials

The definitions and discussion in this paper follow to
[2] basically, but they are slightly more general and
rigorous than those in [2].

Definition 1 [maximum magnitude coefficient]. The
absolute value of the maximum magnitude coefficient
of F(x) is written as mmc(F):

s Rl 2.1

The mmc (F) is nothing but the infinite ‘“‘norm”’ of F,
i.e., mmc (F)=Fllw.

mme (F)=max {Ifil, . .

Definition 2 [numbers of similar magnitude]. Let f
and g be numbers (may be complex), with g#=0. By
f=0(g), we mean that 1/c<|f/gl=c, where c is a
positive number not much different from 1. (Usually,
<0’ denotes Landau’s notation, and we are using ‘‘O”’
in some different meaning.)/

Let Fand G, given in (1.1), be univariate polynomials
with floating-point number coefficients. If F and G con-
tain coefficients of very different magnitudes, then suc-
cessive application of algebraic operations to F and G
may lead to numerical instability. A practical way of
handling such polynomials is to ‘‘regularize’’ them, as
was done in [2].

Definition 3 [regularity]. The F(x) in (1.1) is called
regular if

Ifil=0(1) and

max {Ifi-1l,. .., |fol }=either O(1) or 0. (2.2)

The set {F(x), G(x)}, with F and G given in (1.1), is
called regular if

1fil=0(1), lgml=0(1), and
max {1ficil, ..., 1fol, Igm-1l,. .., lgol}
=either O(1) or 0./ 2.3)
Note. Any polynomial F(x) can be made regular by

the transformation F(x)—&F(nx), with & and 7
numbers. Similarly, any polynomial set {F(x), G(x)}
can be made regular by the transformation F(x)
—+¢rF(nx) and G(x)— &G (nx).

In the analysis of polynomial arithmetic, estimation
of the magnitude of coefficients is quite messy. If we
consider the upper bound of coefficients rigorously, the
estimated upper bound is often unrealistically large.
For example, even the simple polynomial (x+ 1)*" gives
a rather large coefficient ,,C,. In this paper, we adopt
the following very simple and practical policy to avoid
the complexity of discussing the magnitude of
coefficients rigorously.

Policy [treatment of the magnitude of coefficients].
Let F, G and H be univariate polynomials satisfying
F=GH. Then, we regard that
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mmc (F)=0(mmc (G) X mmc (H))./ 2.9

Remark 1. This equality is surely valid if deg (F) is
small or medium, but it may be invalid for polynomials
of large degrees. Thus, our discussion in this paper is
valid only for polynomials of low or medium degrees.
With this policy, analysis of accuracy decreasing
becomes very simple and clear, as we will see below.
The following theorem is well-known in algebra.

Theorem. Lettherootsof F, givenin (1.1),bea,, . . .,
oy, then
max {legl, ..., laul}

<t+max {Ifii/fil, ..., \folfil}.7

With this theorem, we see that the roots of regular
polynomial or regular set of polynomials are located in
a circle of radius O(1). Therefore, we can define the
close roots as follows.

Definition 4 [close roots]. Let o; and o; be roots of
regular polynomial F(x) or regular set of polynomials
{F(x), G(x)}. If 0=<la;—ayl«1 then o and o; are
(mutually) close roots. 7

Following [2], we calculate the approximate PRS as
follows.

Algorithm for approximate PRS. Let {P,, P} be
regular set of univariate polynomials, with deg (P1)
=>deg (P;). We calculate the remainder sequence (Pi,
P,, P, . . .) by the following iteration formula.

Qi—quo (Pi-, P}), i=2,3,...,

P, +—rem (Pi-1, P;))/max {1, mmc (Q)}./
2.5)

Remark 2. If mmc (Pi-;))»mmc (P;) or |lc(P)I
«mmc (P) then mmc (Q;) may become much larger
than 1, and mmc(rem (P;—;, P;)) may become much
larger than mmc (P). With the above formula,
however, we have mmc (Pi+) < O(mmc (P))).

The formula (2.5) has very nice properties as follows,
see [2] for the proof.

Property 1. Suppose the accuracy of the coefficients
of P;,; decreases by M’ bits by the cancellation of
almost equal numbers in the calculation of rem (P;-,
P)), then we have

mme (P;+,)/ mmc (P,)=0Q™™). (2.6)

Property 2. Let {P, P,} be regular and the
coefficients of P, and P, contain errors less than or
equal to &, with ¢ a small positive number. By error (¥R
with f a floating-point number, we mean the error of f.
Then, so long as mmc (P;)>» ¢, we have

error(coefficients of P,)=O(e)./ 2.7
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Property 3. There exist polynomials 4; and B; satisfy-
ing

AiP,+BP,=P;+AP;,, mmc (4P;)=0(¢),

deg (4) <deg (P))—deg (P),

deg (B;) <deg (P))—deg (P),

mmc (A;)= 0(1) and mmc (B;) = O(1). (2.8)
Usually, we have mmc (A4;)=0(1) and mmc (B;)
=001)./

In the calculation of approximate PRS, the accuracy
decreasing due to the cancellation of almost equal
numbers is crucially important and, in this paper, we
analyze only this kind of accuracy decreasing. Then, ac-
cording to Property 1, we have only to investigate the
magnitude of coefficients of P, i=3,4,. ...

