A Mechanism for Concurrency Control
in a Coupled Knowledge Base Management System

YuH-JIUN CHEN* and WEI-PANG YANG*

A new concurrency control mechanism in a coupled Knowledge Base Management System is presented. The
system combines a multi-users logic programming system and a Relational Database Management System. The
proposed mechanism, Query-Rule Locking, is inspired by two-phase locking, but it uses the concept of ‘relate
to’ to detect and handle new conflicting problems that arise when multi-users execute Horn clause transactions
that access a very large shared knowledge base concurrently. In addition, the number of objects to be locked is
minimized by using the ‘relate-cover’ concept to increase the throughput of transaction execution. This method
has been proved to guarantee serializability as well as correctness.

1. Introduction

It is widely predicated that knowledge processing will
be a major area of computer applications in the 1990’s,
where problem solving and logic inference will be the
most important part [Li84]. Knowledge Base Manage-
ment Systems (KBMS) are intended to provide the
representation framework and the computational en-
vironment for carrying out this task [Brodie85]). A
coupled KBMS model that combines a logic programm-
ing system (Prolog) and a Relational Database Manage-
ment System (DBMS) is proposed by Itoh at ICOT
[Itoh86]. In this paper, we will present a new concurren-
cy control mechanism in this model.

A common problem in expert systems development is
that experts often fail to describe knowledge complete-
ly, at least in the initial phase of a project [Kastner86].
Even when the system has been put into use, a human
expert is necessary to keep the knowledge base up to
date as the nature of the task, the domain of our
knowledge of it changes with time, as they inevitably
will [Taylor86}. A good example of an expert system
that has been implemented in this manner is XCON, the
expert system that Digital Equipment Corporation uses
to configure new VAX computers. One of the key prob-
lems DEC faced was the continuing changes
necessitated by new equipment releases, new specifica-
tions, etc. Thus there is an expert whose job involves ad-
ding new information and modifying rules in XCON’s
knowledge base to keep it current [Harmon85]. Since
the knowledge of our real world progresses every day,
the KBMS should provides the function for the
knowledge engineering to modify and improve the
knowledge base both during the designing and maintain-
ing phases of the KBMS in order to incorporate new ex-

*Institute of Computer Science and Information Engineering,
National Chiao Tung University, Hsinchu, Taiwan, ROC

Journal of Information Processing, Vol. 12, No. 4, 1989

periences and new facts immediately as they become
available.

Consider a very large KBMS in the future with fre-
quently update, the maintaining task is more than one
person can handle and a team of knowledge engineers is
needed. Each of those knowledge engineers may
responds for parts (or whole) of the knowledge base
and has the right to update that part. Under this en-
vironment, it is possible to have some supervisors
(knowledge engineer) who update or consult the
knowledge base concurrently. Furthermore, since the
KBMS is so large and so many users need to use it con-
currently, it is unreasonable to stop the queries of all
the users waiting for the updating of the supervisors. As
a result, a concurrency control mechanism that suspend
the minimum set of users that may conflict with the up-
dating of the rules is necessary.

In a large KBMS, multi-users may share data and run
transactions concurrently. Serializability is proposed as
the criterion for correctness in a multi-users environ-
ment [Eswaran76]. A given interleaved execution of
some set of transactions is said to be serializable if it pro-
duces the same read result and the same final write
result as some serial execution of the same transactions
does. That is, the interleaved execution produces the
same output for each of their read operations and the
same final knowledge base state as some serial execution
operates on the same initial knowledge base state.

There are several ways in which Prolog transactions
may conflict and produce the non-serializable behavior
[Carey84]: (1) fact-fact conflicts, (2) query-fact con-
flicts, (3) rule-rule conflicts, and (4) query-rule conflicts.
These problems arise when one transaction updates a
fact or a rule being read or updated by another concur-
rent transaction. Carey et al use an algorithm based on
two-phase locking [Eswaran76] to handle (1) and (2) of
the above Prolog concurrency control problems. But
they do not consider the type (3) and (4) conflicts since

Logic Programming
Language System

344

they assume that the queries do not assert or retract
rules.

