Invited Paper

A Performance Comparison of Shared-Memory
OR- and AND-Parallel Logic Programming
Architectures for a Common Benchmark

Evan Tick*

This paper compares the design and execution performance of two parallel logic programming architectures.
Aurora is an OR-parallel Prolog system retaining the full semantics of Horn Clause logic (i.e., backtracking
non-determinism). KL1-PS is an AND-parallel FGHC system that is a committed-choice architecture (i.e., no
backtracking). This paper characterizes the various trade-offs made in these two systems: ease of programming
vs. exploitation of parallelism, user-control over parallelism vs. available inherent parallelism, ease of program-
ming vs. execution efficiency. Both systems have been implemented by various research groups on shared
memory multiprocessors, and performance statistics collected on the Sequent Symmetry are presented in this
paper. Several versions of the N-Queens problem are described and analyzed, for both systems.

1. Introduction

The main purpose of this paper is to compare the
design and execution performance of OR- and AND-
parallel logic programming architectures, as well as
both uncommitted-choice and committed-choice
languages. A secondary purpose is to describe parallel
logic programming techniques, giving performance
measurements as verification of the utility of the techni-
ques. Measurements are not only necessary to present
evidence of attainable speedups, but to compare
algorithms in different languages and executing on
different systems. Linear speedup of a poor algorithm,
or within an inherently slow system, should be of little
interest. The most important goal of this research is
determine how to exploit parallelism to achieve ab-
solute performance improvements.

This paper compares the design and execution perfor-
mance of two parallel logic programming architectures,
both of which have been implemented by independent
groups [13, 11] on shared-memory multiprocessors.
Aurora is an OR-parallel Prolog system retaining the
full semantics of Horn Clause logic. KL1-PS is an
AND-parallel FGHC system that is a committed-choice
architecture. Although the performance measurements
presented here do not compare favorably with C—we
doubt very much that large parallel programs can be
written in C with the same ease (see for instance Lusk
[10]). Compiler technology is expected to bridge some
of this gap, i.e., current logic programming compilers
still lag behind procedural language compilers.

This paper extends and clarifies preliminary studies
discussed in Tick [16, 17]. The contents are organized

*Research Center for Advanced Science and Technology, University
cf Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153.

Journal of Information Processing, Vol. 13, No. 1, 1990

as follows. Section 2 discusses the Aurora and KL1-PS
architectures. Section 3 describes and compares several
algorithms solving the N-Queens problem. Section 4
presents raw-timing measurements of these programs ex-
ecuting on a Sequent Symmetry [14]. The relative
speeds and speedups of the programs are analyzed. Con-
clusions are discussed in Section 5.

2. Aurora and KL1-PS Architectures

An architecture is an instruction set and storage
model implementing a language. The OR-Parallel Pro-
log architecture (Aurora [20]) and FGHC architecture
(KL1-PS [7]) are ‘‘high-level’’ because their instruction
sets are more abstract than those of conventional com-
puters. Both of these architectures have been im-
plemented on the same general-purpose host (the Se-
quent Symmetry multiprocessor [14]) via emulation.
Although the Symmetry implementations of both
systems are preliminary and not of commercial quality,
they among the first true-parallel, high-level language
implementations.

The most important design considerations in these
systems concerning performance are listed below. These
issues are all interrelated and quite difficult to analyze in-
dividually.

* engine architecture—the instruction set design is im-
portant with respect to the instruction execution times,
the memory bandwidth required and the compiler op-
timizations allowed. The Aurora system uses Carlsson’s
(SICStus) version [3] of the Warren Abstract Machine
(WAM) {19] instruction set. Modifications were made
to implement binding, dereferencing, and trailing with
respect to binding arrays (see next item). KLI-PS
system uses Kimura’s version of the WAM, called KL1-
B [9]. KL1-B is both simpler than the WAM because

A Performance Comparison of Shared-Memorv OR- and AND-Parallel L.ogic Programming Architectures for a Common Benchmark 63

backtracking has been removed, but also more complex
than the WAM because both suspension and locking
mechanisms have been integrated. Both systems use the
compilation technique of clause indexing.

» binding mechanism—in these parallel systems, bin-
dings are the means by which processes communicate
among themselves and with the outside world. In
Aurora, parallel processes executing a non-determinate
procedure produce independent solutions, i.e., they can
potentially produce conflicting, but valid, bindings. To
implement this, the Aurora system uses a binding array
per processor wherein bindings to variables shared
among branches reside (i.e., bindings to variables that
may potentially differ among the processors). This is
related to the scheduling mechanism because the
overhead of ‘‘spawning a process’’ is the work required
changing the values in the binding array to reflect the
new process’s location (in the process tree). In FGHC,
AND-parallel execution implies that all processes have
equal authority to bind any variable at any time. Thus
the binding problem becomes a locking problem. The
binding (in the active part of a clause) of variables
passed from the passive part of the clause must be lock-
ed. This is related to the instruction set because to
reduce the locking penalty, somewhat roundabout code
is generated to minimize locking times.

« scheduler—the process scheduler must be efficient in
two major respects. First, the work must be evenly
distributed among the processors (good load balancing).
Second, the overhead of process spawning/suspen-
ding/resuming must be low. If only large-granularity
goals are spawned on different processors, both of these
criteria will be met. Whereas goals are stored in a tree
structure in Aurora, in KL1-PS, all goals are treated
equally, and stored in goal-queues local to each process.
Aurora scheduling (as studied here) is performed locally
in the process with a distributed ‘‘tree-walking”
algorithm [2]. An idle process (one that succeeded or
failed) traverses the OR-tree, constrained by several
heuristics, searching for work. In KL1-PS, scheduling
is performed in a semi-distributed manner. An idle pro-
cess (one with an empty goal-queue) requests work
from a busy process, via message passing.