Example 1 shows an approximate PRS calculated by
(2.5) with double-precision floating-point arithmetic.
We see a strong reduction of mmc (P;) at i=6 and i=7,
and the PRS suggests strongly that there exists a definite
relationship between the magnitude reduction and the
distance of mutually close roots.

Example 1.
P, =(X—0.500)%(X —0.502)
*(X+ 1)x(X—2)%(X—1.5)
P,=(X—0.501)%(X —0.503)
(X — (X +2)+(X+1.5)
P3;=—4,998+ X**4+5.013997% X **3
+4.7414925% X%%2— - - -
P,=6.97880794F — 1% X*%3 —7.01037162E — 1 % X %2
+1.78930204E — 1% X — - - -
Ps=8.40067492F — 1 * X**2 — 8.41442765E — 1x X
+2.10704053E—1
=1.87196957E —3* X —9.38795693FE —4
P;=—1.39801471E—-9

3. Close Roots Concentrated at One Point

Let & be a small positive number, 0<d<« 1, represen-
ting the average distance of mutually close roots. We
first note a simple fact which we will use in the follow-
ing discussions without referring to.

Remark 3. Let C(x) be as follows.
Cx)=x"+dc,-1x*"'+ -+ +8%,,
where ¢,;=0(1) or 0, i=0, 1,.... Let A(x) be a

polynomial whose coefficients are Ilumbers of O(1) or 0.
If A(x)=x*A(x), with £ =0 and A(0)=0(1), then

1/
AX) Cx)= 3, alx'+0dayx—1x"* !

i=vtx

+o e+ Oax",

T. Sasaki and M. Sasaki

where a/=0(1) or 0, i=k, k+1, . ..
B(x) of the form

. Similarly, given

1
Bx)= 3] bix'+6byse—x*t !

i=v+x

+,,,+5v+xb0x0’

where b;/=0(1) or 0, i=0, 1, ..., [, we have
rem (B(x), C(x))=06"*'d,-1x* "+ - - - + 0 dox°,
where di=0(1) or 0, i=0,1,...,v—=1./

Let F and G be the following univariate polynomials.

Fx)=F(x)-x—w+3d) - (x—w+4,),
181=0(), i=1,...,4,

Gx)=Gx) (x—w+3{) - - (x—w+3,)),
16;—61=0@), i'=1,...,u 3.1

Let the expanded form of the above close root factors
be

(X+3) - (X+8)=X"+c)u X* ™'+ +c5,

Pl p

P
C,;_|=Z; 6,‘, C;_2=Z Z J'Jj, etc.,

where X=x—w and p=A or p=u. Hence, we see
¢,-i=0(6°) or 0. Let v=min {4, u}, and assume that
Cp-1=" > =cp—x+1=0 for both F and G while ¢;_,#0
for either F or G (x=1 usually). Let C be defined as

Cx)=X"+0d"c,- X' "+ -+, 3.2
where ¢c;=0(6% or 0,i=0, 1, . . . . Dividing Fand G by
C, respectively, we can decompose F and G as

F(x)=F(x)-C(x)+ A F(x),
G(x)=G(x)-C(x)+AG(x). 3.3)
Noting Remark 3, we find that AF and AG are given as

1

Z f}Xi+5K+]fl—K—|XA—K_l

i=l-x

AF=4"x

+o+ 3o,
Z giXi+6x+lg‘l—K_lXu—x—l

i=p—x

AG=6"x%

+ o+ 8o, 3.4

where, f; and g;, i=0, 1, . . . , are numbers of O(6°) or
0. (We have f;=g¢;=0if i= v, but we leave the terms f, X'
and ¢;:.X’, iz v, in (3.4) for the corollaries to Theorems 1
and 2 given later.)

Lemma 1. Let F and G satisfy mmc (F)=0(1), mmc
(G)=0(1), and equalities in (3.3) with (3.2) and (3.4),
where v=min {A, u}. Furthermore, we assume that no
root of Fis close to any root of G (F or Gitself may con-
tain mutually close or multiple roots), and that if A=u
then F(w)=0(3°) else if <A then G(w)=0(8Y. Let
H=rem (F, G)/max {1, mmc (quo (F, G))}.  Unless
deg (G) 0 and A=y (this case will be considered in
Lemma 2), we can express H as



Analysis of Accuracy Decreasing in Polynomial Remainder Sequence with Floating-point Number Coefficients 397

Hx)=H(x) Cx)+AH(x), mmc (H)=0() or 0,
(3.5)

AH=6"% 3, hX'+8 hy o X7~

i=y'—K

+ - +6"ho. (3.6)

Here, v=v'smax {A, u}, |hl 2089, i=0, 1,. ..,
and v'=v unless special relation holds among
coefficients of F and G. o

Proof. Put Q=quo (F, G)=quo (F, G), then

rem(F, G)=(FC+A4F)—-Qx(GC+4G)
=(F-0G6) C+(4F—Q-AG).