In this paper, we propose a new concurrency control
technique to solve the type (3) and (4) of the concurren-
cy control problems in a coupled KBMS. Section 2
describes the coupled KBMS we use, and points out the
main concurrency problems in that model. In Section 3,
we propose a concurrency control mechanism, based on
two-phase locking, to solve those problems. Some con-
clusions are given in Section 4.

2. The Model and The Problems

2.1 A Coupled Model of Knowledge Base Manage-
ment System

The model we use is modified from the model devel-
oped at ICOT [Itoh86] as shown in Figure 1.

The EDB (Extensional DataBase) contains shared
user data which are expressed in relations. The IDB (In-
tensional DataBase) contains shared user knowledge
and control knowledge (meta-knowledge) which are ex-
pressed in Horn clauses. An example of IDB and EDB
is shown in Figure 2. Every example we use in this paper
refers to the EDB and IDB in Figure 2.

The knowledge management program converts the
Horn clause query to an equivalent Horn clause which
is then converted to relational algebraic expressions and
ask the Relational DBMS to accomplish this query
[Itoh86]. The knowledge management program is
basically an extended Prolog system with the following
assumptions: (1) Multiple users can run Prolog transac-
tions concurrently, (2) Users can add or delete facts as
well as rules, (3) Users can ask whether a rule is true (ex-
ists), and (4) A compilation approach is used in the in-
ference process and the answer is produced set at a
time.

User programs are transactions written in Prolog-like

User Program

Multi-users
Prolog System
Knowledge Management
Program

IDB

LAN
(physicsl)

relational interface
(logical)

Relational Database Conventional

DMBS Management Program Relational DBMS
EDB
Fig. 1 A coupled Knowledge Base Management System.

Y.-J. CHEN and W.-P. YANG

IDB
rl child(X, Y):-father(Y, X)
r2 child(X, Y):-father(Z, X), marry(Z, Y)
r3 youngman(X):-person(X, ‘m’, 30)

rd4 father(X, Y):-edb(father(X, Y))
r5 marry(X, Y):-edb(marry(X,Y))
r6 person(X, Y, Z):-edb(person(X, Y, Z))
r7 father__in_law(X, Y):-father(X, Z), marry(Z, Y)
EDB
father person
father name child name name sex age
‘joe’ ‘john’ ‘joe’ ‘m’ 60
‘joe’ ‘tony’ ‘mary’ r 58
‘bob’ ‘paul’ ‘john’ ‘m’ 32
‘judy’ ‘r 26
marry ‘tony’ ‘m 30
husband wife ‘bob’ ‘m’ 42
- : - ‘paul’ ‘m’ 15
.!05 mary ‘maggie’ ‘r 41
‘john’ ‘judy’
‘bob’ ‘maggie’

Fig. 2 An example of IDB and EDB.

Horn clauses. Here are examples of transactions T1 and
Horn Clause Conversion.

Example 2.1. [transactions]
Consider a transaction T1 which consists of four
clauses and ends with commit.

T1: assert(child(X, Y):-father(Y, X)),
retract(child(X, Y):-father(Z, X),
marry(Z, Y)),
youngman(X):-person(X, ‘m’, 30),
youngman(X),
commit(T1)

Transaction T1 adds a rule (i.e. child(X, Y):-
father(Y, X)) into IDB, deletes another rule (i.e.
child(X, Y):-father(Z, X'), marry(Z, Y)) from IDB,
asks whether the rule (i.e. youngman(X):-person(X,
‘m’, 30)) is true or exist, and then asks for the answer of
the fact youngman(X).

Example 2.2 [Horn Clause Conversion]

By using the IDB in Figure 2, the knowledge manage-
ment program compiles the query child(‘judy’, Y)to a
serial of subqueries:

STEP SUBQUERY USING RULE

1 child(‘judy’, Y)

2 father(Y, ‘judy’) rl
3 edb(father(Y, ‘judy’)) rd
4 father(Z, ‘judy’)) r2
5 edb(father(Z, ‘judy’)) r4
6 marry(Z, Y) r2
7 edb(marry(Z, Y)) rs

A Mechanism for Concurrency Control in a Coupled Knowledge Base Management System 345

And then convert useful IDB rules to equivalent Horn
clauses:

child(‘judy’, Y):-edb(father(Y, ‘judy’))
child(‘judy’, Y):-edb(father(Z, ‘judy’)),
edb(marry(Z, Y))

where edb(father(__, __)) means relation father existing
in the EDB.