- storage model—memory management is important to
retain the spatial locality needed to make efficient use of
local caches. In addition, efficient memory management
creates less garbage and therefore garbage collection
(GC) will be incurred less often. In Aurora, groups of
intertwined stacks are used, where a stack-group,
similar to that of the WAM, is allocated to each pro-
cessor. In KL1-PS, each processor has a group con-
sisting of a heap stack, goal and suspension record lists.
These lists are allocated from a larger group of free-
lists, split among the processors to avoid contention. In
general, KL1-PS storage management is simpler than
Aurora’s, but the FGHC model creates garbage at a
significantly faster rate.

- garbage collection—all languages that dynamically

create structures require some form of GC. In Aurora,
the WAM automatically recovers memory upon
backtracking i.e., when searching for all solutions to a
non-determinate problem, memory used to explore bad
paths is easily recovered. However, the determinate por-
tions of programs can still produce garbage (in the form
of temporary data structures needed to get from one in-
termediate point to another, and then discarded).
FGHC generates more garbage than Prolog because
OR-parallel search is simulated by the architecture
which therefore cannot automatically recover memory
upon backtracking. The KL1-PS system studied here
has stop-and-copy GC only and the Aurora system has
no GC. For the benchmarks measured GC is not a
significant factor.

3. N-Queens

The N-Queens problem is to place N-queens on an
Nx N chess board so that no queen can attack another
queen. N-Queens has taken in the role as the classic
parallel logic programming language benchmark. This
choice is unfortunate because N-Queens does not share
the characteristics of real parallel applications. One ma-
jor flaw is that data representation requires only lists of
integers, thus the garbage production costs and in-
tergoal communication costs of realistic programs are
not adequately reflected. Another major flaw is that N-
Queens has a symmetric proof tree, facilitating load
balancing. However, N-Queens is useful for the pur-
poses of describing the different programming
methodologies used in OR- and AND-parallel architec-
tures, and in committed and non-committed choice
languages. We have nullified GC issues in this study by
executing all programs with a large memory space.

3.1 Prolog Versions

N-Bruynooghe’s, the first Prolog program discussed
(Fig. 1) is a classic generate and test solution using per-
mutations for the generator [4]. perm is the generator
and check is the tester. In a/l of the prolog N-Queens,
del is used as the source of OR-parallelism (in the
following program listings, refer to previous listings for
identical procedure definitions). N-Pereira’s (Fig. 2) is a
variant of the first program in which the generator and
tester are fused [4]. It is well-known that the fused
version is significantly faster than the naive version in
sequential Prolog. We add here that the fused version
retains the full amount of OR-parallelism in the naive
version.

N-Bratko’s, Fig. 3, is based upon a pseudo-con-
straint method [1], although modified here to use struc-
tures. Each queen is characterized by a unique integer
that represents its row, column, and two diagonals. The
latter two sets of constraints are implicitly represented
as structure indicies. When a queen is placed, the logical
variable at that index is bound, disallowing subsequent
conflicts. The algorithm is elegant, parallel, and fast

64
: —parallel del/3.
go(N, A):—gen(N, L), findall(X, queen(X, L), A).

gen(0, []:—1
gen(N, [NI1X]):—M is N—1, gen(M, X).

queen(X, L): —perm(L, X), check(X).

perm([L[]).
perm([HIT], [AIP]): —del([HIT], A, L), perm(L, P).

del([XIT), X, T).
del((HIT], X, [HIR]): —del(T, X, R).

check([D).
check([H|T]): —safe(T, H, 1), check(T).

safe([], —,).

E. Tick

safe((HIT), U, N:—H+N=\=U, H-N=\ =U, M is N+1, safe(T, U, M).

Fig. 1 Bruynooghe’s Naive N-Queens (Prolog).

queen(X, L): —queen(L, [], X).

queen([], P, P).

queen([HIT], R, P):—del([HIT], A, L), safe(R, A, 1), queen(L, [AIR], P).

Fig. 2 Pereira’s Fused N-Queens (Prolog).

go(N, A): —findall(X, queen(N, X), A).

queen(N, S):—
gen(N, Dxy),
N2 is (N*2)—1
functor(Du, du, N2),
functor(Dv, dv, N2),
sol(Dxy, S, Dxy, Du, Dv, N).

soll LI Ih—— —)
sol([X | Dx1], [YYlist], Dy, Du, Dv, N): —
del(Dy, Y, Dyl),
Uis X—Y+N, arg(U, Du, X),
Vis X+Y-—1, arg(V, Dv, X),
sol(Dx1, Ylist, Dyl, Du, Dv, N).

Fig. 3 Bratko’s N-Queens with Structures (Prolog).

(the fastest among those tested). Note that the original
program (not shown) uses lists to represent all the con-
straints, making constraint removal inefficient.

N-Kondo's, Fig. 4, uses logical variables to implement a
“‘blackboard’’ scheme. Closely related to Bratko’s
method, here a square on the board is represented by
two logical variables linking all squares on its two
diagonals. The queen procedure nondeterminately
places a queen on each row (using arg to avoid place-
ment of two queens in the same column). The place-
ment binds the diagonal variables, making future at-
tempts to place a diagonally attacking queen fail. queen
backtracks until a queen has been successfully placed in
each row. Note that N-Kondo’s and N-Bratko’s cannot

go(N, A): —findall(X, queen(N, X), A).
queen(N, Q):—gen(N, L), board(N, P), queen(P, L, [], Q).

queen([], ., Y, Y).
queen((HIT], L, Y, Z):—
del(L, E, L1),
arg(E, H, a(E, E)),
queen(T, L1, [ElY], Z).

board(N, B): —M is N*2—1, functor(X, x, M), functor(Y, y, M),
make(N, M, N, N, B, X, Y).

make©, _, _, _, [1, _, _)x—-"L
make(M, X, Y, N, [SISs], Nx, Ny):—
functor(S, b, N),
next(N, S, X, Y, Nx, Ny),
Xlis X=1, Ylis Y+1, Ml is M—1,
make(M1, X1, Y1, N, Ss, Nx, Ny).

next©O, _, _, _,__,_):—1!.

next(N, S, X, Y, Nx, Ny): —
X1lis X—1, Yl is Y=—1, Nl is N—1,
arg(X, Nx, A), arg(Y, Ny, B), arg(N, S, a(A, B)),
next(N1, S, X1, Y1, Nx, Ny).