Eliminating the terms, of degrees =deg(G), of
AF—-Q-AG by C as

AF—Q-AG=AQ-C+AR, deg(4R)<deg(G), 3.7

we find that A and AH are given by
H=F-0G+A4Q)/max {1, mmc (Q)},
AH=AR/max {1, mmc (Q)}. (3.8)

The AF—Q-AG is of the same form as the r.h.s. of
(3.6). Put

O=qi-m(x—w) ™"+ - +qo,

then the case v'>v occurs only when A>u and
|gol =O(3). If A>p then v=y and G(w)=0(&"). Since
Q=quo (F, G), conditions deg(G)>0 and G(w)
=0(6°) mean that go=0(d°) unless some relation holds
among coefficients of F and G.

Next, we consider AR in (3.7). Since Ic (C)=mmc
(C)=1, division by C does not increase the magnitude
of coefficients of AR. On the other hand, if |lc (G)!
< O(1) then magnitude of coefficients of Q-AG may
become larger than that of AG by the amount of mmc
(Q). This magnitude increase is, however, exactly
cancelled by the denominator in (3.8). This proves the
lemma. 7/

Note. The h;in (3.6) is usually of O(6°) or 0. The case
0< | Al <O(8% occurs only when mmc (Q)>O(1) and
AF—Q-AG is dominated by 4 F. Hence, the case is rare
to occur if F and G are two successive elements of PRS.

Lemma 1'.
given by

Let A=u+1 and AF and 4G in (3.3) be

!
AF=6"% Y, fiX'+8* ' fi o X7

i=A-«x

+o -+ 8,

AG=0"X . Z g,—Xi+6K+lg,\—K—1XA_K_l

i=A-x

+-- -+ 6%,
then 4 H in (3.5) is given by

3.4")

m—1
AH=0*x ) Z h,'Xi+6K+lh,1-K—1XA_K_I

i=A-«x

+ - +5%,. (3.6")

Proof. Similar to the proof of Lemma 1./

Lemma 2. Let A=x and F and G be
F)=F(x) [(x= W) +0fii(x—w)' '+ - + 3%,
GX)=(x—=w)'+0g,-1(x—w)" "+ -+, (3.9)

where mmc (F)=0(6%, F(w)=0(", and f; and gis

i=0, 1, ..., are numbers of Q3% or 0. Let H=rem

(F, G)/max {1, mmc (quo (F, G))}, then

H(x)=6""#""h,_y(x—w)* "'+ - - - + 5h,,

where =0 or 0, i=0, 1, .. ..
Proof: This lemma is obvious if we note that

(3.10)

1—u
qQuo (F, G)= 3, qilx—w)Y+8gi—u-r(x~w) !
i=A-u

+-- 461, (3.11)

where ¢;=0(8% or 0, i=0,1,. .../

Theorem 1. Let Fand G satisfy (3.1), where {F, G} is
regular, deg (F)=deg (G), and F and & have no other
mutually close (as well as multiple) root. Let (P,=F,
P,=G, P, . . .) be an approximate PRS generated by
formula (2.5). Let k and &k’ be integers such that k<k’
and deg (Py)=min {4, u}. Then,

mme (P)< 0%, i=3,...,k—1, (3.12)
mme (Pe+1)/ mmc (Py) = O(6%),

K is a positive integer, (3.13)
mmc (Py +,)/ mmc (Py) = 0%, (3.14)

where
d=min {deg (Px-)), deg (P:)—«}
—min {deg (Py+1), deg (P)~ K}
(if k=1 then d=deg (Py —1)—deg (Px +1)).

Here, if deg (G)=0 and A>u then x=A—u+1 else
x =1, where equalities hold unless special relation holds
among close roots (hence, k=1 —u+1 or k=1 usually).
Furthermore, in (3.12 ~ 14), inequalities hold only rare-
ly.

Proof. The case of deg (G)=0 and A>pu is obvious
from Lemma 2, hence we omit this case. We first note
that the PRS contains P, such that deg (Px)=min {4,
u}, because F and G are relatively prime and GCD(F,
G)— P, as 9—0. By assumption, F and G can be decom-
posed as (3.3) with (3.2) and (3.4), where either F(w)
=0(6°) or G(w)=0(6°). For integer i, 3<i=<k, put

P,=F.x[C(x)in (3.2)] +4P;, mmc (4P;=O(f),

then either P;_,(w)=0(6° or Pi(w)=0(d", because if
not so then P;_, and P; have more than v approximately

common roots. Therefore, we can apply Lemma 1 suc-
cessively, finding P, % [C(x) in (3.2)], mmc (Pi)=O(5°).
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This proves (3.12). Then, successive application of Lem-
ma 2 to Py—,/mmc(Py-)) and P /mmc (Py) gives
(3.13) and (3.14). Note that if x>1 and Py_,=
Pi-\C+AF and P,=const x C+AG, with AF and AG
given by (3.4), then