During the Horn Clause Conversion of a given query
that reads Q, a rule R is chosen if the head (left side or
goal part) of Q is unifiable with the head of R. That is,
Q relates to R. The formal definition of ‘relates to’ will
be given in Section 3. Notice that the scalar equality
operation between constants in a conventional
Database System is extended to the unification opera-
tion between Horn clauses in the IDB of the coupled
KBMS. Also, a simple read operation in a Database
System is extended to a process of Horn Clause Conver-
sion in the IDB. This extension causes new conflict prob-
lems that we will introduce in Section 2.2.

Since the conventional Relational DBMS has provid-
ed a concurrency control mechanism, in the coupled
KBMS we use, we consider only IDB’s concurrency con-
trol.

2.2 Concurrency Control Problems in an Intensional
DataBase (IDB)

If we don’t use the concurrency control mechanism
to handle transactions that access the IDB concurrently,
there are two kinds of problems which may cause incor-
rectness:

(1) Rule-rule conflicts. This problem arises when
two concurrent transactions attempt to perform up-
dates involving the same rules.)
Example 2.3. [update same rules]

Let us consider the following two transactions T1 and
T2.

T1: assert(rl), retract(r2), commit(T1)
T2: assert(r2), retract(r1), commit(T2)

In Figure 3(a) we see a serial schedule, and only r2 is
true finally. Figure 3(b) shows a non-serializable
schedule because both rule r1 and rule r2 are false.
Notice that we will rewrite the schedule 2 as
‘T1(assert(r1))— T2(assert(r2))— T1(retract(r2)) »com-
mit(T1)— T2(retract(r1)) > commit(T2)’ in the follow-
ing examples.

Example 2.4. [lost update]
Consider the following two transactions.

T1: youngman(X):-person(X, Y, Z),
assert(youngman(X):-person(X, Y, Z-10)),
commit(T1)

T2: youngman(X):-person(X, Y, Z),
assert(youngman(X):-person(X, Y, Z-10)),

TIME Tl T2
1 assert(r1)
12 retract(r2)
13 commit(T1)
t4 assert(r2)
15 retract(rl)
16 commit(T2)

(a) Schedule 1: a serializable schedule.

TIME T1 T2
tl assert(rl)
j72 assert(r2)
3 retract(r2)
t4 commit(T1)
t5 retract(rl)
16 commit(T2)

(b) Schedule 2: a non-serializable schedule.
Fig. 3 Two schedules with transactions that update the same
rules.

commit(T2)

If we execute T1 and T2 serially (i.e. T1—T2), or ex-
ecute T2 and T1 serially (i.e. T2—TI1), the rule
youngman(X):-person(X, Y, Z-20) is true. Figure 4
shows a non-serializable schedule. Transaction T1’s up-
date is lost at time 5 because transaction T2 updates the
rule based on the value seen at time £2.

The outcome 1is non-serializable because rule
youngman(X):-person(X, Y, Z-10) is true and rule
youngman(X):-person(X, Y, Z-20) is false.

(2) Query-rule conflicts. This problem arises when
one transaction asserts or retracts a rule being read by
another concurrency transaction. This problem here is
an instance of phantom problem that arises when the re-
quest of a transaction refers to a rule which does not
(does) exist at the time of the request, but is later
created (deleted) due to the action of another transac-
tion.

Example 2.5. [error read result]
Take transactions T1 and T2 as following.

T1: child(‘judy’, Y), commit(T1)
T2: assert(r8), assert(r9), assert(r10), retract(r4),
commit(T2)

where

r8 child(X, Y):-father__in__law(Y, X)

9 child(X, Y):-father__in__law(Z, X),
marry(Z, Y)

r10 father(X, Y):-edb(father(X, Y)),
son(X, ‘m’,_))

If we execute T1 and T2 serially, the result of transac-
tion T1 is an empty set. If we execute T2 and T1 serial-
ly, the result of transaction T1 is {‘joe’, ‘mary’}. In the
following schedule 1, the outcome is non-serializable

edb(per-

346

Y.-J. CHEN and W.-P. YANG

TIME Tl T2
t1 youngman(X):-person(X, Y, Z)
2 youngman(X):-person(X, Y, Z)
13 assert(youngman(X):-person(X, Y, Z-10))
t4 commit(T1)
15 assert(youngman(X):-person{X, Y, Z-10))
16 commit(T2)

Fig. 4 Transaction T1 lost update at time 5.

because T1 will produce the result {‘joe’}.