Fig. 4 Kondo’s N-Queens (Prolog).

be automatically translated into FGHC because they
pass unbound variables between procedures. As the
measurements later presented indicate, N-Kondo’s and
N-Bratko’s are about 60% faster, on a single Symmetry
PE, than the fastest FGHC algorithm studied. This
result illustrates the power of full unification and

A Performance Comparison of Shared-Memory OR- and AND-Parallel I ocic Programmine Architectures for a Common Benchmark 65

go(N, A):—gen(N, L), queen(L, [],[LA, [1.

queen([CICs], NCs, L, SO, S2): —
check(L, C, 1, NCs, Cs, L, S0, S1),
queen(Cs, [CINCs}, L, S1, S2).

queen({],[], L, S0, S1):—S0=[LISl1].

queen([J, [_I_], _, SO, S1):—S0=SI.

check([], C, —, NCs, Cs, L, SO, S1):—
append(NCs, Cs, Ps),
queen(Ps, [], [CIL], SO, S1).
check([PIPs], C, D, NCs, Cs, L, S0, S1):—
P—-C=\=D,C—-P=\=D|

Diis D+1,
check(Ps, C, D1, NCs, Cs, L, SO, S1).
check(_, —, —, —, _, —, SO, S1): —otherwise! SO=S1.

gen(0, X):—X=[1.
gen(N, X): —N>0IN1is N—1, X=[NI|Xs], gen(N1, Xs).

append([1, Y, Z):—Z=Y.
append([A|X], Y, Z):—Z={A|Z1], append(X, Y, Z1).

Fig. 5 Kumon’s Candidates/Noncandidates N-Queens (FGHC).

backtracking in solving problems such as this.

3.2 FGHC Versions

Sato [13] reports that one of the major overheads in
FGHC execution is caused by suspension of goals. N-
Kumon’s (Fig. 5) is efficient because it rarely suspends,
even in parallel execution. In the entire program, there
is only one direct producer-consumer relationship be-
tween body goals, in the first clause of check. With
depth-first scheduling however, ps is produced before
the recursive call to queen is executed.

N-Kumon’s creates a binary process tree. queen is the
main procedure, representing a process wherein the

80(N, A):—gen(N, L), queen(L, [], A, [.

queen([1, L, SO, S1):—S0=[L|SI].
queen(Q, L, SO, S2): —otherwise!
diQ, [1. L, S0, S,
d2(Q, [1, L, S1, S2).

dai((1, —, —, S0, S1): —S0=S1.
d1([PIN], C, L, SO, S1): —check(L, P, 1, N, L, S0, S1, C).

d2([1, _, _, S0, S1):—S0=SI1.
d2([PIU], C, L, SO, S1): —

diu, [PIC], L, SO, S1),

d2(U, [PIC), L, Si, S2).

check([1, —, D, N, L, NCs, S0, S1):—b(NCs, L, D, N, S0, S1).

next queen is to be placed. The first argument of queen
is a list of candidate columns for queen placement (the
associated row is implicit—it could be calculated from
the length of the candidate list). C represents the col-
umn placement of the current queen. The remaining
two queen clauses deal with the cases when the can-
didate list is empty. When choosing C, two child
processes are forked: check and another queen. The
““process reading’’ is that check generates all solutions
including C whereas queen generates all solutions not
including C. Of course C may be a faulty choice, in
which case check generates an empty set of solutions.

The second argument of queen is a non-candidate
list, i.e., a list of columns that cannot be used for place-
ment in the current row. The non-candidate list is
necessary to prevent the forked queen child process
from choosing the same placement as the one being ex-
plored by check. check must create a third list, Ps, by
concatenating the remainder of the candidate list with
the non-candidate list, i.e., Ps is the list of remaining
unused columns. If the safety check passes, Ps will be
passed to queen as a new first argument for candidates.

The third argument of queen and first argument of
check is the partial solution of queens. This list is exam-
ined during the check: each queen is compared with the
current queen placement to determine if the new queen
is legal. The partial solution is also passed as the fifth
argument, L, to be either discarded (if the new queen is
bad), or to be used to compose the new partial solution
for the call to queen in the first clause of check.

The final two arguments of queen form a difference
list (D-list) for the output stream of solutions. Note
how this D-list is wired between the two children of
queen. A complete solution is bound to the stream in

check([PIPs), C, D, N, L, NCs, S0, S1):—C—P=\=D, P-C=\=D|

Dlis D+1,
check(Ps, C, D1, N, L, NCs, S0, S1).
check(—, —, _, _, _, _, SO, S1): —otherwise|S0=S1,

b(1, B, D, N, S0, S1): —queen(N, [DIB], S0, S1).
b(CICs], B, D, N, S0, S1): —b(Cs, B, D, [CIN], SO, S1).

Fig. 6 Ueda’s N-Queens (FGHC): Translated from Fused Prolog and Hand Optimized.

66
go(N, A):—queen(l, N, [[]], A).

queen(l, N, In, Out):—I=<N|
INis1+1,
q(1, N, In, Inl),
queen(ll, N, Inl, Out).

queen(l, N, In, Out): —I>N|Out=In.

q(I, N, In, Out): —I=<NI
I1is I1+1,
filter(In, I, Out, Outl),
q(I1, N, In, Outl).
q(I, N, _, Out):—=I>N|Out=[].

filter(In, I, SO, S1): —filter(In, I, 1, SO, S1).

filter((1, —, —, SO, S1):—S0=S1.
filter([PIPs], I, K, SO, S2): —
filter(Ps, I, K, S1, S2),
check(P, I, K, P, S0, S1).

check({), 1, _, P, SO, S1): —SO=[[IIP]IS1].
check([J!Js), I, D, P, SO, S1):—
J=\=I,D=\=I-],D=\=J-1|

Dlis D+1,
check(Js, I, D1, P, SO, S1).
check(—, —, __, _, SO, S1): —otherwise|S0=S1.