Pk+|=5"fv—|Xv_l+ s+ X
+6K+1fv—x—le-K-l+ e,

This makes d in (3.14) complicated as in the theorem. /

Corollary. If Py(x)oxdPi(x)/dx then
mmc (Py+1)/ mmce (Py)=0(3"), (3.15)
Proof. We choose w to be the center of A close roots
of P,=F. Put
P(x)=Px)-C(x), Cx)=(x—w+d) - (x—w+d)),
then &;+ - - - +,=0. Put X=x—w and expand € as
C‘(x)=X‘+(5zc,1_2X"2+ e +6}'Co.
We decompose Cas C(x)=(x—w)C(x)+AC(x), where
C(x)=[dC(x)/dx1/ 4,
Ac(x)=[2520,\—le—2+ s
+@A -1 laX+Adcl/A. 3.16)
Using these expressions, we can decompose P; and
P{=dP,/dx as
Pi(x)=(x—w)B(x)- C(x)+ P(x)- AC(x),
P{(x)=[(x— w)dP/dx+ AP(x)]- C(x)
+[dP/dx]-AC(x). (3.17)
Hence, x =2 for decompositions in (3.3) with (3.2) and
(3.4).7
Theorem 1 tells us that usually we have O(J)-decrease
at Py— Py, and O(6%)-decrease at Pi+i= Pivis1, i=1,
2,. ... This can be observed in Example 1. On the
other hand, if P,(x)cdP,(x)/dx then we have O(6?)-

decrease usually in the step P,— P+, also, as can be
seen in Example 2 below.

K=2.

Example 2.

P,=(dP,/dx)/deg (P)), where

Pi=(X+1)*(X—2)*(X—0.50)x(X—0.49)

*(X—0.52)%(X—0.53)

P;=—7.50188889E — 1% X#**4+1.53538122» X *#3
—1.17763848%X»»2+ - - -

Py=—1.12461684* X**3+1.72067626% X **»2
—8.77270065E — 1> X+ - - -

Ps=5.62488182E —4» X»%2—5.73738847E —4xX
+1.4621363E—4

Pg=5.06392428E — 8+ X —2.58261579E —8

P;=—8.10292702E— 12

T. SAsakl and M. SAsak1

4. Close Roots of Different Mutual Distances

Restriction A. Below, we neglect the case x> 1, with x
defined in (3.2 ~4'), except for the cases Gec dF/ dx and
deg (G)=0. The neglected case is not important prac-
tically while it makes the theorem ugly.

Let d,, . . ., d,; be small positive numbers satisfying

1»8;» - »4,>0. 4.1

Putting X=x—w as before, we consider the following
product.

(X+0u) - (X+,)X - - X (X+3n) - - (X+3n),
1051 =00, i=1,...,r, j=1,...,v. (4.2
Let the expanded form of the above product be
X™V+cha XV g X,

then c¢/,-,=0(d)), unless accidental cancellation occurs,
because

Ch—1=Clr=1y+r-1=

i=

~.
)
.
[}

Similarly, we find
Cho—im+-n=0(d}- - -81-18}) or 0,
I=i=sr, 0<j=v.
Therefore, putting c/,—1=8:C-1, etc., we find
X+0u) - (X+d) X -+ X(X+6n) - (X+6n)
=X"+61Cm 1 X" 4 4+ 00 XY
+ YOO X
+d1 - 07-107co X °, 4.3)
where ¢;=0(6% or 0, j=0,1,..., rv—1.
Now, we analyze the following case.
FO)=Fe) X (X+6u) - (X+8u)% -
X(X+3dn) - (X+n),
G)=G)x (X+5{)-- (X+o)x .-
X(X+0n): - (X +3n), 4.9
where X=x—w as above and
16;1=00), i=1,...,r, j=1,...,4,
16,— 3/t =0(), i'=1,...,r, j'=1,...,u.
4.5)

(The actual case may not be so simple as above, but the
analysis is almost the same.) Theorem 1 is generalized
as follows.

Theorem 2. Let F and G satisfy (4.4) with (4.5), as
well as conditions given in Theorem 1 and Restriction
A.Let (P,=F, P,=G, P, . . .) be an approximate PRS
generated by formula (2.5). Let v=min {A, u} and n be
an integer such that 0<n<r. Let k, k' and k£” be in-
tegers such that k<k’<k” and
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deg (Pu)=rv,
g (Px) 4.6)
(r—n—1)v<deg (Pr)<deg (Py)=(r—n)v.
Let d;=deg (P;-1)—deg (P;), j=2,3, ..., then,
mmc (P)< 0%, i=3,..., k-1, 4.7

mmc (Py+)/ mmc (Py) = O(6%), k is a positive integer,

4.8)
mmc (P +1)/ mme (Py) S O(3% 6757, “.9)
mmc (Py-+1)/mmc (Py-) S O(0757 ™ ). (4.10)

Here, if deg (G)=0 and 4>y then k= A—pu+1, else if
G dF/dxthen k=2, else k2 1, and equalities hold for
x usually. Furthermore, in (4.7 ~ 10), inequalities hold
only rarely.
Proof. We first note that, for any integer n, 0=n<r,
the PRS contains P, satisfying deg (Pi)=(r—n)v,
because P,.—GCD(F, G) if we set d,+1— " —J,—0.
The Py -, and Py are of the forms
Pe_i/mmc (Pe-)=X """ 4 5o f o mp X
+6n6n+lﬂr—n)v—lX(r_")v-l +--,

Pk‘/mmc (Pll’)=X(r—")v+6n+lg(r~n)v—lX(’—")v_l+ Tt .
Therefore, the proof goes similarly to that of Theorem
1.7

We can observe the magnitude reduction predicted by
Theorem 2 in Examples 3 and 4. Note that §; = 10~2 and
J9,=10"% and O(d,d.) magnitude reduction in the step
Ps— P; in Example 3 and step Ps— Ps in Example 4. The
reduction in Ps— P; in Example 4 is O(6%), while that in
P,— Pg in Example 3 is not O(6%) because of the lack of
accuracy; Py is fully erroneous.