Schedule 1: T2(assert(r8))— T1—T2(assert(r9))
—T2(assert(r10))— T2(retract(r4))
—commit(T2).

The outcome is non-serializable because T1 will pro-
duce the result set {‘joe’}.

The problem at hand, then, is to handle rule-rule con-
flicts and query-rule conflicts through the use of an ap-
propriate concurrency control mechanism. These con-
flicts are similar to the write-write and read-write con-
flicts in the conventional database concurrency control
discussed in [Ullman82]. However, there are two main
differences. First, Prolog programs can insert and delete
facts (rules) but they cannot modify existing facts
(rules). Second, the conventional database system can’t
store or manipulate rules and then hasn’t the problem
of rule-rule and query-rule conflicts.

3. A New Two-Phase Locking Based Concurrency
Control Algorithm: Query-Rule Locking

The problems we illustrated in Section 2.2 can be solv-
ed by an algorithm called Query-Rule Locking. This
algorithm is based on two-phase locking [Eswaran76],
but it uses the concept of ‘relate-cover’ to minimize the
number of objects to be locked.

3.1 Main Data Structure for Query-Rule Locking
Algorithm

In this Query-Rule Locking method, each transaction
T; maintains a local query set Q; and a local rule set R;;
besides, the concurrency control mechanism maintains
a global query set Q, and a global rule set R;,. When the
concurrency control mechanism wants to execute a read
operation g; (or a write operation r;) of transaction T;, it
first puts g; in Q; (or puts r; in R)) and checks if this
operation will cause any conflict. If not, the concurren-
cy control mechanism grants the request and puts g; in
Q. (or puts r; in R;); otherwise Transaction T; is block-
ed. The local query set, local rule set, global query set,
and global rule set are described as below:

(1) Local query set, Q;, is a set of queries (read
operations) {g;} which includes those gueries that 7; has
executed, and the next query of 7 that the concurrency
control mechanism is checking, or has checked and not
granted, or is executing.

(2) Local rule set, R, is a set of rules {r;} which in-

cludes those rules that T; has asserted or retracted, and
the next rule which 7; wants to assert or retract that the
concurrency control mechanism is checking, or has
checked and not granted, or is executing. .

(3) Global query set, Q,, is a set of {g;, T:} or {g;}
of queries g; of the transaction 7; for which read-only
lock has been granted and not yet released.

(4) Global rule set, R, is a set of {r;, T;} or {ri} of
rules r; of the transaction 7; for which write-only lock
has been granted and not yet released.

Notice that the Query-Rule Locking algorithm set
read-only locks on queries (logical objects) that is not
physically existed in the IDB.

Example 3.1. [local and global lock set]

Consider transactions T1 and T2 in Example 2.5.
When T2 is executed, the following subqueries and asso-
ciated contents of Q,, R,, Q., and R, will be set:

TIME SUBQUERY @, R, oL R,

{rs} {
{rs, ro} {
{rs, ro, rio} {

{

{rs, ro, rio, ra}

} {r3}
}ooArd,)
}
}

11 assert(rs) {}
2 assert(re) {}
{} {ri, r3, rio}
{} {r3, rd, rho,
ri}
t5 commit {} {} {} {}
(T2)

t3 assert(ri)
t4 retract(ry)

Suppose step 1 and step 2 of transaction T2 have com-
pleted, and now T1 begins running. For some reasons
that we will describe in the following Section 3.2 (i.e.
child(‘judy’, Y) relates to rules r8 and r9), the query
child(‘judy’, Y)is not granted. Thus the contents of Q,,
R\, Q:, R;, O, and R, at that time are:

o RR @0 R O R

{child(judy’, Y)} {} {1} {rs, ro} {1} {rd rd}

3.2 Procedure Relate-Cover for Query-Rule Locking
Algorithm

For a query like child(‘judy’, Y), we may set read-on-
ly locks on predicate name—child. This will work, but
it is equivalent to lock a relation entirely in a relational
database system. We may minimize the number of ob-
jects to be locked by introducing a concept of ‘relate-