Fig. 7 Naive Pipelined Filters N-Queens (FGHC).

go(N, A):—queen(l, N, begin, LS), fromLStoL(LS, A).

queen(l, N, In, Out): —I=<N|
Il1is I+1,
q(l, N, In, In}),
queen(ll, N, Inl, Out).
queen(l, N, In, Out): —I>N|Qut=In.

q(l, N, In, Out): —1=<N|
IlisI+1,
filter(In, I, Out, Outl),
q(Il, N, In, Outl).

q(I, N, _, Out):—=I>NI|OQut=[].

filter(In, I, SO, S1): —S0={[I*Inl|Sl], filterl(In, I, 1, Inl).

filterl1(begin, _, __, Out): — Out=begin.
filter1({ 1, —, —, Out):—Out=[].
filter1({J*InlIns], I, D, Out): —
J=N=I,D=\=I1-J, D=\ =J-1|
DlisD+1,
Out=[J*NewIn|Outl],
filter1(In, 1, D1, NewlIn),
filter1(Ins, I, D, Outl).
filter1([__!Ins], I, D, Out): —otherwise|filter1(Ins, I, D, Out).

fromLStoL(LS, L): —fromLStoS(LS, [], L,[.
fromLStoS(begin, Stack, L0, L1): —LO=[Stack|L1].
fromLStoS([], _, LO, L1):—=LO=LI.
fromLStoS([A*LS1|Rest], Stack, L0, L2): —
fromLStoS(LS1, [AlStack], LO, L1),
fromLStoS(Rest, Stack, L1, L2).

Fig. 8 Okumura’s Layered-Streams N-Queens (FGHC).

the second clause of queen when both the candidate and
non-candidate lists are empty, i.e., all the queens have
been placed. The final clause of queen represents the

E. Tick

case when no more candidates remain, yet there are still
non-candidates, i.e., the partial solution is bad. In this
case, that branch in the OR-tree is abandoned and its
output stream is closed.

N-Ueda’s is a translation of the fused N-Pereira’s
into FGHC by the continuation method [18]. The
translated program was then hand-optimized (Fig. 6)
with folding/unfolding rules [6]. It is interesting to
note that a continuation-based translation of the naive
N-Bruynooghe’s into FGHC is only about 40% slower
(for 9-Queens) than the fused version. Yet the speed
difference between the original Prolog programs is over
30 times. The increase in efficiency of the naive program
is due to the co-routining introduced by Ueda’s method
[18]. Also note that raw translation of fused N-
Pereira’s is about 17% slower than the hand-optimized
version. Speedup is due to fusing procedures together
to avoid reductions, using lists to implement simple con-
tinuations, and removing unnecessary continuations.
These optimizations appear too complex to be
automated. Note that optimized N-Ueda’s is essentially
N-Kumon’s.

The FGHC program given in Fig. 7 uses a linear
pipeline of filter processes to incrementally create and
discard partial solutions. Initially a column of N
filter/4 processes is spawned for every column in the
board. Thus there are N filters spawned. Filters belong-
ing to the same column share a single input stream
(broadcast to all filters). The filters of the column have
their outputs linked together in an output stream. In-
itially a seed input of [] is given to the filter process
structure. The job of a filter is to determine if the incom-
ing message, representing a partial solution, is compati-
ble with the queen represented by that filter. Every filter
has two state elements: its row (I) and its depth (D) (its
column number is implicit in the process tree). The
depth is used identically to that of N-Kumon'’s to per-
form the check. If the incoming partial solution is not
compatible (clauses 2-4 of check) then the solution is
discarded. if the incoming partial solution is compatible
(clause 1 of check) then the new queen is prepended to
the partial solution. The output stream from the final
column of filters will contain only complete, valid solu-
tions.

Pipeline parallelism is the concurrent computation of
different filters in the pipeline. Initially the computation
‘“‘spreads’’ through the pipe from the leftmost column
of the board (given the seed). The ‘‘spreading’’ is a
natural result of process scheduling and automatic pro-
ducer-consumer stream communication. The
parallelism is severely limited by the times to fill and
empty the pipeline and the serialization caused by using
an output stream for each column of filters. When
check starts to check partial solution P against queen I,
no output is made until the check has completed.
Notice that later columns will also have to check P, but
cannot begin until the previous check is finished. We
can envision a type of speculative parallelism wherein

A Performance Comparison of Shared-Memory OR- and AND-Parallel Logic Programming Architectures for a Common Benchmark

go(N, A):—gen(N, L), top(S), queen(L, L, { 1, S, A, [1.

queen([CICs], [RIRs), NCs, Snd, S0, S2):—
Snd={check(R, C, Reply)[SndT],
check(Reply, Rs, R, C, NCs, Cs, SndR, SndT, S0, S1),
queen(Cs, [RIRs], [CINCs], SndR, S1, S2).
queen([], —, [—!_], Snd, SO, SI):=Snd=[], SO=S1.
queen([1, —,{ 1, Snd, SO, S1):—Snd={[echo(L, [])], SO=[LIS1].

check(no, _, _, __, __, __, SndR, Snd, SO, S1): —SndR=Snd, SO=S1.
check(yes, Rs, R, C, NCs, Cs, SndR, Snd, SO, S1):—

append(NCs, Cs, N),

merge(SndL, SndR, Snd),

piece(Sndl, SndL, R, C),

queen(N, Rs, [}, Sndl, SO, S1).