Example 3.

Pi=(X—1)%(X+2)%(X~0.500)%(X —0.501)
#(X—0.490)*(X—0.510)

Po=(X+ 1)#(X—1.5)%(X — 0.499)(X —0.502)
*(X—0.485)+(X —0.509)

P3;=1.494x X*»5—3.489457» X*x4
+3.25253548* X **3— - - -

Py=—1.55940005* X**4+3.10932274% X %3
—2.32464915% X#%2+ - - -

Ps=7.40940408E — 3% X»%3 —1.11680386F — 2% X x*2
+5.61101433E—3%X— - --

Ps=4.24593305E — T* X**2 —4.24820146E — 7% X
+1.06263786E—7

P;=—1.91637941 E— 12X +9.90828638E— 13

P;=5.47657254E— 16

Example 4.
P,=(dP,/dx)/deg (P)), where
Pi=(X+ 1)#(X —2)*(X —0.500)*(X — 0.501)
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*(X—0.51)x(X—0.52)

P;=—7.50056806E — 1 X*#*4+1.5272393% X**3

—1.16593856« X %2+ - - -
P,=—1.12485476% X3 + 1.71343808% X **2

—8.69926399E — 1+ X + - - -
P;=1.46663127E — 4+ X**2—1.48330917E —4x X

+3.75005483E—5
P¢=3.8167845E—9%X—1.91141596E—9
P,=—9.29903772E— 15

5. Clusters of the Same Number of Close Roots

Let w;, i=1,..., r, be numbers such that

|w;l =0O(1) and
fwi—w;| » 6 for any i#j. 5.1

Putting X;=x—w;, i=1, ..., r, we consider the pro-
duct
Xi+du) X1+ X - - - X (X, +dn) - (X, +Jn),
16,1 =0O(5), 5.2)

We can expand this product uniquely as follows (the ex-
pansion is made by successive division by (X, -X,),
which guarantees the uniqueness).

XX +HC ) X))+
+Cikx)-(Xi---X.)’,  deg(Ci)<r,
k=0,1,...

i=1,...,r, j=1,...,v.

,v—1. (5.3)

Lemma 3. Unless accidental cancellation occurs, we
have
mmc (C;)=0@"™" or 0, k=0,1,...,v—1.
(5.9
Proof. We first note that, for each i, 1 =i<r, we have
Xi+0a) - (Xi+6w)=X!+dciy-1 X'+ - - +8"Cip,
¢ij=0(@% or 0, j=0,1,...

Expansion of the product in (5.2) gives the term

(H 5"—"'0.-,1([) 'X’f‘ .. Xf

,v—1.

(5.5
i=1

Let k=min {k,, . . . , k,}, then this term does not con-

tribute to Ci-1, . . ., C{ in (5.3), because it is propor-

tional to (X;---X,)*. On the other hand, it gives

nonzero contribution to Ci. This can be seen as

follows. Suppose, for example,

ki—2=k,—1=---=k,,— 1=k, hence k,=k.

Since X;=X,+(w,—w,), we can transform the term in
(5.5) as follows.

XEXEH- - XEXY
=X X W) X X (K XA
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Continuing this kind of transformation, we see that
(5.5) contributes to C¢. This means that the largest con-
tribution to Cy is given by the terms

XX/ X8 Feu X, i=1,...,r,

whose coefficients are of O(6*~*). This proves the lem-
ma./

Now, we analyze the case that the close roots con-
stitute r distant clusters, with the same number of roots
in each cluster. For simplicity, we consider the case

FX)=Fx)x (Xi+du) - (Xi+81) % - -+
X (X;+0n): - - (X +3n),
GX)=CGE)x(Xi+d7) (X +,)% - -
X (X, +67) - (X, +37), (5.6)
where X;=x—w;, i=1,...,r, as above and
18;1=005), i=1,...,r, j=1,...,4,
10;—06/;1=0(8), i'=1,...,r, j'=1,...,u.
5.7
Below, we put X=X, --X,. Let v=min {A, u} and
C(x) be defined as
CX)=X"+6C,—i(x) X"+ - - +8°Co(x),
deg (CH)<r, mmc(C)=00%or0, i=0,1,....
(5.8)

Generalizing Remark 3 given in 3. we see that, by the
division by C(x), F(x) and G(x) in (5.6) can be decom-
posed as

F(x)=F(x)-C(x)+ AF(x),

G(x)=G6(x) C(x)+AG(x). (5.9)
Here, AF and AG are the following polynomials.
FX'+0%F ;X" 2+ - - - +6*F,,

1

1
AF=§x 3
e

i

AG=5X Z G,‘X_i+52Gu—2X”_z+'"+5"Go,

i=p—1

(5.10)
where F; and G; are polynomials such that
deg (F))<r, mmc (F}))=0(6° or 0,
i=0,1,...,1
deg (G))<r, mmc (G))=0(5° or 0,
i=0,1,...,m. (5.11)

Lemmas 1 and 1’ are now generalized as follows.