A Mechanism for Concurrency Control in a Coupled Knowledge Base Management System

347

child

relates to X, Y)

chi
(‘john’,

hild

child child
Y) (X, ‘joe’) (‘john’, ‘joe’)

child(X, Y)
child(‘john’, Y)
child(X, ‘joe’)
child(‘john’, ‘joe’)
child(‘bob’, Y)
child(X, ‘bob’)
child(‘bob’, ‘bob’)
Py o)
p#child

2 NN

2 ZNZ NN

Z 2z~
2 222NN~

Fig. 5 Detailed ‘relate’ matrix for predicate child.

child

cover X, Y)

child

(‘john’, Y)

child
(‘john’, ‘joe’)

child
(X, ‘joe’)

child(X, Y)
child(‘john’, Y)
child(X, ‘joe’)
child(‘john’, ‘joe’)
child(‘bob’, Y)
child(X, ‘bob’)
child(*bob’, ‘bob’)
/(.
p#child

2 222222

2 22222~~~

2 22222~
Z Z2Z72ZNN=~

Fig. 6 Detailed ‘cover’ matrix for predicate child.

cover’. Now we use the conception of ‘relate’ to
describe the situation wherefrom the query-rule conflict
arises, and the conception of ‘cover’ for another situa-
tion wherein one read operation can be executed
without checking query-rule conflict, for there exists
another read operation which covers it.

Here we only consider a simple case in which an argu-
ment of a predicate contains a variable or a constant.
This case could be well suitable for most knowledge-
base applications. In this simple case, we expect that the
concurrency control mechanism we propose can be im-
plemented efficiently as it is based on a notion of ‘relate’
which is efficiently put into test.

The head of a clause is the goal of that clause. For in-
stance, the head of child(X, Y):-father(Y, X) is
child(X, Y). Notice that the head of a horn clause con-
tains a single predicate. We will say that one Prolog
clause that reads Q relates to another Prolog clause that
writes rule R if the head of Q relates to the head of R.

Definition 3.1. [predicate Pl relates to predicate P2]

One prolog predicate Pl relates to another Prolog
predicate P2 if

(1) they have the same predicate names, and

(2) suppose both P1’s and P2’s i arguments are
constant or instantiated variable, then those two
arguments have the same value.

Note: P1 relates to P2 iff P2 relates to P1.

The detailed ‘relate’ matrix of predicate child is
shown in Figure 5. The contents of the sixth row of the
‘relate’ matrix are Y, Y, N, and N because child(X,
‘bob’) relates to child(X, Y) and child(‘john’, Y); and

not relates to child(X, ‘joe’) and child(‘john’, ‘joe’).

We say that one Prolog clause that reads Q covers
another Prolog clause that reads Q’ if the head of Q
covers the head of Q’.

Definition 3.2. [predicate P1 covers predicate P2]

One Prolog predicate P1 covers another Prolog
predicate P2 if

(1) they have the same predicate names, and

(2) every constant or instantiated variable in the i*"
argument position of P2 has the same value as the corre-
sponding argument of P1 if P1’s i argument is a con-
stant or an instantiated variable.

If (1) one read operation O; covers another read
operation O,, and (2) they belong to the same transac-
tion T;, and (3) T; already has a read-only lock on O,
then T; can execute O, without any further checking.
The detailed ‘cover’ matrix of predicate child are shown
in Figure 6.

Algorithm Relate-Cover

input: two queries O, and O,

output: if O, covers or relates to O, then return(YES)
else return(NO)

/*The detailed of Algorithm Relate-Cover is shown in
[Chen88]*/

end-of-algorithm Relate-Cover.

3.3 Query-Rule Locking Algorithm

We are now ready to introduce the detailed of the
Query-Rule Locking algorithm.