piece({), Snd, _, _):—Snd=]).

piece([echo(A, B)IRcv], Snd, X, Y):—
A=[YIC], % add queen to reply
Snd = [echo(C, B)|Snd0), % send request up
piece(Rcv, SndO, X, Y).

piece([Check IRev), Snd, X2, Y2):—
Check =check(X1, Y1, Answer),
X2-X1=\N=Y2-Yl, X2—-X1=\=Y1-Y2|
Snd=[Check |Snd0], % check succeeds . . .
piece(Rev, Snd0, X2, Y2).

piece([check(__, __, A)IRcv], Snd, X, Y): —otherwisel
A=no, % check fails . . .
piece(Rev, Snd, X, Y).

top(l).
top(fcheck(__, __, A)IRcv]): — A =yes, top(Rcv).
top([echo(A, B)IRcv]): — A =B, top(Rcv).

merge([X|Xs], Ys, Z): —Z=[XIZs], merge(Xs, Ys, Zs).
merge(Xs, [YIYs], Z): —Z=[Y|Zs], merge(Xs, Ys, Zs).
merge({), Y, Zp:—-Y=Z.
merge(X, [], Z):—X=2Z.

Fig. 9 Tick’s Distributed N-Queens (FGHC).

later columns can begin checking P even before
previous columns have completed their check. A possi-
ble correction to some of these deficiencies is a merge
tree between columns of filters, but this will incur a high
suspension overhead for communication (as we shall
see in N-Tick’s discussed later). Instead we fix the naive
pipelined filters program with a data structure called a
layered stream. In essence, layered streams reduce
pipeline startup and wind-down times and exploit the
speculative parallelism mentioned.

N-Okumura’s (Fig. 8) wuses the layered-steam
methodology [12]. A layered stream is a list of struc-
tures H*Ts, where H is a head of a list and Ts is a set of
all possible tails of H. Ts is itself represented with a
layered stream. This style of programming exploits a
greater amount of parallelism than either normal
stream-based programming (N-Kumon’s) or continua-
tion-based programming (N-Ueda’s), because a pro-
ducer can send an element through a layered stream
before its tail has been constructed. Essentially, streams
are to lists as layered streams are to streams.

A primary filter is spawned for each row and column
of the board in the exact same manner as in the naive

67

pipelined filters program. Initially a seed of the atom
begin is input to the first column of filters. Initially each
column also independently seeds its successor column
with partial solution, I*Inl in filter/4. filterl encap-
sulates the queen check. For an input layered stream
IxIn, if queen J at depth D is compatible with the filter’s
queen I, then the partial solution J*Newln is issued
down the output stream (clause 3). Two filters are then
spawned. The first filter checks the sub-layers of solu-
tion J and creates NewIn. The second filter checks re-
maining solutions at the current level, Ins and creates
Outl. If the check fails then the remaining partial solu-
tions are checked (clause 4). Note that fromLStoL con-
verts the layered stream back into a list of solutions.

In the FGHC N-Queens implementations previously
discussed, the programmers’ goal was of course to
make N-Queens run as quickly as possible. When such
programs are used as performance benchmarks, the
analyst may lose sight of the fact that N-Queens execu-
tion entails passing a trivially simple data structure
around a symmetric proof tree. As a result, information
gathered about N-Queens execution does not have
direct bearing on more realistic applications. With this
in mind, N-Tick’s (Fig. 9) was written with a general,
distributed process tree so that the framework could be
mapped onto other applications.

N-Tick’s process tree is too complex for the trivial
composition of leaves (the check in piece). As a result, it
is no surprise that N-Tick’s performs significantly worse
than the other FGHC programs. Although based on the
N-Kumon’s process structure, N-Tick’s is fully
distributed, i.e., the partial solution is represented sole-
ly by a group of piece processes. Each piece process can
respond to the following commands: echo (I, O)—
return D-list I, O of the queens (to the root), and check
(X, Y, A)—check pair X, Y with the internal queen for
safety: if safe, return A=yes, otherwise A=no.

A queen process first selects a queen X, Y, for the
next placement. The selection algorithm will never
choose X=Y so subsequent checking need not check
for this. The queen is sent to a checker which checks for
correctness (i.e., consistency with previous choices). If
the queen is consistent, the checker will spawn a queen
process to find all solutions including this queen.
Whether the queen is correct or incorrect, another
queen process is spawned to find all solutions without
the queen.

The piece, top and merge processes are perpetual,
i.e., they act as objects, receiving a message, acting on
it, and then calling themselves in anticipation of
another message. Eventually, they kill themselves when
a [] message instructs them to do so. These AND-
parallel processes form a virtual OR-tree that is in-
crementally pruned as good solutions are found and
bad partial solutions are discarded. As we shall see, the
largest execution overhead of N-Tick’s are frequent
suspensions of these objects, 30 times N-Okumura’s
and over 2700 times N-Kumon’s!

68

4. Performance Measurements

We now present performance measurements of the 9-
Queens programs executing on a Sequent Symmetry (all
execution times are given in seconds). Table 1 sum-
marizes the dynamic characteristics of the programs on
eight PEs: thousands of instructions, number of reduc-

E. Tick

tions, number of backtracks (suspensions for FGHC),
their sum (‘“‘entries’’), thousands of entries per second
(KEPS), and instructions per reduction. Table 2 gives
raw execution time and Table 3 gives two measures of
speedup, S,./S,. S, is the naive speedup with respect to
the algorithm itself running on a single PE. S, is the real
speedup with respect to the fastest algorithm (in the

Table 1 9-Queens High-Level Characteristics (Eight PEs Symmetry).

back’