Lemma 4. Let F and G satisfy (5.9) with (5.8) and
(5.10), as well as other conditions given in Lemma 1.
Let H=rem (F, G)/max {1, mmc (quo (F, G))} and
v=min {4, u}, then H can be expressed as

Hx)=H(x) Cx)+AH(x), mmc (H)=0(©", (5.12)

T. Sasaki and M. SASAKI

AH=§x% f} HX'+0H, ;X" 2+ - +6"H,,

= (5.13)
deg (H)<r, mmc (H)=0@%or 0, i=0,1,...,m,
where v=v' <max {4, #} and v’ =v usually./

Lemma 4’
given by

Let A=u+1 and AF and 4G in (5.9) be

!
AF=6%%x Z F"_I?i_’_d;ﬂ'lp/‘_x_l["nl-x—l
i=A—-xK
+ - +8'F,,
AG=5XX‘Z Gi/‘—,i+(5x+lcj—x—|1\—,l-x_l

i=A-x

+ - +6°Go,
then AH in (5.12) is given by

(5.10)

AH=5" % Z I{iz?i+5~+1HA-,‘_1X"_K—I

i=l-x

+ - +3*H,. / (5.13)

Similary, Lemma 2 can be generalized as follows.

Lemma 5. Let Fand G be the following polynomials.

F(X)=F/(x)X'+6F-((x)X"~'+ - - - + 6'Fy(x),

GX)=Gn(X) X"+ G- 1(X)X™ '+ - - - +0"Go(x),
(5.19)

where X=X,---X,, deg (F)zdeg (G), and F; and G,

i=0, 1,. .., satisfy (5.11), hence Izm. Let (P,=F,

P,=G,...,Px, PccH,...) be an approximate

PRS such that nr<deg (H)< (n+ 1)r for an integer n,
0=n<m. Then, polynomials A and B satisfying

AX)F(x)—B(x)G(x)=H(x),
deg (A)=deg (G)—deg (Pi-)),
deg (B)=deg (F)—deg (Pr-1),

(5.15)
mmc (A)=0(1),
mmc (B)=0(1),

(5.16)
are of the following forms.
A=Ap g1 X" " N4 Ay X072
4+ 8714,
B=B;_ -1 X" '+ By X' "2
+---+46"7""'B,, (5.17)

where mmc (4;)=0(5°) or 0, mmc (B;)=0(4° or 0,

i=0, 1,. ... Furthermore,
H=6H,X"+6" "H,_ [ X""'+ - - - + " "H,,
d=l+m-2n—1, (5.18)

where mmc (H;)=0(% or 0, i=0, 1, .. ..

Proof. We first note that, so long as the degree of H is

fixed, A, B, and H satisfying (5.15) and (5.16) are deter-
mined uniquely up to the normalization factor, see [4].
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Secondly, we note that (5.15) is valid for any value of J,
hence we can regard J as a variable. We consider (5.15)
by neglecting terms of order ¢°,i=1, 2, . . . , successive-
ly. By the neglect of O(J) terms, (5.15) becomes

AF,—BG,=0. (5.19)
The solution of (5.19) satisfying (5.16) is
A=U(Gn/D)X" "', B=U-(F/D)X'" """,
where D=GCD(F,, G») and U is an arbitrary
polynomial satisfying (5.16). Next, assume for integer i,
l=i<l/—n—1, that
A’ =A,’,,—,,—|Xm—n—l+5A,’;.—,,—2X—m_"_2
+..- +6i-IA’l"-"_iXm—n—i,
B'=B[_,-\ X'"""'+6B_,-, X'""?
+-- OBl X (5.20)
satisfy the equation
A'F—B’G=H", mmc (H") < 0(5'), (5.21)
where mmc (A4/)=0(6% or 0, mmc (B/)=0(d° or 0,
Jj=0, 1,..., and A/=B;=0 for j<0. With this
assumption, we determine 4 and B satisfying
AF—=BG=H%"Y, mmc(H*Y)=0(™"). (5.22)

Putting A=A’ +4A and B=B’ + 4B, neglecting terms
of order 6'*!, and using the induction assumption, we
obtain

AA-F—AB-G=§'HOX!tm-r=i-1,
HO=A, o \Fi-i=Bi-p1Gm-i+ . (5.23)
Expressing A, B, and H in terms of unknown
coefficients, we can rewrite (5.15) with (5.16) to a linear
system on the unknown coefficients. Similarly, (5.22)
with (5.16) gives a linear system which is a subsystem of
that given by (5.15). Hence, (5.23) has solutions (in
fact, infinitely many solutions wunless i=d
(=l+m—2n—1)) and we find that
AA=A; pein X", mme (Am-n-i-1) = O0(3%),
AB=B/ i, X'""7"', mmc (Bi-,-i-)=O0(8%).
Thus, we see that the solution of (5.15) is expressed as

(5.17). Eq. (5.18) is a direct consequence of the represen-
tation (5.17).7

Theorem 3. Let F and G satisfy (5.6) with (5.7), as
well as conditions given in Theorem 1 and Restriction 4
given in 4. Let (P,=F, P,=G, Ps, . . .) be an approx-
imate PRS generated by formula (2.5). let v=min {4,
u} and k and k’ be integers such that k<k’ and

deg (P)=vr, vir=deg (Pi+i)<vr,

vrsdeg (Pv)<(v' +1)r, (5.29)
for some integers v, and v’, v’ =v,<v. Then, we have

mmc (P)=0(@%, i=3,...,k—1, (5.25)

mmc (Py+)/ mmc (Py) = O(6%), (5.26)
mmc (Py')/ mmce (Py) < O(6"*9),
d=v+v,—2v'—1. (5.27)