348

Algorithm Query-Rule-Locking

input: a pair (O;, T)) where O; is the j™ subquery of
transaction 7;.

data structure (as described in Section 2.3):

local query set Q;, local rule set R;, i=1, n

global query set Q,, global rule set R;.
begin
/*Lock phase 1*/

Case 1: O; asserts or retracts a rule 4. /*rule asser-
tion or retraction*/

/*add A to the local rule set of T;, so that they can
be unlocked easily at end of transaction T;*/
Ri=R;+{A}. [*add to local rule set*/

/ *check for rule-rule conflicts*/

if @rke R, rk=A, k#i) or

/*using algorithm Relate-Cover to check for
query-rule conflict*/

(3g% e Q., Relate-Cover(qk, A)=YES, k#i)
then block T; until r% or g% is unlocked

endif.

R,=R,+{A}. /*add to global rule set*/

return and proceed.

end-of-case 1.

Case 2: O, read a rule A in IDB. /*read operation*/
/*check if T; already has a read-only lock which
covers the read operation to be deal with*/
if (3gme Q) and (Relate-Cover(g.., 4)=YES)
then return and proceed
endif.

Qi=Q.+{A}. /*add to local query set*/

/*check for query-rule conflicts*/

if @rkeR.,, k#i) and (Relate-Cover(A4, rt)
=YES)

then block 7; until such rules r% are unlocked
endif.

0.=0.+{A}. /*add to global query set*/
return and proceed.

end-of-case 2.

case 3: O, reads or writes an EDB fact.

/*query, assert or retract an EDB fact*/
return and proceed.

end-of-case 3.

/*Lock phase 2: end of transaction*/
case 4: O; is commit statement.
R, =R, —R,. [*release rule locks*/
Q.=0.— Q.. [*release query locks*/

end-of-case 4.

case 5: livelock and deadlock.
we may use first-come-first-serviced strategy

eliminates livelocks, and use wait-for-graph to detect
deadlock.

end-of-case 5.
end-of-algorithm Query-Rule Locking.

In the above algorithm, livelock might happen.
Livelock is a problem that occurs potentially in any en-
vironment where processes execute concurrently. This
problem occurs here when one transaction 7T is waiting
for another transaction to release the lock on data item

Y.-J. CHEN and W.-P. YaNG

A, but T would wait forever while some other transac-
tions always had a lock on A even though there are
unlimited number of time at which 7 might have been
given a chance to lock A. Now we solve the livelock
problem by maintaining for each transaction T a queue
of transactions waited for T denoted by w—f(T"). When
transaction 7 commits, the first transaction in w—f(T")
is waken up and executed. This method is known as the
first-come-first-served strategy. The w—f(T) can be
used to draw the wait-for graph whose nodes are tran-
sactions and whose arc T,— T signify that transaction
T, is waiting to lock an item on which 75 holds the lock.
Every cycle in the wait-for graph indicates a deadlock.
Deadlock can be solved by aborting one transaction in
the deadlock cycle.

3.4 Example of Query-Rule Locking Algorithm

In the following, we give an example to show how the
Query-Rule Locking algorithm is working.

Example 3.2. [using Query-Rule Locking algorithm]

Consider transactions 71, 72 in example 2.5. Referr-
ing to Figure 7, suppose step 1 of T2 has completed at
time ¢1; and now T1 begins running at time 2 and needs
to set read locks on all rules that relate to child(‘judy’,
Y)—rl, r2, and 8. Since T2 has already locked rule r8,
T1 will be blocked at time 72 until T2 completes and
releases its locks at time t6 as shown below. Notice that
in step 10 we don’t lock g4 because g, covers gs, and g,
has been locked in time #8.

From the above example, we can see that the Query-
Rule Locking algorithm based on two-phase locking
prevents non-serializable behavior by blocking one of
the two conflicting transactions until the other one has
finished.

3.5 Proof of Correctness

To show and explain that the Query-Rule Locking
algorithm is successful in guaranteeing serializability
(i.e. correctness), we use, referring to the argument in
[Ullman82], the following steps:

(1) We introduce an Algorithm Serializability-Test
which can determine whether a schedule S is
serializable.

(2) By using the Algorithm Serializability-Test, we
prove that in this locking model if transactions obey the
two-phase protocol [Eswaran76], any legal schedule is
serializable.