Author Method instr reduct entries sec KEPS inst/red
Aurora/Prolog
Bruynooghe naive gen & test 59088K 5776886 986411 6763297 113.0 60 10.2
Bratko constraints 3781K 312168 481020 793188 13.6 58 12.1
Pereira fused gen & test 1708K 138214 24013 162227 5.3 31 12.4
Kondo blackboard 518K 45152 32055 77223 2.7 29 11.5
Bratko with structures 604K 45067 24022 69089 2.6 27 13.4
Panda/FGHC
Tick distributed 5772K 319767 222057 541824 13.9 39 18.0
Tick pipelined filters 4274K 287757 559 288316 15.6 18 14.9
Ueda trans. Pereira 3456K 218458 52 218510 6.6 33 15.8
Ueda optimized 2311K 186405 79 186484 4.2 44 12.4
Kumon candidates 2112K 144918 82 145000 4.2 35 14.6
Okumura layered streams 1480K 98731 7523 106254 3.2 33 15.0
*suspensions in FGHC
Table 2 9-Queens: Total Execution Time (Seconds) on Symmetry.
Author Method 1 PE 2 PE 4 PE 8 PE 12 PE 15 PE
Aurora/Prolog
Bruynooghe naive gen & test 850.0 4243 217.4 113.0 74.2 59.7
Bratko constraints 88.6 46.3 23.6 13.6 7.0 6.2
Pereira fused gen & test 24.4 12.4 6.8 5.3 3.0 2.7
Kondo blackboard 15.0 7.4 4.2 2.7 2.2 2.0
Bratko with structures 13.4 7.3 4.2 2.6 2.1 2.0
Panda/FGHC
Tick distributed 95.8 49.5 26.7 13.9 10.2 7.9
Tick pipelined filters 58.1 30.6 19.3 15.6 21.7 16.6
Ueda trans. Pereira 49.7 25.2 12.8 6.4 4.3 3.5
Ueda optimized 31.8 16.2 8.3 4.2 2.8 2.3
Kumon candidates 28.3 14.3 7.3 3.7 2.5 2.0
Okumura layered streams 21.5 11.7 6.1 3.2 2.4 1.9
Table 3 9-Queens Speedups (S,/S,) on Symmetry.
Author Method 1 PE 2 PE 4 PE 8 PE 12 PE 15 PE
Bruynooghe naive gen & test 1.00/0.02 2.00/0.03 3.91/0.06 7.52/0.12 11.46/0.18 14.24/0.22
Bratko constraints 1.00/0.15 1.91/0.29 3.75/0.57 6.51/0.99 12.66/1.91 14.29/2.16
Pereira fused gen & test 1.00/0.55 1.97/1.08 3.59/1.97 4.60/2.53 8.13/4.47 9.04/4.96
Kondo blackboard 1.00/0.89 2.03/1.81 3.57/3.18 5.56/4.96 6.82/6.09 7.50/6.70
Bratko with structures 1.00 1.84 3.19 5.15 6.38 6.70
Panda/FGHC
Tick distributed 1.00/0.22 1.94/0.43 3.59/0.81 6.89/1.55 9.39/2.11 12.13/2.72
Tick pipelined filters 1.00/0.37 1.90/0.70 3.01/1.11 3.72/1.38 2.68/0.99 3.50/1.30
Ueda trans. Pereira 1.00/0.43 1.97/0.85 3.88/1.68 7.77/3.36 11.56/5.00 14.20/6.14
Ueda optimized 1.00/0.68 1.96/1.33 3.83/2.59 7.57/5.12 11.36/7.68 13.83/9.35
Kumon candidates 1.00/0.76 1.97/1.50 3.88/2.95 7.65/5.81 11.32/8.60 14.15/10.75
Okumura layered streams 1.00 1.84 3.52 6.72 8.96 11.32

A Performance Comparison of Shared-Memory OR- and AND Purallel I ogic Programming Architectures for a Common Benchmark 69

same language) running on a single PE. The fastest
algorithms measured were N-Bratko’s and N-
Okumura’s for Prolog and FGHC respectively.

To calibrate the two systems, N-Kumon’s was
translated from FGHC into Prolog. Both the Prolog
and FGHC versions of the algorithm were executed for
8-Queens on one PE, resulting in 13.0 sec (KL1-PS) and
13.8 sec (Aurora). SICStus Prolog V0.5 ran in 8.0 sec,
showing Aurora overheads degraded performance over
40%. Larger benchmarks measured by Lusk [11] in-
dicate an average 20% overhead. These overheads are
due in part to an earlier version of the compiler. Note
that other committed-choice architectures will probably
differ in performance from KL 1-PS. For example JAM-
Parlog executes N-Kumon’s 25% faster than KL1-PS
and other programs from 20%-40% faster [5]. Thus
both the Aurora and KL1-PS systems may be hamstring-
ed, but still they are calibrated in their present state.

In FGHC, although N-Kumon’s causes almost no
suspensions, N-Okumura’s has better performance
because of data-sharing in the layered-stream method.
All of the algorithms except N-Okumura’s perform
redundant checks when constructing (in the OR-tree) in-
dependent solutions that contain identical queens. In
N-Okumura’s, since the OR-tree is represented by the
layered stream and the process structure has one main
filter per board square, no redundant checks are per-
formed. For 9-Queens, N-Okumura’s is 32% faster
than N-Kumon’s on a single PE. As the number of PEs
increase, so do suspensions in N-Okumura’s, and its ad-
vantage narrows. On 15 PEs, N-Okumura’s is only 5%
faster. The 10-Queens OR-tree is larger and therefore
the effect of data-sharing is more pronounced: N-
Okumura’s is 26%-45% faster. The version of N-
Okumura’s measured, however, differs slightly from
that in Fig. 8—a layered stream is represented as [H| Ts].
Without this optimization, the program generates
significantly more memory references and runs 8%
slower for 9-Queens.