Here, if deg (G)=0 and A>u then k=A—u+1 else
k = 1, and equalities hold for x usually. Furthermore, in
(5.25 ~ 27), inequalities hold only rarely.
Proof. Noting Property 3 in 2. we see that Lemma 5 is
applicable to P, and Py.,. Hence, the proof goes similar-
ly to that of Theorem 1./

Corollary. If Py(x)ocdPi(x)/dx then
mmc (Pe+)/ mme (P)=0(5%), k=2. (5.28)
Proof. We give a proof which can be easily generaliz-
ed to the case considered in the next section, although a
proof similar to that in 3. is possible.
We choose w;, i=1,..., r, to be the center of 1
roots which are close to x=w;, hence d,+ - - +4J,=0.
Putting

P,(x)=P(x)-C(x), (:‘(x)=1:’11 (Xi+3da) - - (Xit+dn),

and expanding € as before, we have
Cx)=X*+8Ci- X* "2+ - - +6°Co.
We decompose C as C(x)=X-C(x)+AC(x), where
CH)=X"", ACX)=8C;y' X'+ +6'Co.
(5.29)
Similarly, we decompose dC/dx as
dC/dx=AC(x)-dX/dx+AC’(x),
AC’ (x)=6%dCs-2/dx)X* 72
+(A—2)82Ci— X dX / dx)+ - - -.
Using these, we can decompose P, and P{=dP,/dx as
Py(x)=P(x)X- C(x)+P(x)-AC(x),
P{(x)=[(dP/dx)X + AP(x)(dX[dx)]- C(x)
+(dP/dx)- AC(x)+ P(x)-AC’(x). (5.30)
Hence, x =2 for decompositions in (5.9) with C=X*"!
and (5.10").7
Theorem 3 tells that, usually, mmc (P;) decreases by
O(J) at Pk_’Pk-}] and by 0(62) at Pk+nr_’Pk+nr+l’ n= l,
2,....Example 5 shows the case that 5=1072%, r=3,
and k=3. We see that the prediction of Theorem 3 is
well verified. Example 6 shows the case that
P,xdP,/dx, with §=107? and k=4, and the result is
again consistent with the theory.
Example 5.
Pi=(X+1)%(X+0.01)%(X+0.02)
#(X +0.49)%(X +0.508)
*(X—1.50)x(X—1.52)
P,=(X~—1)*x(X—0.01)*(X— +0.00)
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#(X +0.50)%(X +0.515)
*(X—1.49)(X—1.51)
Py=2.003% X %6 —4.01475% X+%5—1.0710285%+ X#+4
+ [P
Py=2.63715546E — 2% X%%5—3.02182613E— 2% X4
—3.12331779E— 2% X33+ - - -
Ps=—8.8104723E — 3% X#%4—4.23378864E — 34 X#%3
+1.96697023E — 2% X542+ - - -
Ps=9.91195816E — 3+ X#%3 —9.86421814E — 3% X2
~7.57658018E—3+X— - - -
P;=—3.14053031E — 6% X* %2 —2.38925971E— 6x X
—2.76898269E—7
Py=8.64468426E — 7% X +2.70013245E—7
P>;=4.48641788E—8

Example 6.

P,=(dP,/dx)/deg (P\), where

P,=(X—1)*(X—0.300)*(X—0.302)%(X—0.299)

*(X+0.510)%(X+0.512)*(X+0.509)

P;=—2.9033898E — 1 X**5
+2.54147949E — 2% X% %4+ - - -

Py=—6.63230111E—2*X*x4
—2.78542633E — 2 X#*»3+ - - -

Ps=1.21561063E — 6% X**3+6.36471234F — 8% X*x2
—2.26089335E—T»X+ - - -

Ps=1.16335442E — T» X**2 +2.44298257E — 8% X
—1.77855571E—8

P;=—4.38922505E — 13« X+ 6.87152132E— 14

Py=—4.19157134E— 14

6. Clusters of Different Numbers of Close Roots

Let w;, i=1,..., r, be numbers such that

|wil =0(1) and
Ilwi—w;l »d for any i%j. 6.1)

Putting X;=x—w,, i=1,. .., r, we consider the pro-
duct

(Xl+5ll)' : ‘(X1+5lvl)x e X(Xr+6rl)' : '(Xr+5rv,)’
191 =0(9),

We define functions e(n) and a(n), with integer n, as

i=1l,...,r, j=1,...,v. 6.2)

e(n)=max {0, n}, o(n)= z’; e(v;i—n). 6.3)
i=1

By the successive division by (X"~ - - X &~7)_ which
is of degree a(i), i=0, 1, . . . , we can expand the pro-
duct in (6.2) uniquely as follows.

T. Sasaki and M. SAsAki1

(X‘l" .. 'X)”)+Z Jin_i(x)'(Xf(v'_i)' . .X:(vr_i))’ (6.4)
i=1

deg (C,-)<a(i—1)—a(i), i=1,2,...,v, (6.5)

where v=max {v;,. .., v,}.
Similarly to Lemma 3, we obtain the following lem-
ma.