(3) We show that Query-Rule Locking is two-phase
locking, and under this circumstance, if transactions
obey the Query-Rule Locking algorithm, then any legal
schedule is serializable.

The locking model we use in Query-Rule locking is a
kind of read-only, write-only model [Ullman82]. Thus
if transaction T2 in schedule S reads a rule A which is
written by T1:

(1) T1 must precede T2 in any serial schedule
equivalent to S.

A Mechanism for Concurrency Control in a Coupled Knowledge Base Management System

349

TIME T1 T2 [} R, o} R, Qo R,

t1 assert(r8) {} {1} {} {rs} {1} {ré)

2 q, ((I\} {} {} {rs) {} {2"3)2
3 assert(ry) {q} {} {} {rs, 1o} {1} ﬁ’“’ "9}2
4 assert(ryo) {q} {) {} {rs, rs, 1o} {} {r§, r3, rio}
5 retract(r,) {9} {} (1} {rs, rs, F10s 1} {1} {ri, 13, rio, 13}
6 commit(T2) {a} {1} {} { {} {

1 a@ {a}) {} {} {qi} {)

8 a0 {q1, @} () {} {} {q1, g3} {}

9 @ {q1, g2} {} {1} {) {ql, g3} {}
110 qs {g1, ¢} {} {1} {1} {q1, g3} {1}
11 gs {q1, @2} {1} {1} {1} {ql, q2} {}
12 s (a1, @2 g6} {} {} {} {q}, 43, g8} {1
113 q {q1 92 q6} {1} {} {1} {q}, 93 q¢} {1}
t14 commit(T1) {} {1} {} {} {} {1}

¢, =child(‘judy’, Y),
g;=edb(father(Y, ‘judy”)),
gs=edb(father(Z, ‘judy’)),
g;=edb(marry(Z, Y)).

q,=father(Y, ‘judy’),
q,=father(Z, ‘judy’),
gs=marry(Z, Y)

Fig. 7 Execution sequence arranged by Query-Rule Locking algorithm.

(2) If T3 is a transaction that writes A, then in any
serial schedule equivalent to S, T3 may either precede
T1 or follow T2, but may not appear between T1 and
T2.

First, consider how to decide whether a schedule is
serializable.

Algorithm Serializability-Test

/ *Serializability test for schedules with read-only and
write-only locks (modified from Algorithm 11.3 of
[Ullman82])*/

input: A schedule S for a set of transactions T3,
..., Tk

output: A determination whether S is serializable, and
if so, an equivalent serial schedule is output.

begin

(1) Augment S by appending to the beginning a se-
quence of steps in which a dummy transaction 7, writes
each rule appearing in S and by appending to the end
steps in which dummy transaction 7, reads each of such
rule.

(2) Begin the creation of a polygraph P with one
node for each transaction, including 7o and 7. Tem-
porarily place an arc from 7T; to 7; whenever a read
operation of T;relates to a rule 4 that in the augmented
S was last written by 7.

(3) For each remaining arcT;— T}, and for each rule
A such that a read operation of 7 relates to a rule of A
written by T, consider each other transaction T# 7T,
that also writes A4, if 7,=7T, and 7;= T, add no arcs; if
T,=T, but T;#T; add the arc T,—T; if T,=T;, but
T, # Ty, add the arc T— T}; if T;#= T, and T, T}, then in-
troduce the arc pair (T—T;, T,—T).

(4) Determine whether the resulting polygraph P is
acyclic. If Pis acyclic, let G be an acyclic graph formed
from P by choosing an arc from each pair. Then any
topological sort of G, with T, and T, removed,
represents a serial schedule equivalent to S. If P is not

acyclic, then no serial schedule equivalent to S exists.
end-of-algorithm-Serializability-Test.

Example 3.3. [test for serializability]

The final polygraph P of Schedule 1 of Example 2.5
constructed by Algorithm Serializability-Test is shown
below:

father, marry @ child @ child, father @

father

Since P is not acyclic, no serial schedule equivalent to
Schedule 1 exists.

Theorem 3.5.1. Algorithm Serializability-Test correct-
ly determines if a schedule is serializable.

Lemma 3.5.1. In this read-only write-only locking '
model, if transactions obey the two-phase protocol,
then any legal schedule is serializable.