Considering the effect of algorithm on performance,
we first note that a good algorithm is not necessarily a
parallel algorithm. For example the Prolog version of
N-Kumon’s is one of the faster Prolog algorithms, but
it is not OR-parallel. On the other hand, we note that a
poor algorithm often cannot overcome its inefficiency,
even if it is a parallel algorithm. For example, naive N-
Bruynooghe’s, even though it gets linear speedup, has a
higher complexity order than the other algorithms and
cannot compete with even sequential N-Kumon’s.
However, as a third point, we note, as did Ueda [18]
and others, that a simple change in algorithm can
drastically improve naive N-Bruynooghe’s—we
measured a factor of 21-35 speedup.

Implementation technology and data structures also
has an impact on program performance. Noting that N-
Tick’s and N-Kumon’s have the same program struc-
ture, the vast difference in reductions and suspensions is
due to the distributed check, i.e., the overhead of

merge. This problem may be ameliorated with special
system support for merge. The pipelined filters program
and N-Okumura’s have the same process structure but
use different data structures: streams and layered
streams respectively. Streams actually slowdown on
more than eight PEs because of the serialized method in
which the streams are constructed, and the large
amount of garbage created as a byproduct of stream
communication. Layered streams however continue to
speedup through 15 PEs. We also note that although N-
Bratko’s is an elegant algorithm, it should ideally use ar-
rays, not lists. By simulating write-once arrays with
structures in N-Bratko’s, performance improved by a
factor of 5-7 on symmetry. In general, the Prolog
algorithms exploiting backtrackable unification out-per-
form the other programs by a significant margin. Thus
the algorithm must be well matched to the language
technology.

The measurements presented here concerning
automatic translation from Prolog to FGHC agree with
Ueda’s [18]—the translation speeds up the naive Prolog
program by a factor of 8-9. However, the FGHC
translation of the fused algorithm runs (on a single PE)
only about half as fast as the Prolog version, and only
about half as fast as the fastest (hand-written) FGHC
program (N-Okumura’s). On 15 PEs the superior
speedup of 14.2 achieved by N-Ueda’s closes the gap
with Prolog and FGHC layered streams. In addition,
source-to-source optimizations can essentially convert
Ueda’s program into N-Kumon’s.

Concerning speedups, N-Bratko’s displays the worst
naive speedup, yet the best real speedup, of the Prolog
programs. We believe this is because of the high
overhead for maintaining multiple bindings, i.e., solu-
tions make many private bindings to the 34 constraint
variables (in Du and Dv for 9-Queens). N-Kondo’s has
the same problem, with 34 variables in the 9 X 9 board.
Of the FGHC programs, naive pipelined filters with
streams is the only program to display a slowdown—the
algorithm does not simulate an OR-tree as does N-
Tick’s, N-Ueda’s and N-Kumon’s. N-Tick’s also
displays low speedup because of suspension overheads
in the message-passing model. The fastest FGHC pro-
gram, N-Okumura’s, displays poor naive speedup (due
to both suspensions and the use of a pipeline instead of
a tree), but the best real speedup. N-Kumon’s displays
greater naive speedup, indicating that the increased
parallelism afforded by (lazy) layered streams is in reali-
ty decreased by their suspension rate. Furthermore the
reduced complexity order of the layered-stream
algorithm depreciates with increasing numbers of PEs
because a tree-structured algorithm, such as N-
Kumon’s, can consistently achieve higher speedup.

5. Conclusions

This paper presents a performance comparison of
two parallel logic programming systems (Aurora and

70

KL1-PS) executing a family of algorithms implemen-
ting the same application (N-Queens). Measurements
given of “‘real’’ speedups on 15 Symmetry PEs indicate
that the best 9-Queens speedup attained was only 6.7
and 11.3, for Prolog and FGHC respectively. Increas-
ing the problem size (from 9 to 10 queens) increased the
speedup on Aurora by 22% and on KL1-PS by 9%.
This indicates that even with the large, regular tree of 9-
Queens, further increasing granularity (by increasing
problem size) helps the schedulers, i.e., the current
schedulers in the systems are not fully efficient. The
Aurora scheduler particularly has trouble exploiting
fine-grain parallelism near the leaves of the 9-Queens
OR-tree. This problem becomes most apparent on more
than eight PEs. Note that the systems measured use
low-performance emulators, each executing at about
four KEPS. We expect custom processors to achieve 50
times this rate, giving shared-bus multiprocessors a
much tougher job attaining similar speedups.

Compared to the superior algorithms of each
language, other algorithms are at best 50% efficient i.e.,
their real speedup on N PEs is about N/2 (credit must
be given to N-Kumon’s and its derivatives which are
slightly better). All of the algorithms presented are
parallel, and many display close to linear (naive)
speedup. These characteristics indicate that designing
fast sequential algorithms that can be parallelized (rela-
tively easy in languages such as Prolog and FGHC) is
more important than designing massively parallel (yet
stupid) algorithms. The superior Aurora algorithms
achieve speedups of less than seven on 15 PEs, and for
KL1-PS we achieve speedup of less than 12 on 15 PEs,
yet the sequential speed of these algorithms proves their
superiority. In general, the best Prolog algorithms have
faster sequential speed than the FGHC algorithms and
KL1-PS achieves higher speedups than does Aurora.
For this benchmark problem, the equilibrium point of
the two systems appears to be near 15 PEs.

In FGHC, it was shown that frequent suspensions
due to message routing can ruin an otherwise
reasonable algorithm (N-Tick’s compared to N-
Kumon’s). The detrimental effect of suspensions on
layered-streams programs (not due to message passing,
but rather to lazy evaluation) is more than balanced by
the avoidance of redundant computation afforded by
the data-sharing nature of the layered stream. N-
Kumon’s illustrates how an OR-parallel program can be
written in FGHC, incurring almost no suspensions, by
a candidate/noncandidate paradigm. Another method
of OR-parallel search in FGHC, automatic translation
(N-Ueda’s), was shown to be rather inefficient. Hand-
optimizing the translation helped bring N-Ueda’s on
par with N-Kumon’s, but whether such optimizations
can be automated is an open question.