Lemma 6. Unless accidental cancellation occurs, we
have

mme (C,-;)=0(d°) or 0, L./ (6.6)

Now, we analyze the case that the close roots con-
stitute 7 distant clusters, with different number of roots
in each cluster. For simplicity, we consider the case

Fx)=F()x (X, +61) - - (Xi+du)% - -
X (Xr+¢srl)' : '(Xr+6nl,),
Gx)=Gx) X (X1 +81) (X1 +01,) % - - -

i=1,2,...

X (X, +65) (X +6n), 6.7)
where X;=x—w;, i=1, ..., r, as above and
16, =0(0), i=1,...,r, j=1,...,4;
18;—=0 N =0), i'=1,...,r, J'=1,...,u.
(6.8)

The A; and v; are numbers of close roots of F and G, re-
spectively, located around x=w;. We put

vi=min {4, w;}, i=1,...,r,
sy Vi}e 6.9)

The analysis in §. is directly applicable to the above
case, and we obtain the following theorem.

v=max {v, . ..

Theorem 4. Let F and G satisfy (6.7) with (6.8), as
well as other conditions given in Theorem 1 and Restric-
tion A given in 4. Let (P,=F, P,=G, P;, . . .) be ap-
proximate PRS generated by (2.5). Let v be defined as
(6.9). Let k and &’ be integers such that K<k’ and

deg (P)=0(0)= 3} v,

o(v—v)=deg (Pi+1)<c(0),

o(v—v')=deg (Pv)<a(v—v' —1) (6.10)

for some integers v and v’ such that v’ =v<v, where v
is chosen as large as possible hence v=v—1 usually.
Then, we have

mmc (P)<06%, i=3,...,k—1, (6.11)

mmc (Py+1)/ mme (P) < O(5%), (6.12)

mmc (Pi)/ mmc (P) < O(6"*9),
d=v+v—2v'—1. (6.13)

Here, if deg(G)=0 and A>pu then x=Ad—u+1 else
k=1, and equalities hold for x usually. Furthermore, in
(6.11 ~13), inequalities hold only rarely./

Note. If vi>v,=vi3=--- then some P, satisfies deg
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(Pr)<vy—v; and every root of Py is close to x=w,. This
case was already considered in 3.

If Py(x)ocdPy(x)/dx then
kz2./

Corollary.
mmc (Py+1)/ mmc (Pi) = O(5%), (6.14)
Example 7.
Py=(X—1)%(X+2.0)%»(X+0.510)(X+0.512)
*(X —0.500)%(X —0.502)*(X —0.504)
P,=(X+ 1)*(X—1.5)%(X+0.511)(X +0.509)
*(X —0.499)*(X —0.501)%(X —0.503)
P3;=1.499% X»%6—1.227542* X**5
—5.3697623E — 1% X*%4+ - - -
P,=—1.55461576%X*»5+7.48009375E — 1% X»*4
+8.10339649F — 1 * X#*3— - - -
Ps=7.69315715E — 4% X*%4 +2.89658028E — 3% X **3
—1.81360615E— 3 X%x2— - - -
Pg= —3.22924748E — 3% X*3+ 1.59041136E — 3» X **2
+8.41318405E—4xX— - - -
P;=2.87715338E — 10 X**2+ 1.25063642E — 10+ X
—1.35080302E—10
Py=—1.76078175E — 10%X + 8.83034966E — 11
Py=5.232599E—16

Example 8.
P,=(dP,/dx)/deg (P)), where
Py=(X— 1)#(X+0.300)%(X +0.301)#(X +0.302)
*(X —0.497)%(X — 0.499)%(X — 0.500)*(X — 0.502)
P;=—2.15148859E — 1 * X**6

+3.47949658E — 1# X#*5— - - -
Py= —2.95982284E — 2% X#5

+2.65355441E—2x X*xx4+ - - -
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Ps=5.31977343E — Tx X»%4 —4,28249859E — T» X #%3
+1.24986698E — 8+ X*#2+ - - -

Ps=8.51917176E — 8% X ##3 — 5.94635217E — 8% X% %2
—4.36163135E—~9% X+ - -

P;=—5.20783763E—~ 13« X*%2+1.4973954E — 13X
+5.51406285E~ 14

Py= —3.29858454FE — 14+ X+ 1.64762159E — 14

Py=1.42599702E—19

7. Concluding Remark

We have not analyzed the general case that the close
roots constitute r distant clusters, where each cluster
contains different number of roots of different mutual
distances. The analysis in 4. and 6. shows that describ-
ing such a general case is complicated, but we can easily
imagine the result from the analysis in 4. and 6. Thus,
we may say that we have almost clarified the
phenomenon of accuracy decreasing in approximate
PRS’s of low and medium degrees. However, analysis
of high degree PRS’s is postponed as a future research
theme.

The accuracy decreasing in high degree PRS will not
be expressed so clearly as in this paper. The reason is as
follows. If many roots are distributed within a circle of
radius O(1) then the average distance of neighboring
roots is small, hence we cannot clearly distinguish
mutually close roots from distant roots.
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