Lemma 3.5.2. Query-Rule Locking is two-phase lock-
ing algorithm.

The detailed proofs of Theorem 3.5.1, Lemma 3.5.1,
and Lemma 3.5.2 are shown in [Chen88].

Theorem 3.5.2. Algorithm Query-Rule Locking is suc-
cessful in guaranteeing serializability (i.e. correctness).

Proof. By Lemma 3.5.1, two-phase locking
guarantees serializability. By Lemma 3.5.2, Query-Rule
Locking is a two-phase locking. Then we have
Algorithm Query-Rule Locking guarantees serializabil-
ity. Q.E.D.

4. Conclusions and Further Works

We have proposed a concurrency control mechanism
for use in a coupled KBMS. The proposed Query-Rule

350

Locking algorithm handles rule-rule and query-rule con-
flicts that may arise when we concurrently execute Pro-
log transactions with a very large shared Intentional
Database (IDB) which contains knowledge and express-
ed in Horn clauses. The Query-Rule Locking algorithm
has been proved to guarantee serializability as well as
correctness. The concurrency control in Extensional
Database (EDB) which contains fact as traditional rela-
tion is similar to the mechanism in conventional Rela-
tional Database management System.

The concurrency control mechanism we have propos-
ed in this paper can be extended and used in other
KBMS models. For example, the Relational Knowledge
Base (RKB) in [Morita86] which integrates IDB and
EDB as term relations. Another example is that Prolog
with rule updates and fact updates can be directly handl-
ed by the mechanisms which combine what we have pro-
posed and that in [Carey84].

Finally, new concurrency control strategies not con-
strained by the current database techniques especially
suited for KBMSs, various kinds of concurrency con-
trol mechanisms in various KBMS models, and the
analysis of the advantages/disadvantages of them
should be worth studying.

This research was supported by the National Science
Council, Taiwan, R. O. C., under contract:
NSC77 —0408 —E009-20 (1988).

Y.-J. CHEN and W.-P. YaNG

References

[Brodie85] Brobig, N. L. and MyLoPULOS, J. On Knowledge Base
Management Systems: Integrating Artificial Intelligence and
Database Technologies. Springer-Verlag (1985).

[Carey84] Carey, M. J., Dewirt, D. J. and Graerg, G.
Mechanisms for Concurrency Control and Recovery in Prolog—A
Proposal. Proceeding of First International Workshop on Expert
Database System (1984), 271-291.

[Chen88] CHEN, Y. J. and YANG, W. P. A Concurrency Control
Mechanism in a Coupling Knowledge-Base Management System. Pro-
ceeding of Twenty-Second Annual Conference on Inf. Sci. and Syst.,
Princeton, NJ, USA (Mar. 1988).

[Eswaran76] EswaraN, K. P., GrRay, J. N., Lorig, R. A. and
TRAIGER, I. L. The Notions of Consistency and Predicate Locks in a
Data Base System. Comm. ACM 19, No. 11 (November 1976).
[Harmon85] HARMON, P. and KiNG, D. Expert Systems (1985).
[Itoh86] IToH, H. Research and Development on Knowledge Base
Systems at ICOT. Proceeding of the Twelfth International Con-
ference on Very Large Data Bases (1986), 437-445.

[Kastner86) KASTNER, J. K. et al. A Continuous Real-Time Expert
System for Computer Operating. Proceeding of the International
Conference on Knowledge Base Systems, London (1986), 89-114.
[Li84] Li, D. A Prolog Database System. John Wiley & Sons Inc.
(1984).

[Morita86] MoriTA, Y., YokoTa, H., NisHIDA, K. and IToH, H.
Retrieve-By-Unification Operation on a Relational Knowledge Base.
In Proceeding of the Twelfth International Conference on Vary Large
Data Base (1986), 52-59.

[Taylor86] TAYLOR, J. M. Expert Systems: Where Do We Go From
Here? Proceeding of the International Conference on Knowledge
Based Systems, London (1986), 313-324,

[Ullman82] ULLMAN, J. D. Principles of Database Systems. Second
Edition, Pitman Publishing Limited (1982).

(Received January 25, 1988; revised May 10, 1989)