It is difficult to accurately compare the Aurora and
KL1-PS systems because they differ in many implemen-
tation details. Moreover it has been said that such a
comparison is unfair because the domains of OR-

E. Tick

parallel and AND-parallel computation rarely overlap.
This aside, it is valuable to compare the systems because
it helps quantify the advantages one paradigm holds
over the other. If one considers N-Queens an OR-
parallel problem, then Aurora has an advantage in this
study, and as the results show, Prolog algorithms out-
performed FGHC algorithms for the most part. Yet
Prolog’s performance advantage grew thin with increas-
ing numbers of PEs. For example automatic translation
from OR-parallelism into AND-parallelism lost a factor
of two in speed on a single PE, but on 15 PEs the
original Prolog program executed only 30% faster.
Given their weakness in all solutions OR-parallel
search, the FGHC programs did surprisingly well. Cer-
tainly there are countless other problems with no OR-
parallelism in which the OR-parallel Prolog programs
would get no speedup, and the FGHC programs would.

It is for the reader to decide which of the algorithms
are most readable, declarative, easily debugged, and ex-
tensible. Layered streams are difficult to utilize in com-
plex problems; however, the general method of can-
didates/noncandidates (N-Kumon’s) performs a very
close second. Similarly one could claim that the con-
straints methods used in N-Kondo’s (and N-Bratko’s)
are also limited. However, the fused generate and test
program (N-Pereira’s) gives fairly reasonable perfor-
mance. Research is currently underway to compare the
Aurora and KL1-PS architectures at the levels of shared
memory, bus and cache performance [15, 8], to com-
pare KL1-PS with other committed-choice architec-
tures, such as JAM-Parlog [5], and to develop a more
extensive benchmark suite.

6. Acknowledgements

This research was supported by NSF Grant No. IRI-
8704576 and conducted at the Institute of New Genera-
tion Computer Technology (ICOT). R. Overbeek and
E. Lusk of Argonne National Laboratories kindly sup-
plied the Aurora system for Symmetry. M. Sato of
ICOT wrote and upgraded the KL1-PS system to allow
the measurements presented herein. Discussions with
A. Okumura, M. Sato, and K. Ueda provided much in-
sight into this research. The author is currently sup-
ported by an Information Sciences Chair at the Univer-
sity of Tokyo endowed by the CSK Corp.

References

1. BraATkoO, 1. Prolog Programming for Artificial Intelligence. Ad-
dison-Wesley Ltd., 1986.

2. ButLER, R. et al. Scheduling OR-Parallelism: an Argonne
Perspective. In Int. Conf. and Symp. on Logic Prog., MIT Press,
(August 1988), 1565-1577.

3. CARLSSON, M. SICStus Prolog User’s Manual. PO Box 1263, S-
16313 Spanga, Sweden, February 1988.

4. CoeLHo, H. and Cotta, J. C. Prolog By Example. Springer-
Verlag, 1988.

5. CramMmoND, J. and Tick, E. Comparison of Two Shared-
Memory Emulators for Flat Committed-Choice Logic Programs.
Technical report, RCAST, University of Tokyo, October 1989. to be
published.

A Performance Comparison of Shared-Memory OR- and AND-Paralle! Logic Programming Architectures for a Common Benchmark 71

6. Furukawa, K., OkuMuURrA, A. and MurAakaMi, M. Unfolding
Rules for GHC Programs. New Generation Computing, 6 (2-3)
(1988), 143-157.

7. Gorto, A. Parallel Inference Machine Research in FGCS Project.
In First Japan-U.S. Al Symposium (December 1987), 21-36.

8. Goto, A., MaTsumoTo, A. and Tick, E. Design and Perfor-
mance of a Coherent Cache for Parallel Logic Programming Architec-
tures. In 16th International Symposium on Computing Arch.
Jerusalem, May 1989.

9. KIMURA, Y. and CHIKAYAMA, T. An Abstract KL1 Machine and
its Instruction Set. In International Symposium on Logic Programm-
ing, San Francisco (August 1987), 468-477.

10. Lusk, E. et al. Portable Programs for Parallel Processors. Holt,
Rinehart & Winston, 1987.

11. Lusk, E. et al. The Aurora Or-Parallel Prolog System. In Inter-
national Conference on FGCS, Tokyo (November 1988), 819-830.
12. OKUMURA, A. and MATSUMOTO, Y. Parallel Programming with
Layered Streams. In International Symposium on Logic Programm-
ing, San Francisco (August 1987), 224-233.

13. SaTO, M. and Goro, A. Evaluation of the KL1 Parallel System
on a Shared Memory Multiprocessor. In IFIP Working Conf. on

Parallel Processing. North Holland, May 1988.

14. Sequent Computer Systems, Inc. Sequent Guide to Parallel Pro-
gramming, 1987.

15. Tick, E. A Performance Comparison of AND- and OR-Parallel
Logic Programming Architectures. In Sixth International Conference
on Logic Programming. Lisbon, MIT Press, June 1989.

16. Tick, E. Comparing Two Parallel Logic-Programming Architec-
tures. JEEE Software, 6(4), July 1989,

17. Tick, E. Parallel Logic Programming on Shared-Memory
Multiprocessors: A Tale of N-Queens. In Proceedings Japanese Sym-
posium of Parallel Processing. Atami, February 1989.

18. UEDA, K. Making Exhaustive Search Programs Deterministic:
Part I1. In Fourth International Conference on Logic Programming,
MIT Press (May 1987), 356-375.

19. WaRrreN, D. H. D. An Abstract Prolog Instruction Set.
Technical Report 309, SRI International, 1983.

20. WARREN, D. H. D. The SRI Model for OR-Paralle! Execution
of Prolog—Abstract Design and Implementation. In Symposium on
Logic Programming (August 1987), 92-102.

(Received May 19, 1989; revised August 28, 1989)

